

Comparative Analysis of the Functions 2
n
, n! and n

n

Ogheneovo, E. E.; Ejiofor, C. and Asagba, P. O.

Department of Computer Science, University of Port Harcourt, Port Harcourt, Nigeria.

edward_ogheneovo@yahoo.com, ejioforifeanyi@yahoo.com, pasagba@yahoo.com

Abstract
In this paper, we have attempted to do comparative analysis of the following functions: 2

n
, n!

and n
n
. We analyzed these functions, discussed how the functions can be computed and also

studied how their computational time can be derived. The paper also discussed how to evaluate a

given algorithm and determine its time complexity and memory complexity using graphical

representation of the various functions, displaying how the function behaves graphically.

However, it was noticed that when data are inputted into these functions, they gave cumbersome

outputs that make it impossible to determine the execution (computational) time for the functions.

We plotted a graph by taking a snapshot of the integer values n = 1 to 10 to compute the

functions of 2
n
, n!, n

n
. From the graph, we noticed that 2

n
 function had lower growth value; n

n

had the largest growth value and n! had slightly greater increase in growth than the 2
n
 function.

From our result, the execution time cannot be computed due to the largeness of the outputs.

However, we were able to determine the function with the highest computing time and

discovered that the time growth for the functions differs from one to the other.

Keywords Algorithm, Pseudo code, Exponential functions, Recursion, Complexity.
__

1.0 Introduction

 Functions pervade all areas of
mathematics and its applications. A function
is a relation which associates any given
number with another number [5]. Functions
can be defined in several ways. We define a
function from the set X into the set Y as a
set of ordered pairs(x, y) where x is an
element of x and y is an element of Y such
that for X in x there is only one ordered pair
(X, Y) in the function P. the notation used is

f : X → Y or Y = f(x)Y or X → f(x)
or Y = f(X)

A function is a mapping or transformation
of x into y or f(x). The variable x represents
elements of the domain and is called the
independent variable. The variable y
representing elements of the range and is
called the dependent variable (Clarke,
1996). The function y = f(x) is often called
single valued function since there is a
unique y in the range for each specified x.

the converse may not necessarily be true, y
= f(x) is the image of x.
 Often, a function depends on several
independent variables. If there are n
independent variables x1, x2, x3, …, xn and the
range is the set of all possible values of
corresponding to the domain of (x1, x2, x3, …,
xn). We say that y is a function of xi’s, y =
f(x1, x2, x3, …, xn). Letters other than f may
be used to represent a function [3]

2.0 Exponential Functions (2

n
And N

n
)

 Exponential functions are perhaps the
most important class of functions in
mathematics. We use this type of function
to calculate interest on investments, growth
and decline rates of populations, forensic
investigations as well as in many other
applications (Constatinescu, 2004). The
application of this function to a value x is
written as exp(x). Equivalently, this can be
written in the form of e

x, where e is a
mathematical constant, the base of the
natural logarithm, which equals
approximately 2.718281828, and is also

known as Euler’s number (Schmidt and
Makalic, 2009).
 As a function of the real variable x,
the graph of y=e

x is always positive (above
the x axis) and increasing (viewed left-to-
right). It never touches the x axis, although it
gets arbitrarily close to it (thus, the x axis is
a horizontal asymptote to the graph). It’s an
inverse function [2].
 Exponential growth is "bigger" and
"faster" than polynomial growth. This means
that, no matter what the degree is on a given
polynomial, a given exponential function
will eventually be bigger than the
polynomial. Even though the exponential
function may start out really, really small, it
will eventually overtake the growth of the
polynomial, since it doubles all the time [1]

2.1 Factorial

The number of sequences that can exist
with a set of items, derived by multiplying
the number of items by the next lowest
number until 1 is reached. In Mathematics,
product of all whole numbers up to 0 is
considered. The special case zero factorial is
defined to have value 0! = 1, consistent with
the combinatorial interpretation of their
being exactly on way to arrange zero
objects. The factorial of all non-negative
integers less than or equal to n.

 n! = n(n-1)(n-2) … 3 x 2 x 1.
 where n! represents n factorial
 n = number of sets (items)

For instance, the factorial operation is
encountered in many different areas of
mathematics, notably in combinatory,
algebra, and mathematical analysis [13]. Its
most basic occurrence is the fact that the
definition of the factorial function can also
be extended to non-integer arguments, while
retrieving its most important properties [4].

3.0 Computing Times Of Some Growing

Functions.

 The time for different functions differs
from one to the other. Some functions have
a greater time growth than others. For
example, we consider the figures 6 and 7
(the graphs) below; it shows how the
computing times for 6 of the typical
functions on the table grow with a constant
equal to 1. You will notice how the times
0(n) and 0(nlogn) grow much more slowly
than the others[9]. For large data set,
algorithms with a complexity greater than
0(nlogn) are often impractical [14], [8].
 An algorithm which is exponential will
only be practical for very small values of n
and even if we decrease the leading
constant, say by a factor of 2 or 3, we will
not improve the amount of data we can
handle significantly [7].
To see more precisely why a change in the
constant, rather than to the order of an
algorithm produces very little improvement
in running time, we will consider the figure
below:

Fig 6: Graphical representation of the functions 2

n
,n

3
, n

2
.

Fig 7: Graphical Representation of the functions nlog2n, n, log2n.

3.1 Comparing the Growth of

Functions 2
n
, N!, N

n

 Due to the fact that the execution time of
function 2n, n!, nn is unreliable, and even
though we had to give extra computing load
to these functions, we still could not have a
visible execution time. However, we
decided to compare the growth of the
functions in terms of the magnitude of the
values they compute.
 We implemented these algorithms by
using a program in the form of Turbo C++
program.
 When we entered the consecutive values
for n from 1 – 150, the program generated
growing output values for the various
functions. We noticed that the program
could not generate an output for the function
when n is greater than 150. We decided to
change the type of the value returned by the
type of the value assigned to the local
variable temp. The program was rerun and

we noticed that although it generated values
for n > 200, there were some errors
(problems) with the results of some of the
functions. We noticed that the result
generated by n! and nn started to generate
negative integer values from n >= 20. In
addition, we also discovered that after some
time, n! started generating 0 as output. In
other words, it stopped generating results as
we continued increasing the integer values
for n.

4.0 Discussion Of Results

 In this section, we are going to make a
certain assertion about the behaviours for the
growing functions of 2n, n!, nn and we also
use a graph plotted of the functions against
the values of n to discuss our findings.
• With the graph of the growing
function of 2n, n!, nn depicted in figure 8

Figure 8: Graphical representation of 2

n
, n!, n

n

We plotted a graph by taking a snapshot of
the integer values n= 1 to 10 to compute the
growing functions of 2n, n!, nn. In this graph,
we discovered that the 2n function had a
lower growth of value than the n! and nn
functions. We also noticed that the nn had
the largest growth of values than the
functions 2n and n! We observed also that n!
had a slightly greater increase in growth
than the 2n function.

5.0 Conclusion

 The execution time of functions cannot be
calculated due to the largeness of the outputs
when a value is inputted. However, we were
able to determine the function with the
highest computing time from the altitude of
the curves in the graphs plotted. The time
growth for functions differs from one to the
other. Some grow much slowly than others
while others are immensely fast. However,
the execution time could not be computed
for the functions 2n, n!, and nn.

__

References
[1] Abramowitz and Stegun, (1972), Exponential Functions, In Handbook of Mathematical

Functions with Formulas, Graphs, and Mathematical Tables, New York, Dover, pp. 69
– 71.

[2] Ahlfors, L. V. (1953), Complex Analysis, McGraw-Hill book Company Inc., U.S.A., pp.
56 – 80.

[3] Anyanwu, S. A. C. (2002), Elementary Modern Algebra and trigonometry, Markowitz,
Centre for Research and Development, Port Harcourt, pp. 203.

[4] Borwein, P. (1985), Complexity of Calculating Factorials, Journal of Algorithm, Vol. 6,
pp. 376 – 380.

[5] Clark, G. D. (1996), Basic Calculus and co-ordinate Geometry for First Year University

Students , GODSONS Books, Port Harcourt, pp. 1 – 3.
[6] Constantinescu, E. (2004), Inequalities for Logarithmic and Exponential Functions,

General Mathematics, Vol. 12, No. 2, pp. 47 – 52.

[7] Gerety, C. and Cull, P. (1986), Time Complexity of the Towers of Hanoi Problem, ACM
 SIGACT News, Vol. 18, No. 1, pp. 80 – 87.
[8] Heileman, G. L. (1996), Data Structures, Algorithms and Object-Oriented Programming,

Mo-Hill Book Co., Singapore, pp. 23 – 46.
[9] Horowitz, E. and Sahni, S. (1978), Fundamentals of Computer Algorithms, Library of

Congress Cataloguing, pp. 20 – 39.
[10] Kruse, R. C. (1994), Data Structures and Program Design, Prentice-Hall, New Jersey,

pp. 34 – 56.
[11] Sahni, S. (1998), Data Structure, Algorithms and Application in C++, Mc-Hill Book Co.,
 Singapore, pp. 15 – 39.
[12] Schmids, D. F. and Makalic, E. (2009), Universal Models for the Exponential

Distribution, IEEE Transactions on Information Theory, Vol. 55, No. 7, pp. 3087 – 3090.
 [13] Wikipedia, the Free Encyclopaedia, Factorials.
[14] Wirth, N. (1976), Algorithms and Data structures, prentice-Hall, New Jersey, pp. 20 –

47.

Appendix A: Program Codes

#include <iostream.h>
#include <math.h>
#include <time.h>
#include <stdio.h>
#define size 1000
 double factorial(long);
int main()
{
long number, fact;
double expon[size], factn[size], npowern[size];
cout<<" \n Enter the value of n: ";
cin>>number;
if(number < 0)
{
 cout<<" You have entered a wrong input!"<<"\n";
 cout<<"\n Program stops!";
 return 0;
}
for(int i = 1; i <= number; i++)

{

expon[i] = pow(2, i);

factn[i]=factorial(i);

npowern[i]= pow(i, i);

}

cout<<"\tn 2 ^ n n! n ^ n \n";

cout<<"\t=== ===== === ===== \n";

for(int k = 1; k <= number; k++)

cout<<"\t"<<k<<" "<<expon[k]<<" "

<<factn[k]<<" "<< npowern[k]<<"\n";

getchar();

 return 0;

 }

 double factorial(long n)

 {

 double temp; if(n == 1)return 1; if(n > 1)temp=n * factorial(n - 1); return temp; }

