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Abstract 
In the face of seeming dearth of objective methods of estimating measurement error variance and 

realistically adjusting for the incidence of measurement errors in multilevel models, researchers 

often indulge in the traditional approach of arbitrary choice of measurement error variance and 

this has the potential of   giving misleading inferences. This paper employs bootstrapping and 

Gibbs Sampling techniques to systematically estimate measurement error variance of selected 

error-prone predictor variables and adjusts for measurement errors in 2 and 4 level model 

frameworks. Five illustrative data sets, partly supplemented through simulation, were drawn 

from an educational environment giving rise to the multilevel structures needed.  Adjusting for 

the incidence of measurement errors using these techniques generally revealed coefficient 

estimates of error-prone predictors to have increased numerical value, increased standard error, 

reduced overall model deviance and reduced coefficient of variation. The techniques, however, 

performed better for error-prone predictor(s) having random coefficients. It is opined that the 

bootstrapping and Gibbs Sampling techniques for adjusting for the incidence of measurement 

errors in multilevel models is systematic and realistic enough to employ in respect of error-prone 

predictors that have random coefficients and adjustments that are meaningful should be 

appraised taking into cognizance changes in the coefficient of variation alongside other 

traditionally expected changes that should follow measurement error adjustments.   
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1.0 Introduction 

    In many of the variables used in the 
physical, biological, social and medical 
science, measurement errors are found. The 
errors are essentially random or systematic. 
Both types of errors could be problematic in 
statistical inference. In fixed effects models 
such as linear  and generalized linear 
models, the incidence and effects of 
measurement errors on the response and 
explanatory variables has been well 
documented in the literature [4], [9], [2], [8], 
[1], [12], [4]. Generally, the consequences of 
ignoring measurement errors for 
independent observations and response 
values are well understood in linear models. 
    The efficacy of  mixed models such as  
multilevel linear models is  also adversely 

affected by a failure to properly account for 
measurement errors in their formulation and  
estimation. In particular, the behaviour of 
biases associated with measurement error in 
covariates or the response for multilevel 
hierarchical linear models is, up to date, not 
well known and can be complex [7]. In 
handling the incidence of measurement 
errors in  multilevel modeling methodology, 
one of the daunting challenges that often 
confront researchers is that of estimating   
realistically  measurement error variances 
and reliabilities of  error-prone variables in a 
multilevel model. Most of the current  
techniques for estimating  measurement 
error variance are, in general deficient; there 
is inability  to sufficiently  justify  
independence of measurement errors and the 



 

 

so called  unidimensionality assumption as 
required in educational  mental testing; 
accuracy and consistency of the estimates of 
the  measurement error variance could not 
be guaranteed [3]. The method of 
instrumental variables strongly 
recommended for certain situations as in 
mental testing (see [3] ) requires, however, 
that several different  instrumental variables 
be considered  for comparison. There is also  
often  the difficulty of establishing that 
measurement errors are independent of 
instrumental variables [11]. Some other 
researchers often simply assume 
measurement error variance and reliability 
values for error-prone variables in the 
multilevel models at the risk of obtaining 
unrealistic estimates. This paper employs 
bootstrapping and Gibbs sampling 
techniques to realistically estimate 
measurement error variances of selected 
error-prone explanatory variables and 
adjusts for the incidence of these errors 
giving rise to more adequate multilevel 
models. 
 
2.0 Methodology 

2.1  Data Structure   

     The illustrative data employed was drawn 
from an educational environment. There 
were five data sets( Data 1-5) utilized.  Data 
1-3 were derived from 50 randomly selected 
secondary schools in Benue State of Nigeria 
while Data 4 and 5 included data 
supplemented by simulated values. Data 1  
constituted a  4-level data structure in which 
there were 9,999 level 1  units (here 
students),   450 level 2 units (here subjects  

or  subject groups), 150  level 3 units (here 
classes) and 50 level 4 units (here schools). 
The clustering was such that for any original 
sample  nj  ( 20 ≤  nj  ≤ 30) of the students 
from each school j, the nj was “replicated” 
into 9 clusters giving rise to 9nj level 1 units 
for school j (j = 1,2, …,50).  In other words, 
the same  nj  students in school j  were 
mirrored in 9 clusters or groups and, in 
particular,   for each school j, we had   9nj  
level 1 units nested in 9 level 2 units that 
were further nested in  3  level  3 units . 
Data 2  also constituted a 4-level data 
structure but here  there were 6,666 level 1 
units(students), 300 level 2 units( subjects or 
subject groups), 150 level 3 units( classes) 
and 50 level 4 units( schools); in this 
dataset, the seeming confounding 
characteristics in  Data 1 were reduced by 
removing the level 2 unit or cluster relating 
to Common Entrance (CE) and variables 
based on it. Data 3 is a 2-level data structure 
with students nested in schools; any sample 
drawn in a school constituted a “statistical 
cohort” of students from whom Mathematics 
(M) and Science and Technology (ST) 
scores in JSS1, JSSCE and SSCE/WAEC 
between 2002 and 2008 were captured. Data 
3 had 1,111 level 1 units and 50 level 2 
units. Additional levels 1 and 2 units were 
further generated via simulation to 
supplement   needed data for further 
exploration. These gave rise to Data 4 
(having 2,222 level 1 units with same 50 
level 2 units) and Data 5( having  4022 level 
1 units and 110 level 2 units).  

 

2.2   Description of  Variables      
Variable name Description of Variable Data set where used 
Navgstemij  Student’s Final  STM score ; a level 1 

response variable. 
1, 2 

Ncescoreij  Student’s entrance score; a level 1 predictor 
variable  

1 

Normscoreij  JSS1 school STM score student’s subject 
score per class; a level 1   predictor 
variable.  

1, 2 

Navg1steml  Final School STM score; a level 4 predictor 
variable  

1, 2 



 

 

Navgcel  School common entrance score; a level 4 
predictor variable.  

1 

Navg2steml  JSSCE school  STM score ;  a level 4 
predictor variable.  

1, 2 

Navg3stemj  Final School STM score; a level 4 predictor 
variable  

1, 2 

Navgsubj     Score per subject;  a level 2 predictor 
variable.  

1, 2 

Navginclsk  Score in  class ;  a level 3 predictor variable. 1, 2 
Navgscoreij  STM score per student in all classes; a level 

1 response variable. 
3-5 

NJS1avgij  STM score per student in JSS1 subjects; a 
level 1 predictor variable  

3-5  

NJCEavgij  

 
STM score per student in JSSCE subjects; a 
level 1 predictor variable. 

3-5  

Schstatusl  school status(i.e whether school is owned as 
private or public); a categorical predictor 
variable.  

3-5 

Schsysteml  school system; it is a categorical  predictor 
variable with the  systems categorized into   
“Boardsytem”,  “ Daysystem”   or  
“Bothsystem”.  

1-5 

Schgenderl  School gender ; it is categorical  predictor 
variable with school gender categorized into 
Boys school(Boysch), Girls school 
(Girlsch)  or Mixed( Mixedsch).  

1-5 

Nrsqindexl  School staff quality index (an indication of 
academic staff quality or strength in any 
particular school. This is estimated by 
dividing the total number of qualified 
academic staff by the entire estimated 
student population in the school; it is a 
predictor variable. 

1-5 

PSStatusl  An indication of Electric Power Supply 
status in a school ; it is a categorical 
predictor variable  categorized into school 
generator, PHCN,  Both or  one.  

3, 4  

Labavl     An indication of the availability of Science 
Laboratories in a school; it is a categorical  
predictor variable categorized into “no 
science lab”, “ one science lab “ or “ two or 
more science labs” .  

3 

 

3    Multilevel Models and Measurement 

Errors 

    A  k-level model  may be expressed in the 
compact form: 

 Y = Xγ + ZU + Z(1)e                     
(2.1) 
where, Y is a column vector of  true  
unobservable responses each assumed 
continuous. 



 

 

Z = [Z(k) , Z(k-1), …, Z(2)]  
 and  
U′ = [u(k)  u(k-1) ,…,u(2)]  . 
The Z(k)’s are  block diagonal matrices 
having diagonal elements as Zj

(k) ( j= 
1,2,…,mk) while   u(k), X and γ  are column 
matrices with elements, respectively, uj

(k) , 
Xj  (j=1,2,…,mk),and γh0 (h=0,1,…,p).   
We assume that Z(1)e and U are normally 
distributed with zero mean and we, 
symbolically, write:        
Z(1)e = r     ~     N (O, σ2 Ï*)   …  
        (2.2) 
and  U ~ N (O, T*)    … 
        (2.3) 
where Ï* and T* are appropriate block 
diagonal matrices comprising, respectively, 
the blocks of unit matrices and blocks of 
variance-covariance matrices of the residual 
vectors associated with the k-level model 
(that  is the residual contributions from the 
levels 2, 3, …, k in the k-level model).  
    We infer from (2.1),(2.2) and (2.3) that Y 
is normally distributed with  E(Y) = Xγ  and 
variance-covariance matrix, Vk = V 
=E[ E

~
E
~ ’] =  }{ )(∑

l

lkV  ,where E
~  = ZU + 

Z(1)e   . The notation Vk  here  referring to 
the covariance( or variance-covariance) 
matrix associated with the response vector 

for the k-level model and  Vk(l)( l = 1,2,…k), 
respectively, denote the contributions to the 
covariance matrix of the response vector 
from levels k, k-1,…,1 in a k-level model. 
The level 1 residuals are assumed to be 
independent across level 1 units. Similarly, 
levels 2, 3,…,k  residuals are assumed to be 
independent across levels 2 ,3,…, k units 
respectively. It should be noted also that Vk 
is a block  diagonal matrix with block  
diagonal elements  Vk(l)( l = 1,2,…k) and 
each of these elements is  also  block 
diagonal  comprising blocks in their 
composition. 
 If the collection or measurement of  
explanatory  or  response variables 
incorporated in (2.1)  are susceptible to 
errors then the estimated coefficient 
parameters will be asymptotically biased 
and consequently incorrect inferences can 
result in respect of the relevance or 
otherwise of some model variables. In 
practice explanatory or response variables 
utilized to fit models in social or educational 
environments are subject to some degree of 
measurement error. 
    A basic model for measurement errors in 
a 2-level continuous response linear model 
for p   

explanatory variables and responses takes the form. 
Y
~  =    y~   +   q~                                                                                               (2.4) 

Y
~  =  [Y11 Y21...Yn1…Y1j Y2j...Ynjj…Y1J Y2J… YnJJ]' 

 y~  = [y11 y21...yn1…y1j y2j...ynjj…y1J y2J… ynJJ]'  
q~   = [q11 q21...qn1…q1j q2j...qnjj…q1J q2J… qnJJ]'  
Xij = [x0ij x1ij… xhij.. xpij] and x0ij=1 
  
    In respect of the explanatory variables or predictors, we have 
 X

~   =  x~   +   m~             (2.5)  
 where 
   X

~ = [X1 X2,.. XJ]'  
   x~  =[x0 x1… xh.. xp]', x0 = a column of ones. 
  m~  = [m1 m2 …mh…mp]'             
With  
 xh =[xh11 xh21...xhn11…xh1j xh2j1,...,xh2jJ… xhnJJ]'  
 mh =[mh11 mh21...mhn11…mh1j mh2j1,...,mh2jJ… mhnJJ]'  
  and for each j we can write 
 mhj =[mh1j mh2j...mhnjj]'  
 xhj =[xh1j xh2j...xhnjj]'  



 

 

The measurement error vectors m~   and q~  
are assumed independent and normally 
distributed with zero mean vectors. The 
measurement error models reflected by (2.4) 
and (2,5) can be analogously      expressed in  
matrix form for any k-level model. The 
concern of   researchers and statisticians is 
to    seek ways of adjusting for the incidence 
of these measurement errors and to do this 
entails  a  an estimation of ( or the use of   
known value(s) of  )  measurement error 
variances  of  perceived error-prone  
variables and there  after use the estimated 
values to modify the affected model and 
estimate  same.  
    Assuming the variables measured with 
error do not have random coefficients, then 
following Goldstein( 2003),   the ME 
corrected fixed coefficients estimate for  any 
k- level model is  
 

 -  -  . . .  -     (2.6) 
where 
 
   =  ∑

α

(   ,  

 k = 1,2,… 
 
are correction matrices for measurement 
errors, mkαΩ  is the covariance matrix of 
measurement errors for the thα  level k 
block, V α   is the thα   block of V, the 
variance-covariance matrix of residuals in 
the k-level model. 
 For the random components, based upon the 
model with observed variables, we write the 
residual for a unit in a level k as  

ij..l =
)(k

lZ )(k

lu + ... +
)3(

kZ )3(
ku   + 

)2(
jZ )2(

ju  

+ 
)1(
..lijkZ eijk..l +qij..l - m'β       (2.7) 

 . The estimation of the variance or variance-
covariance components(i.e the random 

components) are all estimated iteratively 
and, for a k-level model, the measurement 
error corrected estimate of these 
components, assuming the coefficients of 
the variables measured with error do not 
have random coefficients,  is obtained at 
each iteration as 
 

 + T1 + T2 + … Tk ]     

(2.8) 
Where  T1= )ˆ'ˆ{ 1 ββ ijm

ij
Ω⊕   and  Tk  

= 
α
⊕    for k ≥  2.  

We note that ij1Ω  is the covariance of 
measurement errors for the ijth 
measurements of level 1 while   lqij..

2σ  is the 
measurement error variance for the  ij..lth 
response measurement. 
    If the coefficients of the variables 
measured with error have random 
coefficients  then the formulae in (2.6) and 
(2.8) do not apply and in particular m~ ' V-

1 m~   has measurement errors in all its 
components and, following the suggestions 
made by Woodhouse [13], Moment-based 
techniques are not appropriate but rather the 
Bayesian technique of Gibbs sampling( an 
MCMC technique) is employed. Some of 
the selected predictor variables perceived 
error-prone in this paper have random 
coefficients and so Gibbs sampling 
technique rather than moment-based 
technique shall be employed to adjust for the 
incidence of these errors and, for the 
estimation of measurement error variances 
and reliabilities of the error-prone variables,  
the bootstrapping technique shall be 
employed. 

 

 



 

 

2.4   The Multilevel Models Examined  
     The multilevel models formulated in respect of each of the data sets (1-5) are respectively 
given by (2.9), (2.10), (2.11), (2.12) and (2.13) below. 
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2.5.1 The Measurement Error 

AdjustmentApproach Using 

Bootstrapping and Gibbs   Sampling 

Techniques.  

    The approach essentially entails re-
sampling repeatedly from each of the 

clusters or subgroups in a data structure to 
estimate the variance of the error-prone 
predictor variable, its measurement error 
variance, reliability and ultimately adjusting 
for the incidence of measurement errors and 



 

 

re-estimating the k-level model accordingly. 
The steps are: 
(i) From each group (or subgroup) of the 

multilevel model obtain an estimate of 

the   Explanatory variable mean , •X j , 
based on sample sizes of at least 30 in 
each  group.  

(ii) Average these •X j’s (using arithmetic 
mean) across the entire groups to 
obtain a value, say ∗X . 

(iii) Estimate the measurement error (ME) 
variance, σ2

hm, as   the mean of the 

squares of deviations of •X j’s   from 
∗X .  

(iv) Estimate σ2
hX  as in the first paradigm 

approach. Estimate Rh  accordingly. 
(v) Use the values σ2

hm and σ2
hX  to adjust 

for measurement error in the  variable 
(s) of interest  and hence re-estimate  
the k-level model  accordingly via  
Gibbs sampling ;  a  Markov Chain 
Monte Carlo(MCMC) method. 

(vi) Check for possible attenuation and/or 
inconsistency of the estimated 
multilevel parameters  

(vii) If there is attenuation (reduced or no 
increase in predictive power of  
corresponding predictor) and/or 
inconsistency of the estimated 
multilevel parameters   then  repeat  
steps   (i) to   (vi) ,  possibly increasing 

re-sampling  size per cluster and/or  
increasing number  of samples.  

 
3.0 Analysis and Discussion  

    Four issues were addressed in the analysis 
of the multilevel models associated with 
each of the five  data sets: 
(a) estimation of  the measurement error  

variances and reliabilities of STM score 
per student in JSS1 subjects( NJS1avg)   
or  its  proxies( such as Normscore 
variable  for Data 1 and 2)  as well as 
the School staff quality 
index(Nrsqindex)  predictor variables.  

(b) coefficient estimates of  the perceived 
error-prone predictors ( and their 
standard errors)  prior to adjustments in   
measurement error. 

(c) coefficient estimates of the perceived 
error-prone predictors ( and their 
standard errors) following adjustments 
in measurement error. 

(d)  examination of  coefficient of variation  
values of  coefficient estimates of the 
error-prone predictors.   

 
    Bootstrapping with a minimum of 2000 
replicates for each of the NJS1avg and 
Nrsqindex variables in each of the data sets 
and following steps (i) to (iv) we obtain 
measurement error variance and reliability 
values as reflected in table 1 below.  

 
 

Table 1: Estimated Variances, Measurement 
Error (M.E) Variances and Reliabilities  in 
respect of the ‘student’s subject score per 

class’   Predictor Variable or their proxies in 
various datasets. 

 
    Table 1: Estimated Variances, Measurement Error 

Data Variable Variance M.E Variance Reliability 

1 NJS1avg** 0.44393 0.222942 0.666872 
2 NJS1avg* 0.541682 0.250571 0.683724 
3 NJS1avg 0.735439 0.255298 0.742315 
4 NJS1avg 0.674021 0.253647 0.726576 
5 NJS1avg 0.822923 0.635357 0.564311 
     

  
NJS1avg** and NJS1avg*  actually refer to  
the Normscore  variables   used for Data 1 

and 2  and are   realistic proxies of the  
NJS1avg variable as they are already  



 

 

associated with the JSS1 scores. We find 
that for Data 2, 3 and 4 the variable 
NJS1avg indicates a reasonably constant 
measurement error variance; an average of   
0.25.  In Data 1, the NJS1avg variable gave 
measurement error variance estimate  
slightly lower (i.e 0.22) than what obtained 
in Data 2, 3 and 4 but the average for the  
Data 1-4  measurement error variance of the 
NJS1avg  variable is still 0.25. The rather 
high measurement error variance estimate 
for the  NJS1avg variable (here 0.64) for 
Data 5 may be attributable to  weaknesses 
associated with the normal  probability 
distribution  model and  the accompanying 
assumptions that were employed to simulate  
additional units for levels 1 and 2. The near-
absence within group variation in respect of 
School staff quality index (Nrsqindex) 
predictor variable may have probably 
accounted for the   high measurement error 
variance estimate of 0.85 associated with it.   

     Using iterative generalized least 
squares(IGRLS) that is implemented in 
MLWiN package 2.20 [10] to  estimating 
models (2.9) -(2.13) prior to measurement 
error adjustments, we obtain coefficient 
estimates( with standard errors) of the 
NJS1avg variable or its proxy  along with 
coefficient of variation(CV) of these 
estimates as reflected in Table 2 below.   
 

Table 2: Coefficient Estimates of  Student’s  
STM  score in JSS1(NJS1avg) and School  
staff quality Index(Nrsqindex), their 
standard errors, 
 coefficients of variation(CV) and model 
deviance(D) for the  measurement error   
unadjusted scenarios. 
 
 
 

 

Table 2: Coefficients of Student STM 
Data Variable Coefficient 

estimate 

Standard 

error 

Coefficient of 

variation 

(CV) 

Model 

deviance 

(D) 

NJS1avg ** 0.273 0.020 0.073 1 
Nrsqindex -0.014 0.009 -0.643 

21967 

NJS1avg* 0.314 0.033 0.105 2 

Nrsqindex -0.053 0.032 -0.604 

15206 

NJS1avg 0.680 0.017 0.025 3 
Nrsqindex 0.010 0.062 6.20 

808 

NJS1avg 0.671 0.020 0.030 4 
Nrsqindex 0.011 0.06 1 5.54 

1188 

NJS1avg 0.744 0.018 0.024 5 
Nrsqindex 0.030 0.082 2.73 

3456 

      
  
    Employing Gibbs Sampling technique 
implemented in MLWiN package 2.20 [10], 
we adjust for the incidence of measurement 
errors to obtain estimate results of the two 
predictor variables under investigation as in 
Table 3 below. 
 

 

 

Table 3: Coefficient Estimates of Student’s 
STM score in JSS1 (NJS1avg) and School  
Staff quality Index (Nrsqindex), their 
standard errors, coefficients of variation 
(CV) and model deviance (D) for the 
measurement error   adjusted   scenarios. 
 
 

Table 3: Predictor Variables 
Data Variable M.E 

Variance 

Coefficient 

estimate 

Standard 

error 

Coefficient       

of variation 

(CV) 

Model 

deviance (D) 

NJS1avg ** 0.22 0.394 0.029 0.074 1 
Nrsqindex 0.85 -0.101 0.074 -0.732 

20023 

1 NJS1avg ** 0.25 0.416 0.029 0.070 19904 



 

 

Nrsqindex None -0.015 0.009 -0.600 
NJS1avg ** 0.22 0.398 0.028 0.070 1 
Nrsqindex None -0.015 0.009 -0.600 

20068 

NJS1avg* 0.25 0.468 0.10 0.218 2 

Nrsqindex 0.85 -0.260 0.156 -0.600 

12732 
 

NJS1avg* 0.25 0.480 0.094 0.196 2 

Nrsqindex None -0.039 0.027 -0.692 

12928 

NJS1avg 0.25 0.871 0.029 0.033 3 
Nrsqindex 0.85 0.035 0.070 2.00 

-4476 
 

NJS1avg 0.25 0.860 0.019 0.022 3 
Nrsqindex None 0.043 0.050 1.163 

-4406 

NJS1avg 0.25 0.828 0.021 0.025 4 

Nrsqindex 0.85 -0.007 0.041 -5.86 

-9170 
 

NJS1avg 0.25 0.869 0.038 0.044 4 
Nrsqindex None -0.003 0.044 14.67 

-9325 

NJS1avg 0.64 0.893 0.017 0.019 5 
Nrsqindex 0.85 -0.029 0.030 -1.03 

-16900 

NJS1avg 0.25 0.901 0.016 0.018 5 
Nrsqindex 0.85 -0.025 0.028 -1.12 

-17433 
 

NJS1avg 0.25 0.909 0.014 0.015 5 
Nrsqindex None 0.005 0.012 2.40 

-18359 
 

NJS1avg 0.064 0.899 0.014 0.016 5 
Nrsqindex None 0.002 0.013 6.50 

-17855 

 
    Following measurement error 
adjustments, Data 1, 3, 4 and 5 all reflected 
an average CV of the coefficient estimate of  
NJS1avg   to be  equal to or less than what 
obtained in the measurement error 
unadjusted scenarios. In the case of the 
Nrsqindex variable, the measurement error 
adjustment did not seem as impressive as 
what obtains in the NJS1avg variable; Data 
1 and 2 did not reveal a drop in the 
numerical value of the CV of the coefficient 
estimate of the Nrsqindex variable. Data 2, 3 
and 5 however reflected numerical CV 
values of the coefficient estimates of 
Nrsqindex  for the  measurement error  
adjusted cases to be, on average, less than  
or equal to what obtained in the 
measurement error unadjusted cases. We 
observe that , apart from the near-absence 
between cluster variations  in so far as the 
Nrsqindex  variable was concerned, the 
variable also has a fixed coefficient. It is 
discernable that, in general, measurement 
error adjustments done gave rise to increase 
in numerical size of perceived error-prone 
predictors, increased standard error and 
reduced model deviance as  expected. It is 
also found that, in the measurement error 

adjustments where measurement error 
variance values were assumed( rather than 
estimated) , coefficients tended to have been 
inaccurately determined with exaggerated 
estimates and lower standard errors. 
Ignoring the likelihood of measurement 
errors in some predictors and adjusting for 
error in some other predictors tend to also 
yield much higher coefficient estimate 
values with the overall model deviance not 
necessarily being lower. Deviations from 
expected post-measurement error adjustment 
effects are also discernable for variables 
with low reliability (i.e high measurement 
error variance); thus assuming a low 
measurement error variance value (i.e. high 
reliability) for a variable is likely to result in 
a coefficient estimate value indicating a 
higher predictive power than what obtains 
when we assume a higher measurement 
error variance (i.e. low reliability) for such a 
variable.  
    Regardless of some inadequacies arising 
from supplementary data generation 
approaches that gave rise to Data 4 and 5 
above and hence seeming unimpressive 
results in some measurement error 
adjustments done, the hypothesis that using 



 

 

estimated measurement error variance as 
input into model estimation process, as done 
here using bootstrapping and Gibbs 
sampling, is more objective, more logical 
and realistic than using an assumed value. 
 

4.0   Conclusion 
    Although the incidence and effects of 
measurement errors on the response and 
explanatory variables in fixed effects models 
such as linear  and generalized linear models , 
has been well documented in the literature(see, 
for example,[4],[9], [[2], [[8], [1], [12], [5]), 
studies on the behaviour of  biases associated 
with measurement error in covariates or the 
response for  mixed models such as multilevel 
hierarchical linear models is, up to date, not well 
known and can be complex [7]. One of the 
daunting challenges that often confront 
researchers is that of realistically estimating 
measurement error variances and reliabilities of 
error-prone variables in a multilevel model to 
enable realistic measurement error adjustment. 
An iterative measurement error adjustment 
technique entailing bootstrapping and Gibbs 
Sampling is   applied on an educational 
illustrative data (i.e Data 1-5) to which levels 
two or four models are associated. 
     Employing the iterative measurement error 
adjustment technique on the STM score per 

student in JSS1 subjects (NJS1avg) variable 
generally indicated numerical  increase in the 
coefficient estimate, increased standard error of 
the coefficient estimate, decreased overall model 
deviance, decreased estimate of  the coefficient 
of variation(CV) of the coefficient estimate. The 
near-absence between cluster variance coupled 
with possible weaknesses in the supplementary 
data generating simulation method employed in 
respect of predictors with fixed coefficients(such 
as Nrsqindex) and some data sets however 
revealed slightly differing trends. It is opined in 
this paper that the bootstrapping and Gibbs 
Sampling measurement error adjustment 
approach for addressing incidence of 
measurement errors in multilevel models is more 
efficacious in a situation where the error-prone 
predictor variables under consideration have 
random coefficients. It is a suggested that a 
realistic appraisal of the effectiveness or 
otherwise of a measurement error variance 
estimation and measurement error adjustment  
approach should, apart from examining the  
general expectations of increase in numerical 
value of coefficient estimate, increased standard 
error, reduced level 1 residual and reduced over 
all model deviance, also take into cognizance the 
coefficient of variation(CV) values of the 
coefficient estimates associated with the 
perceived error-prone predictors. 
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