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Abstract

In the face of seeming dearth of objective methods of estimating measurement error variance and
realistically adjusting for the incidence of measurement errors in multilevel models, researchers
often indulge in the traditional approach of arbitrary choice of measurement error variance and
this has the potential of giving misleading inferences. This paper employs bootstrapping and
Gibbs Sampling techniques to systematically estimate measurement error variance of selected
error-prone predictor variables and adjusts for measurement errors in 2 and 4 level model
frameworks. Five illustrative data sets, partly supplemented through simulation, were drawn
from an educational environment giving rise to the multilevel structures needed. Adjusting for
the incidence of measurement errors using these techniques generally revealed coefficient
estimates of error-prone predictors to have increased numerical value, increased standard error,
reduced overall model deviance and reduced coefficient of variation. The techniques, however,
performed better for error-prone predictor(s) having random coefficients. It is opined that the
bootstrapping and Gibbs Sampling techniques for adjusting for the incidence of measurement
errors in multilevel models is systematic and realistic enough to employ in respect of error-prone
predictors that have random coefficients and adjustments that are meaningful should be
appraised taking into cognizance changes in the coefficient of variation alongside other
traditionally expected changes that should follow measurement error adjustments.

Key words: Multilevel models, Measurement error adjustment, Coefficient of variation,
Predictor variables, Bootstrapping, Gibbs sampling.

1.0 Introduction affected by a failure to properly account for

In many of the variables used in the
physical, biological, social and medical
science, measurement errors are found. The
errors are essentially random or systematic.
Both types of errors could be problematic in
statistical inference. In fixed effects models
such as linear and generalized linear
models, the incidence and effects of
measurement errors on the response and
explanatory variables has been well
documented in the literature [4], [9], [2], [8],
[1],[12], [4]. Generally, the consequences of
ignoring measurement errors for
independent observations and response
values are well understood in linear models.

The efficacy of mixed models such as
multilevel linear models is also adversely

measurement errors in their formulation and
estimation. In particular, the behaviour of
biases associated with measurement error in
covariates or the response for multilevel
hierarchical linear models is, up to date, not
well known and can be complex [7]. In
handling the incidence of measurement
errors in multilevel modeling methodology,
one of the daunting challenges that often
confront researchers is that of estimating
realistically measurement error variances
and reliabilities of error-prone variables in a
multilevel model. Most of the current
techniques for estimating  measurement
error variance are, in general deficient; there
is inability to sufficiently justify
independence of measurement errors and the



so called unidimensionality assumption as
required in educational mental testing;
accuracy and consistency of the estimates of
the measurement error variance could not
be guaranteed [3]. The method of
instrumental variables strongly
recommended for certain situations as in
mental testing (see [3] ) requires, however,
that several different instrumental variables
be considered for comparison. There is also
often the difficulty of establishing that
measurement errors are independent of
instrumental variables [11]. Some other
researchers often simply assume
measurement error variance and reliability
values for error-prone variables in the
multilevel models at the risk of obtaining
unrealistic estimates. This paper employs
bootstrapping  and  Gibbs  sampling
techniques  to  realistically  estimate
measurement error variances of selected
error-prone  explanatory  variables and
adjusts for the incidence of these errors
giving rise to more adequate multilevel
models.

2.0 Methodology
2.1 Data Structure
The illustrative data employed was drawn
from an educational environment. There
were five data sets( Data 1-5) utilized. Data
1-3 were derived from 50 randomly selected
secondary schools in Benue State of Nigeria
while Data 4 and 5 included data
supplemented by simulated values. Data 1

constituted a 4-level data structure in which
there were 9,999 level 1  units (here
students), 450 level 2 units (here subjects

2.2 Description of Variables

or subject groups), 150 level 3 units (here
classes) and 50 level 4 units (here schools).
The clustering was such that for any original
sample n; ( 20 < n; < 30) of the students
from each school j, the n; was “replicated”
into 9 clusters giving rise to 9n; level 1 units
for school j (j = 1,2, ...,50). In other words,
the same n; students in school j were
mirrored in 9 clusters or groups and, in
particular, for each school j, we had 9n;
level 1 units nested in 9 level 2 units that
were further nested in 3 level 3 units .
Data 2 also constituted a 4-level data
structure but here there were 6,666 level 1
units(students), 300 level 2 units( subjects or
subject groups), 150 level 3 units( classes)
and 50 level 4 units( schools); in this
dataset, the seeming  confounding
characteristics in Data 1 were reduced by
removing the level 2 unit or cluster relating
to Common Entrance (CE) and variables
based on it. Data 3 is a 2-level data structure
with students nested in schools; any sample
drawn in a school constituted a “statistical
cohort” of students from whom Mathematics

(M) and Science and Technology (ST)
scores in JSS1, JSSCE and SSCE/WAEC
between 2002 and 2008 were captured. Data
3 had 1,111 level 1 units and 50 level 2
units. Additional levels 1 and 2 units were
further generated via simulation to
supplement needed data for further
exploration. These gave rise to Data 4
(having 2,222 level 1 units with same 50
level 2 units) and Data 5( having 4022 level
1 units and 110 level 2 units).

Variable name | Description of Variable Data set where used
Navgstem;; Student’s Final STM score ; a level 1 |1,2
response variable.
Ncescore;; Student’s entrance score; a level 1 predictor | 1
variable
Normscore;; JSS1 school STM score student’s subject | 1, 2
score per class; a level 1 predictor
variable.
Navglstemy Final School STM score; a level 4 predictor | 1, 2
variable




Navgce;

School common entrance score; a level 4
predictor variable.

Navg2stem;

JSSCE school STM score ;
predictor variable.

a level 4

Navg3stem;

Final School STM score; a level 4 predictor
variable

Navgsub;

Score per subject; a level 2 predictor

variable.

Navginclsy

Score in class ; a level 3 predictor variable.

Navgscore;

STM score per student in all classes; a level
1 response variable.

NJSlavg;

STM score per student in JSS1 subjects; a
level 1 predictor variable

3-5

NJCEavg;

STM score per student in JSSCE subjects; a
level 1 predictor variable.

3-5

Schstatus;

school status(i.e whether school is owned as
private or public); a categorical predictor
variable.

3-5

Schsystemy

school system; it is a categorical predictor
variable with the systems categorized into
“Boardsytem”, Daysystem” or
“Bothsystem”.

1-5

Schgender;

School gender ; it is categorical predictor
variable with school gender categorized into
Boys  school(Boysch), Girls  school
(Girlsch) or Mixed( Mixedsch).

1-5

Nrsqindex;

School staff quality index (an indication of
academic staff quality or strength in any
particular school. This is estimated by
dividing the total number of qualified
academic staff by the entire estimated
student population in the school; it is a
predictor variable.

1-5

PSStatus;

An indication of Electric Power Supply
status in a school ; it is a categorical
predictor variable categorized into school
generator, PHCN, Both or one.

3,4

Labav;

An indication of the availability of Science
Laboratories in a school; it is a categorical
predictor variable categorized into “no
science lab”, ““ one science lab “ or “ two or

more science labs” .

3  Multilevel Models and Measurement

Errors

A k-level model may be expressed in the

compact form:

2.1)

unobservable
continuous.

Y =Xy+2ZU+Z"V%

where, Y is a column vector of
responses

each

true
assumed




2=[zZ%,z%Y .., 7%
and
U =[u® u®D @] .
The Z®’s are block diagonal matrices
having diagonal elements as Zj(k) ( j=
1,2,...,my) while u(k), X and y are column
matrices with elements, respectively, Uj(k) ,
X; =1.2,...,my),and ypo (h=0,1,...,p).
We assume that Z"e and U are normally
distributed with zero mean and we,
symbolically, write:
ZYe=r ~ N(O,0c %)
(2.2)
and U~N (O, T*)
(2.3)

where T* and T* are appropriate block
diagonal matrices comprising, respectively,
the blocks of unit matrices and blocks of
variance-covariance matrices of the residual
vectors associated with the k-level model
(that is the residual contributions from the
levels 2, 3, ..., k in the k-level model).

We infer from (2.1),(2.2) and (2.3) that v

is normally distributed with E(Y) =Xy and
variance-covariance matrix, Vi = V

=E[EE1= ) {V,,} .where E = ZU +
/

ZWe . The notation Vi here referring to
the covariance( or variance-covariance)
matrix associated with the response vector

explanatory variables and responses takes the form.

F=35+73

? = [Yn Yzl...Ynl...Ylj Yzj...Ynjj...Ylezj... Yl
Y =Ly y21---Yn1---Y1j Y2j--Ynjj- - Y13 Y21- .- Yusl'

g =I[9q11 921---qn1---q1j 92j---qnjj- - -q13 23 - - Guz]’

Xij = [X()ij X1ij- « + Xhij.- Xpij] and X()i]:l

for the k-level model and Vyy( /= 1,2,...k),
respectively, denote the contributions to the
covariance matrix of the response vector
from levels k, k-1,...,1 in a k-level model.
The level 1 residuals are assumed to be
independent across level 1 units. Similarly,
levels 2, 3,...,k residuals are assumed to be
independent across levels 2 ,3,..., k units
respectively. It should be noted also that Vi
is a block diagonal matrix with block
diagonal elements Vig( [ = 1,2,...k) and
each of these elements is also block
diagonal comprising blocks in their
composition.
If the collection or measurement of
explanatory or response variables
incorporated in (2.1) are susceptible to
errors then the estimated -coefficient
parameters will be asymptotically biased
and consequently incorrect inferences can
result in respect of the relevance or
otherwise of some model variables. In
practice explanatory or response variables
utilized to fit models in social or educational
environments are subject to some degree of
measurement error.

A basic model for measurement errors in
a 2-level continuous response linear model
for p

2.4)

In respect of the explanatory variables or predictors, we have

X =X + m
where
X =[Xi Xa,.. X'

X =[Xo X... Xn.. Xp)', Xo=a column of ones.

m =[m; m ...my...mp)'
With

(2.5)

Xh =[Xh11 Xn21++-Xhni1---Xh1j Xh2j1,--»Xh2jJ - - - Xhnty]'
myp =[Mp11 Mp21...Mpp11. ..My My2j1,-..,Mp2j5. .. Mpnyg]'

and for each j we can write
My =[Mp 1 Mp;j...Mpyji]'
Xhj =[Xn1j Xn2j.- Xhnjj]'



The measurement error vectors m and g

are assumed independent and normally
distributed with zero mean vectors. The
measurement error models reflected by (2.4)
and (2,5) can be analogously  expressed in
matrix form for any k-level model. The
concern of researchers and statisticians is
to seek ways of adjusting for the incidence
of these measurement errors and to do this
entails a an estimation of ( or the use of
known value(s) of ) measurement error
variances of perceived error-prone
variables and there after use the estimated
values to modify the affected model and
estimate same.

Assuming the variables measured with
error do not have random coefficients, then
following Goldstein( 2003), the ME
corrected fixed coefficients estimate for any
k- level model is
M

XX =

Mgy Cq -Cq - ... -Cq  (2.6)

where

C_Q;t = Z(J'r-_l.nlij;-l-'r{nml_ .}ﬂkum ’
k=1,.2,...

are correction matrices for measurement
errors, Q is the covariance matrix of

kom
measurement errors for the ath level k
block, Va is the ath block of V, the
variance-covariance matrix of residuals in
the k-level model.

For the random components, based upon the
model with observed variables, we write the
residual for a unit in a level k as
i=ZPu e A ZPu? + 2P u'?
+ Zzﬁc)z €ijk.; Tqjj.. - m'P 2.7

. The estimation of the variance or variance-
covariance components(i.e the random

components) are all estimated iteratively
and, for a k-level model, the measurement
error corrected estimate  of  these
components, assuming the coefficients of
the variables measured with error do not
have random coefficients, is obtained at
each iteration as

E[fV]-[80755u+ Ti + To + ... Tx]

(2.8)

Where T,= @{,@'Q B) and Ty
ij

lijm
=0 (B Qsam B myy fork =2.

We note that €Q, is the covariance of
measurement  errors  for  the  jjth
measurements of level 1 while o4 is the

measurement error variance for the ij../th
response measurement.

If the coefficients of the wvariables
measured with error have random
coefficients then the formulae in (2.6) and
(2.8) do not apply and in particular m' v~
I'm has measurement errors in all its
components and, following the suggestions
made by Woodhouse [13], Moment-based
techniques are not appropriate but rather the
Bayesian technique of Gibbs sampling( an
MCMC technique) is employed. Some of
the selected predictor variables perceived
error-prone in this paper have random
coefficients and so Gibbs sampling
technique rather than moment-based
technique shall be employed to adjust for the
incidence of these errors and, for the
estimation of measurement error variances
and reliabilities of the error-prone variables,
the bootstrapping technique shall be
employed.



2.4 The Multilevel Models Examined

The multilevel models formulated in respect of each of the data sets (1-5) are respectively
given by (2.9), (2.10), (2.11), (2.12) and (2.13) below.

Navgstem,, = B, + B, i(Normscore— m(Subject))U,t ,+ By (Ncescore— m(Subject))U.,L ,+ B,(Navg3stem— gm), + ,(Navgce— gm), +
BiDaySystem+ B;BothSystem+ B,Girlsch + fMixedsch + 4 (Nrsqindex- gm), + e,

ﬂoz = ﬁo + foz
ﬂg/ =B+ Uy iy
B =B+ fo

[foz}NN(O,Qf):Qf:{Ufo 2 }
S Oron O

Ug g ~ N(O, 050)
e ~ N(O, Gez)
2.9
Navgstem ;,, = B, + B,,(Normscore — m(Subject)) ;,, + B, (Nrsqindex — gm),
+p;(Navg3stem — gm), + f,Daysystm, + s Bothsystm, + fsSchstatus _1, + e,

ﬂoz = :Bo +foz
ﬂll = ﬂl +f11

Jou
{f } NO0,Q,):Q, =

17

2
O-fO
2
Orn Opn

Navgscore, = B, + B,,(NJSlavg — m(School) ; + B, ,(NJCEavg — m(School)
+B;(Navg3stem — gm) + B,Schstatus 1, + BGirlsch, + f;Mixedsch, + ,Labav _1,
+ Py Psstatus _2 , + B, Psstatus _3 , + B, Psstatus _4 ; + B, (Nrsqindex — gm) ;
+ B, Daysytm ; + B, Bothsystm; + e,

e, ~ N(0,57)
(2.10)

with

,B()j = B+ Uy,
,Blj = B +uy;
,Bz/ = B, +u,,

and



2
Uy, o

J uo
u,; | ~N(@©0,Q,):Q, =|o

U,

2
uol O-ul

2
O-u02 O-uIZ O-uZ

J
e ~ N(0,0'j).
(2.11)
Navgscor¢ =, +p,; (NJSlavg—m(SCHOOl));. +p,;(NJCEavg-m(SCHOOD),
+p;(Navg3dstem—gm) , + 3, Schstatus 1, + ;Girlsch + fMixedsch + 3, (Nrsqindex- gm);. +
PyLabav_1, + B, Daysystm + B,,Bothsystm + 3, Psstatus_2 , + f3,, Psstatus_3, + 3, Psstatus_4, +e,

IBOj = :BO T Uy,
IBIj = ﬁl tuy,;
,sz = p, tu,,;
Uy, ‘750
U | ~ N©0,Q):Q, =|0o,, 0-51
Uy, C.02 Oui2 0'52
€5 ~ N(0,0'j).

(2.12)

Navgscorg = f5,; + B, (NJSlavg m(SCHOOL))+ £, ,(NJCEavg-m(SCHOO))),
+ B,(Navg3stem gm), + B, Daysytm + B;Bothsystm + 3, (NJS1avg m(SCHOOL)Daysystm
+ B, (NJSlavg — m(SCHOOD) Bothsystny + By (Nrsqindex-gm) , +e;

180_; = B, +uy,

,Blj = B +uy;

Boy= Brtuy,

Uy, O'jo

u,; | ~N0,Q):Q, =|0,, o,

Uy, T2 Ounz 0-32

e ]~ N0,02,)

(2.13)
2.5.1 The Measurement Error clusters or subgroups in a data structure to
AdjustmentApproach Using estimate the variance of the error-prone
Bootstrapping and Gibbs Sampling predictor variable, its measurement error
Techniques. variance, reliability and ultimately adjusting
The approach essentially entails re- for the incidence of measurement errors and

sampling repeatedly from each of the



re-estimating the k-level model accordingly.

The steps are:

(i) From each group (or subgroup) of the
multilevel model obtain an estimate of

the Explanatory variable mean ,X °j,
based on sample sizes of at least 30 in
each group.

(il))  Average these X, j’s (using arithmetic
mean) across the entire groups to
obtain a value, say X~ .

(iii) Estimate the measurement error (ME)
variance, 6°nm, as  the mean of the

squares of deviations of X, j’s  from

X"

(iv) Estimate o,x as in the first paradigm
approach. Estimate Ry, accordingly.

(v)  Use the values czhm and Gzhx to adjust
for measurement error in the variable
(s) of interest and hence re-estimate
the k-level model accordingly via
Gibbs sampling ; a Markov Chain
Monte Carlo(MCMC) method.

(vi) Check for possible attenuation and/or
inconsistency of the estimated
multilevel parameters

(vii) If there is attenuation (reduced or no
increase in predictive power of
corresponding  predictor) and/or
inconsistency of the estimated
multilevel parameters  then repeat
steps (i) to (vi), possibly increasing

Table 1: Estimated Variances, Measurement
Error (M.E) Variances and Reliabilities in
respect of the ‘student’s subject score per

re-sampling size per cluster and/or
increasing number of samples.

3.0  Analysis and Discussion

Four issues were addressed in the analysis
of the multilevel models associated with
each of the five data sets:

(a) estimation of the measurement error
variances and reliabilities of STM score
per student in JSS1 subjects( NJSlavg)
or its proxies( such as Normscore
variable for Data 1 and 2) as well as
the School staff quality
index(Nrsqindex) predictor variables.

(b) coefficient estimates of the perceived
error-prone predictors ( and their
standard errors) prior to adjustments in
measurement error.

(c) coefficient estimates of the perceived
error-prone predictors ( and their
standard errors) following adjustments
in measurement error.

(d) examination of coefficient of variation
values of coefficient estimates of the
error-prone predictors.

Bootstrapping with a minimum of 2000
replicates for each of the NJSlavg and
Nrsqindex variables in each of the data sets
and following steps (i) to (iv) we obtain
measurement error variance and reliability
values as reflected in table 1 below.

class’ Predictor Variable or their proxies in
various datasets.

Table 1: Estimated Variances, Measurement Error

Data Variable Variance ML.E Variance Reliability
1 NJSlavg** 0.44393  0.222942 0.666872
2 NJSlavg*  0.541682 0.250571 0.683724
3 NJSlavg 0.735439  0.255298 0.742315
4 NJSlavg 0.674021 0.253647 0.726576
5 NJSlavg 0.822923  0.635357 0.564311
NJSlavg** and NJSlavg* actually refer to and 2 and are realistic proxies of the

the Normscore variables

used for Data 1

NJSlavg variable as

they are already



associated with the JSS1 scores. We find
that for Data 2, 3 and 4 the variable
NJSlavg indicates a reasonably constant
measurement error variance; an average of
0.25. In Data 1, the NJSlavg variable gave
measurement error  variance estimate
slightly lower (i.e 0.22) than what obtained
in Data 2, 3 and 4 but the average for the
Data 1-4 measurement error variance of the
NJSlavg variable is still 0.25. The rather
high measurement error variance estimate
for the NIJSlavg variable (here 0.64) for
Data 5 may be attributable to weaknesses
associated with the normal probability
distribution model and the accompanying
assumptions that were employed to simulate
additional units for levels 1 and 2. The near-
absence within group variation in respect of
School staff quality index (Nrsqindex)
predictor variable may have probably
accounted for the high measurement error
variance estimate of 0.85 associated with it.

Using  iterative  generalized least
squares(IGRLS) that is implemented in
MLWIN package 2.20 [10] to estimating
models (2.9) -(2.13) prior to measurement
error adjustments, we obtain coefficient
estimates( with standard errors) of the
NJSlavg variable or its proxy along with
coefficient of variation(CV) of these
estimates as reflected in Table 2 below.

Table 2: Coefficient Estimates of Student’s
STM score in JSSI(NJSlavg) and School
staff  quality Index(Nrsqindex), their
standard errors,

coefficients of variation(CV) and model
deviance(D) for the measurement error
unadjusted scenarios.

Table 2: Coefficients of Student STM

Data Variable Coefficient Standard Coefficient of Model
estimate error variation deviance
V) ()]

1 NJSlavg ** 0.273 0.020 0.073 21967
Nrsqindex -0.014 0.009 -0.643

2 NJSlavg* 0.314 0.033 0.105 15206
Nrsqindex -0.053 0.032 -0.604

3 NJSlavg 0.680 0.017 0.025 808
Nrsqindex 0.010 0.062 6.20

4 NJSlavg 0.671 0.020 0.030 1188
Nrsqindex 0.011 0.06 1 5.54

5 NJSlavg 0.744 0.018 0.024 3456
Nrsqindex 0.030 0.082 2.73

Employing Gibbs Sampling technique
implemented in MLWiN package 2.20 [10],
we adjust for the incidence of measurement
errors to obtain estimate results of the two
predictor variables under investigation as in
Table 3 below.

Table 3: Coefficient Estimates of Student’s
STM score in JSS1 (NJS1avg) and School
Staff quality Index (Nrsqindex), their
standard errors, coefficients of variation
(CV) and model deviance (D) for the
measurement error adjusted scenarios.

Table 3: Predictor Variables

Data Variable M.E Coefficient Standard Coefficient Model
Variance estimate error of variation  deviance (D)
(€Y)
1 NJSlavg ** 0.22 0.394 0.029 0.074 20023
Nrsqindex 0.85 -0.101 0.074 -0.732
1 NJSlavg ** 0.25 0.416 0.029 0.070 19904



Nrsqindex None -0.015
1 NJSlavg ** 0.22 0.398
Nrsqindex None -0.015
2 NJSlavg* 0.25 0.468
Nrsqindex 0.85 -0.260
2 NJSlavg* 0.25 0.480
Nrsqindex None -0.039
3 NJSlavg 0.25 0.871
Nrsqindex 0.85 0.035
3 NJSlavg 0.25 0.860
Nrsqindex None 0.043
4 NJSlavg 0.25 0.828
Nrsqindex 0.85 -0.007
4 NJSlavg 0.25 0.869
Nrsqindex None -0.003
5 NJSlavg 0.64 0.893
Nrsqindex 0.85 -0.029
5 NJSlavg 0.25 0.901
Nrsqindex 0.85 -0.025
5 NJSlavg 0.25 0.909
Nrsqindex None 0.005
5 NJSlavg 0.064 0.899
Nrsqindex None 0.002
Following measurement error

0.009 -0.600

0.028 0.070 20068
0.009 -0.600

0.10 0.218 12732
0.156 -0.600

0.094 0.196 12928
0.027 -0.692

0.029 0.033 -4476
0.070 2.00

0.019 0.022 -4406
0.050 1.163

0.021 0.025 -9170
0.041 -5.86

0.038 0.044 -9325
0.044 14.67

0.017 0.019 -16900
0.030 -1.03

0.016 0.018 -17433
0.028 -1.12

0.014 0.015 -18359
0.012 2.40

0.014 0.016 -17855
0.013 6.50

adjustments where measurement

adjustments, Data 1, 3, 4 and 5 all reflected
an average CV of the coefficient estimate of
NJSlavg to be equal to or less than what
obtained in the measurement error
unadjusted scenarios. In the case of the
Nrsqindex variable, the measurement error
adjustment did not seem as impressive as
what obtains in the NJSlavg variable; Data
1 and 2 did not reveal a drop in the
numerical value of the CV of the coefficient
estimate of the Nrsqindex variable. Data 2, 3
and 5 however reflected numerical CV
values of the coefficient estimates of
Nrsqindex for the measurement error
adjusted cases to be, on average, less than
or equal to what obtained in the
measurement error unadjusted cases. We
observe that , apart from the near-absence
between cluster variations in so far as the
Nrsqindex  variable was concerned, the
variable also has a fixed coefficient. It is
discernable that, in general, measurement
error adjustments done gave rise to increase
in numerical size of perceived error-prone
predictors, increased standard error and
reduced model deviance as expected. It is
also found that, in the measurement error

variance values were assumed( rather than
estimated) , coefficients tended to have been
inaccurately determined with exaggerated
estimates and lower standard errors.
Ignoring the likelihood of measurement
errors in some predictors and adjusting for
error in some other predictors tend to also
yield much higher -coefficient estimate
values with the overall model deviance not
necessarily being lower. Deviations from
expected post-measurement error adjustment
effects are also discernable for variables
with low reliability (i.e high measurement
error variance); thus assuming a low
measurement error variance value (i.e. high
reliability) for a variable is likely to result in
a coefficient estimate value indicating a
higher predictive power than what obtains
when we assume a higher measurement
error variance (i.e. low reliability) for such a
variable.

Regardless of some inadequacies arising
from supplementary data  generation
approaches that gave rise to Data 4 and 5
above and hence seeming unimpressive
results in some measurement error
adjustments done, the hypothesis that using



estimated measurement error variance as
input into model estimation process, as done
here wusing bootstrapping and Gibbs
sampling, is more objective, more logical
and realistic than using an assumed value.

4.0 Conclusion

Although the incidence and effects of
measurement errors on the response and
explanatory variables in fixed effects models
such as linear and generalized linear models ,
has been well documented in the literature(see,
for example,[4],[9], [[2], [[8], [1], [12], [S]),
studies on the behaviour of biases associated
with measurement error in covariates or the
response for mixed models such as multilevel
hierarchical linear models is, up to date, not well
known and can be complex [7]. One of the
daunting challenges that often confront
researchers is that of realistically estimating
measurement error variances and reliabilities of
error-prone variables in a multilevel model to
enable realistic measurement error adjustment.
An iterative measurement error adjustment
technique entailing bootstrapping and Gibbs
Sampling is applied on an educational
illustrative data (i.e Data 1-5) to which levels
two or four models are associated.

Employing the iterative measurement error
adjustment technique on the STM score per

student in JSS1 subjects (NJSlavg) variable
generally indicated numerical increase in the
coefficient estimate, increased standard error of
the coefficient estimate, decreased overall model
deviance, decreased estimate of the coefficient
of variation(CV) of the coefficient estimate. The
near-absence between cluster variance coupled
with possible weaknesses in the supplementary
data generating simulation method employed in
respect of predictors with fixed coefficients(such
as Nrsqindex) and some data sets however
revealed slightly differing trends. It is opined in
this paper that the bootstrapping and Gibbs
Sampling measurement error  adjustment
approach  for  addressing incidence of
measurement errors in multilevel models is more
efficacious in a situation where the error-prone
predictor variables under consideration have
random coefficients. It is a suggested that a
realistic appraisal of the effectiveness or
otherwise of a measurement error variance
estimation and measurement error adjustment
approach should, apart from examining the
general expectations of increase in numerical
value of coefficient estimate, increased standard
error, reduced level 1 residual and reduced over
all model deviance, also take into cognizance the
coefficient of variation(CV) values of the
coefficient estimates associated with the
perceived error-prone predictors.
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