

West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013

33

A Parse Tree Model for Analyzing And Detecting SQL

Injection Vulnerabilities

Ogheneovo, E. E. and Asagba, P. O.
Department of Computer Science,

University of Port Harcourt, Nigeria.
edward_ogheneovo@yahoo.com, pasagba@yahoo.com

Abstract

The recent increase in the growth and use of the Internet for a wide-range of Web-based

applications such as e-commerce, e-banking, etc., has brought about the increased popularity of

web based applications. This upsurge has made the Internet a potential target for different forms

of attacks. The increasing frequency and complexity of web-based application attacks have

raised awareness of web application administrators of the need to effectively protect their web

applications from being attacked by malicious users. SQL injection attack is a class of command

injection attacks in which specially crafted input string result in illegal queries to a database has

become one of the most serious threats to Web applications today. An SQL injection attacks

targets interactive Web applications that employ database services. In this paper, we developed

a model based on grammatical structure of an SQL statement using parse tree to test a query by

dynamically generating a parse tree and comparing their structures at runtime. We were able to

determine if their structures match or not. If they match, the query is parsed signifying that it is

legitimate, otherwise it is suspicious and possibly malicious. Our result shows that the parser

detected and prevented malicious SQL queries although there were a couple of false positives

and false negatives representing 0.01% of legitimate attacks. This result is good enough because

achieving 100% security precision may be too difficult. However, we hope to improve on this

result in our future research.

Keywords: SQL injection attacks, parse tree, web applications, attacker.

__

1.0 Introduction

 The recent increase in the growth and use
of the Internet for a wide-range of Web-
based applications such as e-commerce, e-
banking, online stores, social network
services, e-governance, etc., has brought
about the increasing popularity of web based
applications. This upsurge has made the
Internet a potential target for different forms

of attacks [10]. The increasing frequency
and complexity of web-based application
attacks have raised awareness of web
application administrators of the need to
effectively protect their web applications
from being attacked by malicious users.
 Attacking Web applications by injecting
SQL commands was first described as early

West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013

34

as 1998 [17]. Since 2002, over 50% of total
cyber vulnerabilities were input
vulnerabilities [19]. SQL injection attack is
a class of command injection attacks in
which specially crafted input string result in
illegal queries to a database [20]. This has
become one of the most serious threats to
Web applications [14]. An SQL injection
attacks targets interactive Web applications
that employ database services. Such
applications accept user input in database
requests, typically SQL statements. In SQL
injection attacks, the attackers provide user
input that results in a different database
request than was intended by the application
programmer [21].
 SQL injection vulnerabilities (SQLIVs)
account for 20% of the total cyber
vulnerabilities since 2002 [18]. An SQLIV
allows input to an SQL statement to change
the structure of the statement and allows
malicious users to gain unauthorized access
to information in a database. As the trend of
providing Web-based services continues, the
prevalence of SQLIVs is likely to increase
[11], [12]. Another concern facing the
software development industry is that the
number of developers inexperienced in
software security outnumbers the number of
ixperienced software security practitioners
[3]. The implication is that significant
portion of developers fixing SQLIVs will
not be experienced with solving security
issues [19]. The Open Web Application
Security Project [22] report places injection
attacks including SQLIAs as the most likely
and damaging.
 The most widely deployed defense
technique today is to train the programmer
and web-developers about the security
implications of their code and to teach them
corrective measures and good programming
practices. However, rewriting or revising all
or most of the existing legacy codes is quite

a difficult task as it requires lots of hard
work, commitments and this will incur
additional cost to any organization that may
want to embark on such projects. There is
therefore the need to develop an automated
technique that will guarantee the detection
of these vulnerabilities and a fool-proof
elimination of SQL injection attacks.
 Many techniques have been proposed,
these are either static or dynamic. These
techniques have failed to address the full
scope of the problem. There are many types
of SQLIAs and countless variations of these
basic types. Therefore, many of the
proposed solutions only detect or prevent a
subset of the possible SQLIAs [11]. In this
paper, we would develop an automatic
technique to counter SQL attacks and/or
prevent attacks. Our approach combines
both the static and dynamic approaches of
AMNESIA proposed by [12] and
SQLCheck proposed by [24].

2.0 SQL Injection Attacks (SQLIAs)

 SQL injection is an attacking technique
which is used to pass SQL comments
through a web application directly to the
database by taking advantage of insecure
code’s non-validated input values. An SQL
Injection Attack (SQLIA) is a subset of the
unverified or unsanitized input vulnerability
and occurs when an attacker attempts to
change the logic, syntax, or semantic of a
legitimate (benign) SQL statement by
inserting new SQL keywords or operators
into the statement [21]. SQL injection in
web applications works using the
dynamically-generated SQL queries. The
root cause of SQLIAs is insufficient input
validation. SQLIAs occur when data
provided by a user is not properly validated
and is included in an SQL query [13]. In
such a vulnerable application, an SQLIA
uses malformed user input that alters the

West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013

35

SQL query issued in order to gain
unauthorized access to a database and
extract or modify sensitive information [5]
SQL flaw can lead to e.g., unauthorized
access, data manipulation, or information
disclosure.
 Normally, web application is a three-tier
architecture: the application tier at the user
side, the middle tier which converts the user
queries into the SQL format, and the
backend database server which stores the
user data as well as the user’s authentication
table [1]. Whenever a user wants to enter
into the web database through application
tier, the user inputs his or her authentication
from a login form. The middle tier server
will convert the input values of username
and password from user entry form into the
format shown below.

 SELECT * FROM user_account

WHERE username=‘username’ AND

passwd=’password’

 If the query result is true then the user is
authenticated, otherwise it is denied. But
there are some malicious attacks which can
deceive the database server by entering
malicious code through SQL injection which
always return true results of the
authentication query. For example, the
hacker enters the expression in the username
field like “ ‘ OR 1=1- -’ ”. So, the middle
tier will convert it into SQL query format as
shown below. This deceives the
authentication server. The query result will
be:

* FROM user_account WHERE

username= ‘ OR 1=1- -’ AND

passwd=’password’

 Analyzing the above query, the result
would always be true. It is because
malicious code has been used in the query.

In this query, the mark (’) tells the SQL
parser that the user name string is finished
and like “ ‘ OR 1=1- -’ ” statement
appended to the SQL statement would
always evaluate to true. The (- -) is comment
mark in the SQL tell the parser that the
statement is finished and the password will
not be checked. So, the result of the whole
query will return true and this authenticate
the user without checking password. The
login form is used to get the user name and
password from the user. The user name field
can take some extra values other than
alphanumeric characters. It may support
some special characters like %, $, |, #, etc.
 SQL injections can be very dangerous for
the integrity of web applications. With SQL
injection, an attacker can access a database,
change information stored in it, delete
information, and can even have full control
of a database. SQL injection attacker uses
multiple statement method to insert his SQL
command into the general query string. SQL
injection are very prevalent, and ranked as
the second most common form of attack on
web applications for 2006 in CVE (Common
Vulnerability and Exposures). The
percentage of these attacks among the
overall number of reported attacks rose from
5.5% in 2004 to 14% in 2006 [26]. The 2006
SQLIA on CardSystems solutions that
exposed several hundreds of thousands of
credit card numbers is an example of how
such attack can victimize an organization
and members of the general public. Analysts
have found several application programs
whose sources exhibit these vulnerabilities.
Several reports suggest that a large number
of applications on the web are indeed
vulnerable to SQL injection attacks [20] and
the number of the attacks is on the increase.
 The most common type of SQL injection
attacks is SQL manipulation. The attacker
attempts to modify the existing SQL

West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013

36

statement by adding elements to the
WHERE clause or extending the SQL
statement with set of operators like UNION,
INTERSECT, or MINUS, etc. The classic
SQL manipulation is during the login
authentication. Virtually all Web
applications usually check user
authentication before granting users access
to the database. Usually, when a user
submits a query to a database; the web
application check user authentication by
executing SQL statement. For instance, the
following query may be executed:

SELECT * FROM users WHERE

username = ‘eddy’ and passwd =

‘password’

The attacker may attempt to manipulate the
SQL statement to execute as follow.

SELECT * FROM users WHERE

username = ‘eddy’ and passwd =

‘password’ OR ‘a’ = ‘a’

In this case the always true for every row
and the attacker will automatically gain
access to the application.

3.0 Methodology

 The architecture of the proposed model is
shown in figure 1. Usually, when a user
input an SQL statement or query through a
web application, the query is collected by
the query collector and the user extractor
extracts the query for processing in the parse
tree generation phase when the query has
been evaluated. The extracted query is then
sent to the parse engine where it is compared
with the one that is dynamically generated at
runtime by our model to see if the structures
are syntactically the same. If they are, the
query will be allowed into the database
otherwise it will be rejected and blocked

.

Malicious

Queries

Detected

Queries Web

Applicatio

Queries Result

QUERY COLLECTION PHASE

Query

Collector

Collector

Queries

User input User Input

EVALUATION AND

DETECTION PHASE

Parse Tree Generation Phase

 Parse

 Engine

Parse Tree

Benign

Queries

Database

Runtime

Fig. 1: Architecture for proposed model

West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013

37

 A parse tree is a data structure for
representing a parsed statement. Parsing a
statement requires the grammar of the
language (quest language, e.g., MySQL,
MS-SQL, etc.) that the statement was
written. By parsing two statements and
dynamically comparing their structures at
runtime, we can determine if the two queries
are structurally identical. When a malicious
user successfully inject SQL query into a
database, the parse trees of the intended
query and the resulting SQL query do not
match. Intended queries are the codes
written by the programmer to query the
database. The programmer supplied portion
is the hard coded portion of the parse tree,
and the user-supplied portion is represented
as empty leaf nodes in the parse tree. These
nodes represent empty literals.

3.1 Generation BNF for SELECT

Statements
 We generated a Backus-Naur Form
(BNF) for select statements. The general
BNF generated was then used to construct
the structure of each select statement
syntactically. The BNF of a select statement
is shown in the figure 2 below.

Input ::= sql [sql] EOF
<Select-stmt> ::= SELECT select_list
from_clause
 | SELECT
select_list from_clause where_clause
<select_list> ::= id_list | *
<id_list> ::= id | id, id_list
<from_clause> ::= FROM tbl_list
<tbl_list> ::= id_list
<where_clause> ::= WHERE bool_cond
<cond> :: = bcond OR bterm |
bterm
<bterm> ::= bterm AND bfactor |
bfactor

<bfactor> ::= NOT cond | cond
<cond> ::= value comp value (“--
”)
<value> ::= id | num | str_lit |
(select-stmt)
<str_list> ::= ‘lit’
<comp> ::= = | != | < | > | <= | >=
Fig. 2: A BNF grammar for a select
statement
 In figure 2, the Left-Hand-Side (LHS)
represents non-terminal symbols while the
Right-Hand-Side (HRS) represents terminal
or non-terminal symbols of the production
process.
 We collected various SQL statements
through web application. We also find the
combination of these queries using the
UNION, HAVING, ORDER BY clauses so
as to have more complicated queries. We
also collected queries which are stored
procedures and alternate encoding which are
very complex forms of queries. This is done
to ensure that we have all the various forms
of queries represented so that our technique
will not be limited to solving only a subset
of injection attacks. We also ensure that any
possible combination of queries that an
attacker can combine and use in future
attacks are countered since it is a well
known fact that just as security experts are
finding ways to counter injection attacks,
hackers will also be looking for new ways to
hack well secured web sites. This we did by
ensuring that certain query combinations are
well verified and wherever keywords like
UNION, HAVING, ORDER BY, LIKE,
etc., are used in query combinations are first
categorized as suspect and are well verified
by the parser engine.

3.2 Parse Trees for SQL Statements

 A parse tree is a data structure for
representing a parsed statement. Parsing a

West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013

38

statement requires the grammar of the
language (quest language, e.g., MySQL,
MS-SQL, etc.) that the statement was
written. By parsing two statements and
dynamically comparing their structures at
runtime, we can determine if the two queries
are structurally identical. When a malicious
user successfully inject SQL query into a
database, the parse trees of the intention
query and the resulting SQL query do not
match. Intended queries are the codes
written by the programmer to query the
database. The programmer supplied portion
is the hardcoded portion of the parse tree,
and the user-supplied portion is represented
as empty leaf nodes in the parse tree. These
nodes represent empty literals. The
programmer intends that the user supplied
values to these empty leaves. In figure 3(a),
the empty leaves are the placeholders
represented by question mark (“?”) which
are empty leaves where the user is expected
to supply his username and password; which
are expected to be validated before they are
passed into the database. These question
marks are substituted for and they represent
placeholder meta-character. A placeholder
in an intention statement represents an
expanding point, where each expansion must
conform to the corresponding grammatical
rule intended by the developer. Here, a
placeholder is an intention grammar which
helps to regulate the instantiation of a
placeholder dynamically at runtime. Each
intention rule is mapped to an existing non-
terminal symbol (e.g., comp) or terminal
symbol (e.g., identifier) of an SQL
statement.
 In our technique, we developed pre-
defined queries and the user input parser
using the syntactic structure of the query.
The syntactic structure of the user queries
are compared with the pre-defined queries
generated at runtime in order to see if they

are equal. In our technique, we combine the
security of using Windows API. We did this
by embedding the syntax of the guest
language (MySQL) into the syntax of the
host language. This is to avoid the problem
of grammar ambiguities so that only one
type of parse tree is generated for a
particular type of query [4], [25]. At the
parser engine, the parser generated parse
tree structures are compared at runtime and
they are found to be syntactically the same,
the query is then determined to be legitimate
or malicious. If legitimate, it will be parsed
to the database to find the result of the
query. The result once found will be
returned to the web application. However, if
the query is malicious, the decision trees
will automatically classify the query into the
SQL injection attack type. For example, the
following SQL statement was used as one of
our case studies.

SELECT * FROM user WHERE

uname=’?’ AND password=’?’

 As shown in figure 3 (a), the placeholders
are represented with question marks (?) and
are underlined. These are the fields where
users are expected to supply their inputs. We
represented this by question marks (?)
because we want to make the placeholder
empty since it is believed that different users
have different username and passwords. In
figure 3 (b), parse tree of the SELECT
statement is then drawn which indicate the
programmer’s intended query. This query is
further checked by the decision engine and
through its leaner’s input data, the query is
found to be legitimate (benign) and it is
passed to the database. When another query
is supplied, the parse tree is suspected to be
different and it was classified as malicious.
The query is shown below.

West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013

39

SELECT * FROM user WHERE

uname=’eddy’ AND password=passwd

OR 1=1

 Subsequently, the query is rejected and
blocked from getting to the database. This
parse tree is shown in figure (c). Similar
explanation can also be giving for figures
(d) and (e). In figure(d), user supplied an
SQL SELECT statement.

SELECT * FROM usertable WHERE

username=’eddy’ AND password=’abc12’

 However, when a comment was
introduced into the query, the attacker is
able to gain access into the database and get
the information in the database. This is

shown in the figure 3 (e). As can be seen
from figures (d) and (e), the parse trees are
syntactically different. Thus the second
query figure (e) will be blocked from
entering the database.

SELECT * FROM usertable WHERE

username=’eddy’AND

password=’abc12’- AND

password=’secret’

 The parse trees shown below in figures
3(a-e) represent sample SELECT statements
that shows how the parser will actually work
whenever a query is injected into the
database through the user input and
password fields.

West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013

40

Fig. 3(a): A parse tree for a select statement. The username and password are not supplied

 Figure 3(a) shows a parse tree for an SQL statement where the placeholders where the user is
expected to supply his username and password. The palceholders are represented by question
marks indicating that it is left open since any user can supply her username and password. The
parse tree is drawn based on the production of the terminals and non-terminals representing the
production on the SELECT statement by the Backus-Naur Form (BNF) in figure 2.

Fig. 3 (b) Benign select statement Fig. 3 (c) A malicious query

? WHERE

SELECT � FROM usertable

WHERE username= ? AND password= ?

 ?

Where-clause

bcond

bterm

bfactor

cond

value

comp

id

str-lit

uname

bterm
bfactor

cond

value

value

=

lit

AND

value

comp

id

password =

id

‘eddyWHER passwd OR 1 = 1

value value

bterm

bfactor

cond

comp

num num

Where_clause

bcond

bterm

bfactor

cond

value

comp
id

str-lit

unam

bterm bfactor

cond

value

value

=

lit

AND

value

comp
id

password =

id

bcond

SELECT � FROM usertable

WHERE username= ‘eddy’ AND password= passwd OR 1=1

WHERE passwd =

Where_clause

bcond

bterm

bfactor

cond

value

comp
id

Str-lit

uname

bterm
bfactor

cond

value

value

=

lit

AND

value

comp
id

passwd

id

‘eddy’

SELECT � FROM usertable

WHERE username= ‘eddy’ AND password= passwd

West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013

41

Fig. 3 (d) A benign query Fig. 3 (e) A malicious query

4.0 Experimental Setup

 We used real world applications from
AMNESIA testbed [12] which has been
previously used by other techniques. We
used this testbed since it allows us to have a
common point of reference with other
approaches that have used it for their
evaluation. The AMNESIA testbed consists
of both legitimate and malicious queries. It
is a standard testbed used for evaluating
code injection prevention techniques. It
consists of seven applications: Bookstore,
Classifieds, Portals, Employee Directory,

Events, Checkers, and Office Talk. The
AMNESIA testbed provides a set of subject
Web application that are vulnerable to SQL
injection attacks, along with test inputs that
represent legitimate and malicious queries.
They are publicly available at
http://www.gotocode.com and
http://www.cc.gatech/~whalfond/testbed.ht
ml. The purpose of these testbed is to
facilitate the evaluation of SQL injection
detection and prevention techniques. The
AMNESIA testbed is shown in the table 1
below.

.

WHERE ‘abc12’ ‘eddy’

SELECT � FROM usertable

WHERE username= ‘eddy’ AND password= passwd

Where-clause

bcond

bterm

bfactor

cond

value

comp
id

str-lit

Unam

bterm
bfactor

cond

value

value

=

lit

AND

value

comp

id

 passwd =

id

AND password =‘secret’ passwd WHERE = =
‘eddy’

SELECT � FROM usertable

WHERE username= ‘eddy’ AND password=

Where-clause

bcond

bterm

bfactor

cond

value

comp
id

str-lit

uname

bterm
bfactor

cond

value

value

lit

AND

value

comp

id

 passwd

id

comment

West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013

42

Table 1: Information about subject application

Subject LOC DBIs Servelet

Bookstore 16,957 71 28

Portal 16,453 67 28

EmplDir 5,658 23 10

Classifieds 10,949 34 14

Events 7,242 31 13

Checkers 5,421 5 61

Office Talk 4,543 40 64

 Our application demonstrates command
injection attacks, where user-supplied
command can be executed on the host by
tempering with HTTP parameters. We
specifically work on SQL injection attacks
as an example of command injection attacks
where supplying a malicious input in an
HTML form results in a query being
executed on the host that reveals secret data.
The table below illustrates the list of

vulnerabilities as well as injection attacks
exploiting these vulnerabilities.

4.1 Generation Of Test Inputs

 For each application in the testbed, there
are two sets of inputs: LEGIT, which
consists of legitimate inputs for the
application, and ATTACK, which consists
of attempted SQLIAs. This is shown in the
table 2 below.

Table 2: Set of legitimate and attacks used

Subject Total No.

of Attacks

Successful

Attack

Legitimate

Attack

Bookstore 6,154 1, 999 607

Portals 6, 403 3, 016 1, 080

EmplDir 6, 398 2, 066 658

Classifieds 5, 968 1, 973 574

Events 6,207 2, 141 900

Checkers 4,431 922 1,359

Office Talk 5,888 499 424

 The result of this attack strings contained
30 unique attacks that had been used against
applications similar to the ones in the
testbed.

4.2 Evaluation

 In our experiment, to ensure that our
results are correct, we first disabled the
decision engine. We then tested our

technique against all legitimate and
malicious queries. After testing, no false
negatives were found but there are couples
of false positives for each subject, which
was tested.
 The result shows that with the use of only
parser as a tool, parser produces false
positive but it produces no false negatives.

West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013

43

The table below illustrates the outcome of our experimental result

Table 3: The number of false positives and false negatives detected

.

 The table above shows that out of 41,449
total numbers of attacks, there are 23 false
positives. This is approximately 0.0041% of
total attacks. This is quite high. The reason
for this is that if any of these attacks is very
dangerous, it could cause serious damage to
any individual or organization. Although,
this result is good enough considering the
fact that virtually all parser-based
approaches used in the past have suffered
from this same problem. In future, we hope
to introduce another tool called decision tree
classifier, a machine learning approach that
will automatically classify queries into their
respective groups (i.e., legitimate, malicious,
and unclassified). This tool will be used in
combination with the parser to correct the
problem which the parser suffers from.

4.2.1 Discussion of Results

 As seen in table 3, when only parser is
used as the only tool for detecting and
preventing SQL injection attack, there are
23 false positives out of 5,602 legitimate
accesses representing 0.41% of the total
accesses. Though this percentage is very
small, it could cause a lot of great trouble to
a database if sensitive information is
returned to a malicious user whose intention
is to have access to sensitive information
that could be used for theft such as credit
card numbers. The table also shows that the
number of false positives is zero (0)
indicating that when parser is used to detect
and prevent SQL injection attacks, it is very
effective in curbing queries that are
malicious in that it completely prevent them.

Subject Total No.

of Attacks

No. of Legitimate

Accesses

False

Positives

False

Negatives

Bookstore 6,154 607 3 2

Portals 6, 403 1,080 5 3

EmplDir 6, 398 658 3 1

Classifieds 5, 968 574 2 2

Events 6,207 900 3 0

Checkers 4,431 1,357 6 3

Office Talk 5,888 424 1 1

Total 41,449 5,602 23 12

West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013

44

4.2.2 Complexity Analysis and Optimization

Fig. 4a

West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013

45

Fig. 4 b

5.0 Related Work

 In [12] the authors used AMNESIA
technique to secure vulnerable statement by
combining static analysis with statement
generation and runtime monitoring. They
used static analysis of Java programs to
compute a finite-state machine model that
captures the lexical structure of SQL queries
issued by a program. They analyzed the
vulnerable SQL statement, then generate a
general acceptable SQL statement model,
and allow or deny each statement based on
how it compares to the model at runtime. In
the study they conducted, they used five real
world Web applications and applied
AMNESIA to each of the applications. SQL
injection attacks cause SQL queries issued
by the program to deviate from this model

and were detected. Although the technique
is effective because it detects injection
attacks and it avoids runtime taint-tracking,
it suffers some drawbacks. Their solution
uses exceptions to indicate potential attacks
which could cause overhead on the part of
the developers. Also, the conservative nature
of its static analysis and its inability to
distinguish different courses of inputs can
lead to a higher rate of false positives.
 In [7], the authors proposed SQLGuard
technique for detecting injection attacks.
They use SQLGuard to secure vulnerable
SQL statements by comparing the parse tree
of an SQL statement before and after user
input and only allow SQL statements to
execute if the parse trees match. In their
study, they used one real-world Web

West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013

46

application for each application. They
technique was able to stop all the SQLIAs
after testing it and it generated no false
positives. However, their technique had
some overheads. First, the developer must
rewrite all the SQL codes to use their
custom libraries. This is quite a difficult
time, consuming and costly task on the part
of the application developers. There is also
the problem of computational overhead due
to dynamic statement validation by
removing vulnerability and allowing all
inputs. Therefore, SQLGuard is not flexible
enough, because the source code of the
application must be modified in many
positions. This is a very tedious task on the
part of the programmer which may be very
difficult to achieve.
 SQL Document Object Model (SQL
DOM) technique was proposed by [16]. This
is an API dependent stored procedure
technique for detecting injection attacks.
SQL DOM analyzes the database schema at
compile time and writes codes to customize
the SQL query construction classes. The
resulting DOM is a tree-like structure based
on a generic template, mapping the possible
variations of SQL queries according to
tables and column definitions. They used
three (3) main classes, SQL statements, table
columns and where conditions. These
classes have strong-typed methods mapping
the data types in the database schema. This
enables them to validate data types
automatically. The constructor of column
classes escape strings (i.e., replace each
quote by a double quote) at runtime to
sanitize them. Although the approach was
able to prevent application layer injection
attacks, it however had some limitations. It
has some overheads for developer training
and code rewriting, as query-generating
code needs to be rewritten. Its full-object
criterion lead to additional cost. Also, since

the technique uses stored procedures, it
remains unprotected. The technique does not
execute queries (it only generates them).
While this could improve database
integration and perhaps further reduce the
attack surface, the technique neither
describes its string sanitization strategy nor
elaborates on exception handling and thus
did not address how the SQL DOM would
behave if a null value is passed on as a
criterion.
 In [24] the authors proposed SQLCHECK
technique to prevent SQLIAs. Their
approach employs context-free grammars
for data validation. Data that is dynamically
added to foreign code statements has to
fulfill specifically constructed grammars. By
tracking dynamically added values through
the application’s processes, SQLCHECK
can identify un-trusted values before the
query is parsed to the database. These values
are parsed by the constructed grammar to
validate their correctness. They analyzed the
parse tree of the query, generated customs
validation code, and then wrap the
vulnerable statement in the validation code.
They used five real-world Web applications
in their study and applied their technique to
each of the applications. Their wrapper
stopped all of the SQLIAs in their attack set
without generating false positives. However,
the technique assumes the client will not be
able to produce the magic marker symbol.
This is very dangerous to assume since Web
applications can “echo” SQL queries to the
user if an error occurs, the user may trick the
Web application into revealing its markers
[6]. Also, the technique is still subject to
denial-of-service attack. This is because, at
runtime, it can only flag errors and prevents
them from escalating into a full security
compromise.

West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013

47

6.0 Conclusion and Future Work

 The recent increase in the growth and use
of the Internet for a wide-range of Web-
based applications such as e-commerce, e-
banking, online stores, social network
services, e-governance, etc., has brought
about the increasing popularity of web based
applications. This upsurge has made the
Internet a potential target for different forms
of attacks. In this paper, we developed pre-
defined queries and the user input parser
using the syntactic structure of the query.
The syntactic structure of the user queries
are compared with the pre-defined generated
at runtime. We embedded the guest
language (MySQL) into the syntax of the
host language (Java). This is to avoid the
problem of grammar ambiguities so that
only one type of parse tree is generated for a
particular query.
 Our result shows that the parser was able
to detect malicious queries, although it also

produces false positives and false negative.
This is approximately 0.01% of legitimate
attack. This is quite high. The reason for this
is that if any of these attacks is very
dangerous, it could cause serious damage to
any individual or organization. Although,
this result is good enough considering the
fact that virtually all parser-based
approaches used in the past have suffered
from false positives. In future work, we
hope to introduce another tool called
decision tree classifier, a machine learning
approach that will automatically classify
queries into their respective groups (i.e.,
legitimate, malicious, and unclassified). This
tool will be used in combination with the
parser to correct the problem which the
parser suffers from. This way we hope the
problem of false positives and false negative
will be solved.

__

References

[1] Ali, S. Rauf, A. and Javed, H. (2009). SQLIPA: An Authentication Mechanism Against SQL Injection.
In European Journal of Scientific Research, ISSN 1450 – 216X, Vol. 38, No. 4, pp. 604 – 611,

http://www.eurojournal.com/ejsr.htm.
[2] Anley, C. (2002). Advanced SQL Injection,

http://www.ngssoftware.com/papers/Advanced_sql_injection.pdf/, Accessed September 13,
2010.

[3] Barnum, S. and McGraw, G. (2005). Knowledge for Software Security, Security and Privacy
 Magazine, IEEE, Vol. 3, No. 2, pp. 74-78.
[4] Batory, D. Lofaso, B. and Smaragdakis, Y. (1998). JTS: Tools for Implementing Domain-Specific

Languages. Int’l Conference on Software Reuse (ICSR’98), IEEE Computer Society, pp. 143-
153.

[5] Bisht, P., Madhusudan, P. and Venkatarishnan, V. N. (2010). CANDID: Dynamic Candidate

Evaluations for Automatic Prevention of SQL Injection Attacks, ACM Transactions on
Information and System Security, Vol. 13, No. 2, Article 14.

[6] Bravenboer, M., Dolstra, E. and Visser, E. (2007). Preventing Injection Attacks With Syntax

West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013

48

Embeddings. In Proceedings of the 6th International Conference on Generative Programming
and Component Engineering, GPCE’07.

[7] Buehrer, G. T., Weide, B. W. and Sivilotti, P. A. G. (2005). SQLGuard: Using Parse Tree Validation

to Prevent SQL Injection Attacks. In Proceedings of the 5th International Workshop on
Software Engineering and Middleware, Lisbon, Portugal, pp. 106–113.

[8] Das, D. Sherma, U., and Bhattacharyya, D. K (2010). Approach to Detection of SQL Injection Attack

Based on Dynamic Query Matching, International Journal of Computer Applications (0975 –
8887), Vol. 1, No. 25, pp. 28–34.

[9] Fayol, E. M. (2005). Advanced SQL Injection in Oracle Databases. Technical Report, Argeniss
 Information Security, Black Hat Briefing, Black Hat, U.S.A.
[10] Halder, R. and Cortesi, A. (2010). Obfucation-based Analysis of SQL Injection Attacks. In Proceedings

of the 5th International Conference on Software and Data Technologies (ICSOFT’10), Athens,
Greece, pp. 254 – 265.

[11 Halfond, W. G. J. and Orso, A. (2005). Combining Static Analysis and Runtime Monitoring to Counter

SQL-Injection Attacks. In Proceedings of 3rd International Workshop on Dynamic Analysis
(WODA’05), St. Louis, Missouri, pp. 1-7.

[12] Halfond, W. G. J. and Orso, A. (2005). AMNESIA: Analysis and Monitoring for Neutralizing SQL

Injection Attacks. In Proceedings of the 20th IEEE/ACM International Conference on
Automated Software Engineering, California, USA, pp. 174 – 183.

[13] Halfond, W. G. J., Viegas, J. and Orso, A. (2006). A Classification of SQL Injection Attacks and

Countermeasures. In Proceedings of IEEE International Symposium on Secure Software
Engineering.

[14] Kim, H. K. (2010). Frameworks for SQL Retrieval on Web Applications Security. In Proceedings of
the International MultiConference of Engineers and Computer Scientists, Vol. I, IMECS’10,
Hong Kong.

[15] Mackay, C. A. (2005). SQL Injection Attacks and Some Tips on How to Prevent Them. Technical
 Reorp, The Code Project, January 2005,
http://www.codeproject.com/cs/database/SQLInjectionAttacks.asp.

[16] McClure, R. A., Kruger, I. H. (2005). SQLDOM: Compile Time Checking of Dynamic SQL

 Statements, ICSE’05, St. Louis, Missouri, USA, ACM, pp. 88 – 96.
[17] Nguyen-Tuong, A. S., Guarnieri, S., Greene, D., Shirley, J, and Evans, D. (2005). Automatically

Hardening Web Applications Using Precise Tainting. In Proceedings of the 20th IFIP
International Information Security Conference (SEC), pp. 295-308.

[18] NIST, National Vulnerability Database (2007) http://www.nvd.nist.org/, Accessed September 13,
 2010.
[19] Ogheneovo, E. E. and Asagba, P. O. (2011). A Proposed Architecture for Defending Against

Command Injection Attacks in a Distributed Network Environment, Journal of Research in
Physical Science, Vol. 7, No. 1, pp. 67-72.

[20] Ogheneovo, E. E. and Asagba, P. O. (2011). A Machine Learning Technique for Detecting and

Preventing SQL Injection Attacks. Int’l Journal of Computer Science, Vol. 3, No. 1, pp. 111-
123.

[21] Ogheneovo, E. E. and Asagba, P. O. (2012). SQLDefend: An Automated Detection and Prevention

West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013West African Journal of Industrial & Academic Research Vol.6 No.1 March 2013

49

Technique for SQL Injection Vulnerabilities in Web Applications, SCIENTIA AFRICANA,
Int’l Journal of Pure & Applied Sciences, Vol. 11, No. 2, pp. 41-58.

[22] Open Web Application Security Project, OWASP 2010,
http://www.owasp.org/images/0/0f/OWASP_T10_2010_rcl.pdf, Accessed September 22,
2010.

[23] Spett, K. (2003). Blind SQL Injection. White Paper, SPI Dynamics, Inc.,
 http://www.spidynamics.com/whitepapers/Blind_SQLInjection.pdf.
[24] Su, Z. and Wassermann, G. (2006). The Essence of Command Injection Attacks in Web Applications.

In Conference Record of the 33rd ACM SIGPLAN—SIGACT Symposium on Principles of
Programming Language POPL’06, New York, NY, pp. 372–382.

[25] Visser, E. (2002). Meta-programming with Concrete Object Syntax. In Generative Programming and
 Component Engineering (GPCE’02), Vol. 2487 of LNCS, Pittsburgh, PA, USA, pp. 299-315.
[26] Common Vulnerability and Exposures (CVEs), http://cve.mitre.org, accessed September 20, 2011.

