
West African Journal of Industrial & Academic Research Vol.10 No.1 April
2014 52

Deploying Java Platform to Design a Framework of Protective

Shield for Anti– Reversing Engineering

1
Okonta, Okechukwu Emmanuel,

2
Wemembu, Uchenna Raphael,

3
Ojugo, Adimabua Arnold),

4
Ajani, Dele

1
 Department of Computer Science Federal College of Education (Tech) Asaba.

2 Department of Mathematics Federal College of Education (Tech) Asaba.
3Department of Math/Computer Sc Fed University Petroleum Resources Effurun

4 Department of Computer Science Federal College of Education (Tech) Asaba

Abstract
Java is a platform independent language. Java programs can be executed on any machine,

irrespective of its hardware or the operating system, as long as a Java virtual machine for

that platform is available. A Java compiler converts the source code into “byte-code‟ instead

of native binary machine code. This byte-code contains a lot of information from and about

the source code, which makes it easy to decompile, and hence, vulnerable to reverse

engineering attacks. In addition to the obvious security implications, businesses and the

wider software engineering community also risk widespread IP theft - proprietary

algorithms, for example, that might be implemented in Java could be easily reverse-

engineered and copied. This paper addresses the problem of reverse engineering attacks on

software written in Java. It analyzes the present protective techniques used to protect

software from such attacks, examines their limitations and provides a new tool that

implements several anti-reversing techniques. This novel tool is code named KDefender and

it drew its concept from ANTLR- ANother Tool for Language Recognition.

Key words: JAVA, Anti-Reverse Engineering, byte-code, Re-Engineering, Obfuscators,

 KDefender

__

Introduction

 The process of extracting knowledge or

design blueprints from anything man-made

is known as reverse engineering [19]. So

in real terms, reverse engineering may be

understood as a systematic methodology

for analyzing the design of an existing

device or system, either as a way to study

the design or as a means for re-design.

“Reverse engineering is the process of

analyzing a subject system to (i) identify

the system’s components and inter-

relationships and (ii) create representations

of the system in another form or at a

higher level of abstraction” [12].

 In the field of software engineering,

developers sometimes do need to

understand how existing software works.

The concept of reverse engineering, when

applied to software leads to many

interesting consequences. Various problem

areas where reverse engineering has been

successfully applied are recovery of design

patterns [2], code smell detection [20], re-

documentation of programs [6], renewal of

user interfaces [36], [38], migration of

legacy code [9], translation of program

from one language to another [8], and

architecture recovery [28].

 Reverse engineering has proved very

helpful in many ways. But on the contrary,

it has lead to many serious problems.

“Each year software piracy results in

billions of dollars in lost revenue” [11],

and hacking is one of the challenges that

West African Journal of Industrial & Academic Research Vol.10 No.1 April
2014 53

reverse engineering has brought into

picture (The terms ‘hacking’ and ‘reverse

engineering attacks’ are used

interchangeably in this paper. It refers to

the hacking attacks that are based on

reverse engineering). “Stealing or

replicating someone else’s ideas has

always been the easiest way of creating

competitive products” [26]. The process

of reverse engineering helps in

understanding the logic of software which

makes it easy to alter its behaviour or copy

the algorithms. The removal of usage

restrictions from software, exploitation of

software flaws, cheating in the games and

breaking the digital rights of a system are

some such reasons for which the hackers

resort to reverse engineering [24].

 Reverse Engineering Process

 “To reverse engineer a software

application, it is first necessary to gain

physical access to it” [32]. The process of

reverse engineering consists of three steps:

(i) Parsing and semantic analysis of code,

(ii) Extracting information from the code,

and (iii) Dividing the product into

components, as indicated by Figure 1 [12].

The software code is parsed and semantic

analysis is performed on the parsed code.

The information thus obtained is stored in

an information base and then this

information is used to understand the basic

functionality and algorithms of the

software. This knowledge can be used for

legitimate reasons like creating a new

system with better design and functionality

but practically speaking it can also be

misused.

Figure 1 Reverse Engineering Process

Anti-Reverse Engineering

 The protective techniques implemented

in software in order to protect it from

malicious attacks or blatant misuses are

referred to anti-reversing techniques. It has

become a challenge for the software

industry to protect software from attackers

and to prevent its misuse. The patent

system is not quite as effective with

software as it is with traditionally

engineered tangible artifacts. While a

patent mandates IP protection it is

impossible to prove or even suspect any IP

theft in a software product that might have

been the result of a malicious reverse

engineering attack on a patented

competitor. After all, such a product,

implemented slightly differently from the

original, yet using the same core ideas and

algorithms could simply be deemed as an

inventive step over previous work. [26].

 [19] states in his book “It is never

possible to entirely prevent reversing” and

[11] states “The goal of any “anti” reverse

engineering technique is to substantially

increase the amount of work that a reverse

engineering attempt entails, hopefully

Parsing &
Sematic
Analysis
of Code

Components
of the
product

Information
of the

product.

Softwar
e

product

New view
of the

product

West African Journal of Industrial & Academic Research Vol.10 No.1 April
2014 54

beyond the useful lifetime of a software

application (or a particular version of the

application)”. This indicates that it is

possible to evaluate the effectiveness of an

anti-reversing technique using empirical

metrics.

 It is not easy to define criteria for

evaluating the different reversing

techniques. The criteria that can be used

for examining the effectiveness of a

reversing technique are [40]:

 Potency – How confused the de-

compiler is?

 Resilience – Can it rebuff the de-

compilation attempts?

 Cost – How much overhead does it

cause?

Anti-Reversing Tools

 Reversing is impossible without the right

tool [19]. There are various software tools

available in the market today; some are

free while some cost thousands of naira.

The tools available for reverse engineering

include de-assemblers available for

extracting assembly code from the

executables, debuggers for dynamic

analysis of code during execution, and de-

compilers for generating high-level source

code from the executables [11].

 The most popular disassembling and

debugging tools available include OllyDbg

[46], IDA Pro , SoftICE), WinDbg, etc.

These tools not only extract the assembly

code but also help in viewing many other

details of the software. They help in

analyzing and patching the code as well.

 Java programs are more prone to

reversing attacks as “It is more feasible to

recover Java source code from Java byte

code than it is to recover C/C++ code from

machine code” [13]. Just a few of the

various decompilers available include Jad

[29], JODE [24], and Jdec [5].

 A lot of research is going on in the

software industry in order to find out

successful ways of protecting software

from reverse engineering attacks. The

techniques proposed to make reverse

engineering difficult include obfuscating

the code [14], protecting the computing

platform physically [17], encryption of

executables [11], and watermarking [15].

Java Software: A Direct Threat

 The threat of reverse engineering attacks

has been taken more seriously since the

advent of Java, because the applications

written in Java are easier to reverse

engineer [13]. To understand why, we

have to know the difference between Java

byte-code and machine code.

 Machine code or processor

instructions are a system of

instructions and data executed directly

by a computer’s central processing unit

[34]. These instructions are specific to

the processor on which they are

generated. Figure 2 illustrates this

scenario.

 “Byte-code is a set of

instructions that looks a lot like some

machine code, but is not specific to

any one processor” [31]. “It is the

intermediate representation of Java

programs just as assembler is the

intermediate representation of C/C++

programs” [22]. Figure 3 illustrates the

generation of byte-code.

West African Journal of Industrial & Academic Research Vol.10 No.1 April
2014 55

Figure 2: Machine code

Figure 3: Generation of Byte Code

Java Byte code

 Java was designed for supporting

platform-independent development. This

was done by converting the source code

into platform-independent bytecode for

compilation. “Java bytecode is

standardized and well documented” [26].

It contains a lot of information about the

code and thus it can be easily decompiled

to the source code. Another characteristic

of Java that proves beneficial to the

reverse engineering attackers is the use of

standard library routines which keeps the

size of the application small.

 The design of Java language itself, thus,

makes it highly prone to reverse

engineering attacks. This has become a

big problem, as a number of mission

Platform 1

Java Virtual Machine
for Platform 1

Java byte code… Class File

Java Code

(Java Files)

Platform 2

Java Virtual Machine
for Platform 2

Platform 3

Java Virtual Machine
for Platform 3

Javac Compiler

C/C++ Code

Compiler for
Processor 1

Compiler for
Processor 3

Binary file for
Processor 1

Compiler for
Processor 2

Binary file or
Processor 1

Binary file for
processor 1

West African Journal of Industrial & Academic Research Vol.10 No.1 April
2014 56

critical applications in industries like

banking, or simply closed-sourced

proprietary applications and games are

being developed in the Java language. The

purpose of this paper is to analyze the

existing anti-reversing techniques that can

be implemented to make Java code

immune to reversing attacks and suggest a

tool that automates the process of

implementing anti-reversing techniques for

Java software.

Previous Work done

 A great deal of work and research has

been done in the field of reverse

engineering over the past 20 years [10].

Research in the field of reverse

engineering had started in the early

nineties. Initially, the research was mainly

focused on the analysis of procedural

software for understanding it and to deal

with the Y2K problem (Low, 1998).

Architecture recovery was another focus

area that was facilitated by reverse

engineering. A number of techniques were

proposed for component recovery.

 Thus, most research during the nineties

was focused on three main problems [10]:

 Program Analysis

 Design Recovery

 Software Visualization

 The origin of reverse engineering can be

traced to software maintenance processes

and techniques. The definition of reverse

engineering is quite broad today as it

encompasses a number of fields like aiding

software test by creating representations of

code [35], evaluating software design or

examining software security [16]. [12]

state that the objective of reverse

engineering in software is “most often to

gain a sufficient design-level

understanding to aid maintenance,

strengthen enhancements, or support better

replacement”.

Relationship between Reverse

engineering and Re-engineering

 Reverse engineering is sometimes

understood to be a restructuring technique

used for redevelopment of software, which

is not precisely what reverse engineering is

all about. The objective of the reverse

engineering techniques can be broadly

classified into two categories: re-

documentation and design recovery [10],

as shown in Figure 4. “Re-documentation

is the creation or revision of a semantically

equivalent representation within the same

relative abstraction level” [12] and

“Design Recovery recreates design

abstractions from a combination of code,

existing design documentation (if

available), personal experience, and

general knowledge about problem and

application domains” [7].

Objectives of Reverse
Engineering

Re –

Documentation

Providing Alternate
view of an artifact

Recreating Design
Abstraction

Design

Recovery

West African Journal of Industrial & Academic Research Vol.10 No.1 April
2014 57

Figure 4 Objectives of Reversing Engineering

 The argument given in support of this

position is that by definition reverse

engineering does not include restructuring

or reengineering. Instead, the process of

reverse engineering is just a phase of

reengineering. Reengineering can be

understood as a process with three phases -

reverse engineering, architecture

transformation and forward engineering.

As Figure 5 shows, the reverse engineering

phase aims at obtaining an abstraction of

the target software and the forward

engineering phase aims at the restructuring

part.

Figure 5. Re-engineering process Recovery Architecture Development

Figure 6. Architecture of Re-engineering

 Figure 6 presents the Architecture

Reengineering process [27]. It indicates

that architecture recovery is the reverse

process of Architecture Development. For

the transformation of software architecture

from one form to another, we have to

recover the coding approach followed and

the architectural plan of the given

software. This in turn helps us in figuring

out the design patterns implemented in the

software. [12] gives a clear definition and

distinction between the terms reverse

engineering, forward engineering,

restructuring and reengineering using three

Process of
 Re-engineering

Abstraction of the

Software is

obtained

Restructuring the

Software

Reverse
Engineering Phase

Forwarding
Engineering Phase

Design Pattern

Program
Architecture

Coding Method

West African Journal of Industrial & Academic Research Vol.10 No.1 April
2014 58

software life-cycle stages. The three life-

cycle stages that they use are –requirement

analysis, design, and implementation.

Figure 7 below shows the relationship

between the three crucial life cycle stages.

Figure 7 Relationship between the three main life cycles.

 Program Analysis

 A number of tools have been developed

to help in the analysis of computer

programs. Initially these tools used static

analysis, but eventually this approach was

found wanting in many programs where

dynamic analysis was required [45].

Dynamic analysis is necessary in many

situations and is widely used despite being

expensive and incomplete. A number of

new analysis techniques have been

developed to address the different

challenges faced by the software

community. For example, the complexity

of program analysis increases with

program size. So, techniques like island

parsing and lake parsing are employed to

analyze only small fragments of code at a

time instead of entire programs in one go

[37].

 Another event that inspired the research

effort in the field of program analysis is

the presence of clones in software systems

[10]. The different techniques developed

as an outcome include token-based [3],

AST-based [4], and metrics-based [30]

techniques.

Architecture and Design Recovery

 Initially, the role of reverse engineering

in the field of architecture and design

recovery was focused on recovering high

level architectures from procedural code.

With the diffusion of object oriented

languages and Unified Model Language

(UML), it became important to recover

UML models as well from source code.

 [43] proposed the static approach for

recovering class diagrams and also

demonstrated that static analysis was

insufficient as it did not contain any

information about flow propagation. They

successfully extracted sequence diagrams

using static analysis on data flow. [45]

recovered the UML diagrams by using a

combination of static and dynamic analysis

techniques.

 Another concept that had become very

popular along with object-oriented

development was design patterns.

Recovering the design pattern from the

code was helpful in code reuse and

assessing code quality. Both static [2] and

dynamic analysis techniques [23] were

used to recover design patterns.

Visualization

 Software visualization is a blessing to

the reverse engineers. A pictorial

representation of information greatly

benefits both the analyzer and the

developer. The proper visualization of the

West African Journal of Industrial & Academic Research Vol.10 No.1 April
2014 59

program and the information extracted

from its analysis is very important for

gaining clearer understanding the code.

The code flow becomes much easier to

understand with a tool that is capable of

presenting relevant information at the right

level of detail [10]. A number of such tools

are available, like Rigi [39], CodeCrawler,

Seesoft [18], and sv3D [21].

 All these tools provide useful

visualization of the software using various

techniques. One of these tools, Rigi, can

show architectural views, while sv3D can

render software architecture metrics in a

3D visual representation. “Code Crawler

combines the capability of showing

software entities and their relationships,

with the capability of visualizing software

metrics using polymetric views, which

show different metrics using the width, the

length, and the colour of the boxes” [10].

 These advancements in the field of

reverse engineering not only indicate the

progress made, but also portray the pitfalls

of reverse engineering. With the tools

developed for the purpose of helping the

software community, another set of people

have been benefited – the hacker

community. With so many tools at hand,

they can misuse or reuse a lot of licensed

software and the algorithms, without

paying a dime to the original creators.

What more are we expecting?

 While researchers are working on

development of more advanced tools to

facilitate the process of reverse

engineering, in doing so, they are also

making the job of hackers much easier.

With the advancement in the field of

dynamic analysis of programs, hackers can

not only analyze their target software

statically but can also uncover the exact

implementations of its underlying

algorithms. The availability of a wide

range of efficient de-compilers for high

level languages like Java makes it all the

more difficult to protect software as it is

now possible to recover an almost exact

copy of the source code from a class file.

And that means copyrights and patents are

not very effective. So it is a big challenge

for IP owners to protect their code by

incorporating anti-reversing techniques

into their code.

Anti-Reversing Techniques

 To protect Java Code the software

development community has been working

on this problem for many years. The

techniques that can currently be used to

protect Java source code are given in

Figure 8 (Nolan, 2004). These techniques

are briefly discussed here

Protecting Java Code

Selling the Source
Code

Using Digital Right
Management

Appling Web
Services and Server

Side Execution

Writing two Versions
of Application

Finger Printing
your Code

Using Encryption

Employing
Obfuscation

Mounting
Compilation Flags

Using Nature Method

West African Journal of Industrial & Academic Research Vol.10 No.1 April
2014 60

Figure 8 Protecting Java Code

Mounting Compilation Flags

 The byte code generated by the

compiler is affected by different types of

compilation flags [40]. Use of the –g flag

during compilation generates debugging

tables that contain information about line

numbers and local variables [25]. This

information is very useful for the

decompiler to retrieve the source code.

Implementing Two Versions of the

Application

 It is a popular trend in the software

industry to let users download a fully

functional evaluation copy of the software

that can be used up to a predefined period

of time or a certain number of usages. This

introduces the potential threat of malicious

users removing these limitations to

activate a functional copy of the software

without having paid for it after their trial

period expired. A possible solution is to

implement two versions of the software;

with a cut-down trial version that does not

reveal all its functionality. Thus the user is

forced to buy the original software if they

like the trial version. [40]

Applying Obfuscation

 Obfuscated code is source or machine

code that has been made difficult to

understand for humans [41]. There are a

number of techniques used to obfuscate

code and it is the method used in this

paper. The different techniques for

obfuscation will be discussed briefly.

 Encryption

 Throughout the ages, mankind has

turned to encryption when trying to protect

secret transmissions” [40]. A common

solution suggested for preventing the code

from de-compilation is to encrypt the class

files. These class files are not decrypted

until before they are executed.

Digital Rights Management

 It is clear from our discussion so far that

the bytecode needs to be kept out of reach

of the end user in order to prevent them

from decompiling the code. Ultimately, it

would be wiser to protect the code by

simply securing the browser and class

loader using a trusted browser. The

browser should not let the end user access

the cache which contains code. [40]

Fingerprinting the Code

 Digital fingerprinting is a string of

binary digits that uniquely identifies a file

and it is usually in the form of a copyright

notice that helps you to identify your code.

Inserting a fingerprint does not provide

any protection but it helps in protecting the

copyright by providing a way for the

developer to prove that the code was

originally written by him. [40]

Selling Source Code

 “If source code is so readily available,

then why not just sell it at a higher price?”

[40]. The de-compiler can be discouraged

to decompile if you sell the source code

directly to him.

Employing Native Methods

 As we said earlier code written in Java

is more difficult to protect than that written

in C/C++. [40] suggests that we can

protect our Java code by compiling it in C

or C++. It is possible to do this in Java by

using the Java Native Interface (JNI). It

might cause portability issues but is useful

if portability is not an issue.

Obfuscation Techniques

West African Journal of Industrial & Academic Research Vol.10 No.1 April
2014 61

 There are a number of techniques that

can be used to make software immune to

reversing attacks. Many of these

techniques are used by the obfuscators

available in the market. These various

obfuscation techniques can prove

beneficial in protecting Java software from

reversing attacks.. Obfuscation can be

classified into three classes:

Source code obfuscation: The obfuscation

is performed on the source code.

Bytecode obfuscation: The

transformations are performed on the

bytecode of the compiled software.

Binary code obfuscation: The obfuscation

is achieved by rewriting the instructions at

machine code level.

Figure 9 gives another classification of the obfuscation techniques [40], [14]

based upon how the code is obfuscated.

 Obfuscators available in the market

work by scrambling the identifiers in the

class file to make the decompiled source

useless. The variables are renamed with

automatically generated garbage variables

which do not affect the code functionality

as the class file uses pointers to methods

and variables instead of actual names. It

becomes difficult to understand the code

but it is not impossible. A dis-assembler

can be used to rename the variables in

order to generate more meaningful names.

[40]

Novel Framework Technique.

 Applying anti-reversing techniques is a

complex procedure. It involves detailed

scrutiny of the code, extracting

information about its design, and making

changes to the data and control flow

without altering the program logic. Our

tool is code named KDefender, automates

a number of obfuscation techniques. The

automation of all the techniques is very

difficult because of their complexity and

limitations of the implementation

language. Manual application of all the

techniques is not feasible as it is time

consuming and becomes unmanageable

with increase in the program size and

complexity.

KDefender Functionality

Obfuscation

Control
Obfuscation

Data Obfuscation Layout Obfuscation
Scramble Identifier

Computation

Insert dead or
irrelevant code.

Extend loop

condition.
Reducible to

non-reducible

Add reluctant
Operands.

Remove

Programing
idioms.

Parallelize Code.

Aggregation

Inline & outline
method

Interleave

methods
Clone method

Loop

transformation

Ordinary
Reorder

Statement

Reorder
loops

Reorder

expression

Storage &

Encoding

Change

encoding

Split Variables
Convert Static to

Procedural data

Aggregation
Marge Scalar

Variables

Factors Class
Insert bogus

Class

Refactor Class
Split array

Marge array

Fold array

Flatten array

Ordinary
Reorder

Methods &

Instance
Variables

Reorder

array

West African Journal of Industrial & Academic Research Vol.10 No.1 April
2014 62

 Let us briefly outlines the functionality

and features provided by KDefender. The

tool analyzes Java code and applies

various obfuscation techniques to the code

to make it harder to reverse engineer.

KDefender is a relatively small tool that

uses an ANTLR [1] generated parser to

parse the input Java source code. “ANTLR

(ANother Tool for Language Recognition)

is a language tool that provides a

framework for generating parser from

grammatical descriptions” [1]. As a proof

of concept for our findings, KDefender

was tested on a single Java file at a time

and generates an obfuscated output that is

remarkably difficult to reverse engineer. It

can be easily modified and extended to

obfuscate an entire project containing

several Java source files.

Techniques Implemented by KDefender

 The KDefender code itself uses the data

structures and then works based on the

information generated by the parser.

KDefender applies the following

obfuscation techniques to a Java program:

All the obfuscation techniques

implemented by KDefender are adopted

from suggestions made by [14] and [40]

See figure 9

Layout Obfuscation

Scramble identifiers

Control Obfuscation

Insert dead or irrelevant code; Extend loop

condition & Add redundant operands

Data Obfuscation Insert bogus class;

Reorder methods & Convert static to

procedural data

The algorithms for implementing each one

of these obfuscation techniques are briefly

discussed below

Control Obfuscation

 The idea behind control obfuscation is

to disguise the real control flow [32]. The

control flow of the source code is altered

to confuse anyone looking at the

decompiled code [40]. [26] states, “The

best obfuscators are capable of

transforming the execution flow of

bytecode by inserting bogus conditional

and goto statements”. [14] classifies

control obfuscation into three different

categories – computation, aggregation, and

ordering. Complicating the loop conditions

introduces obfuscation in the code. This

can be done by extending the loop

condition with a second or third condition

that doesn’t do anything [40]. For

example, in the following example we

have a simple if condition.

Before: After:

int x = 1;

if (x > 200)

{

…

x ++;

// call function abc(x)

}

int x = 1;

while (x> 200 || x%200==0)

{

…

x ++;

// call function abc(x)

}

This condition is easy to understand as it

has no calculation involved. But if we

replace this code with condition that does

the same job but looks complex, it might

make it a little more time consuming for

an attacker to understand the logic.

Reducible to Non-reducible

West African Journal of Industrial & Academic Research Vol.10 No.1 April
2014 63

 The Holy Grail of obfuscation is to

create obfuscated code that cannot be

converted back into its original format”

[40]. We can devise some transformations

that make the code non-reducible to its

original form. For example, the Java

bytecode has goto instruction while no

equivalent statement exists in the Java

language. So, the flow graphs produced

from Java programs are always reducible,

while those from Java bytecode may

express non-reducible flow graphs.

Expressing non-reducible flow graphs is

inconvenient in Java due to unavailability

of goto statements, so we need to do some

transformation for converting the reducible

flow graph into a non-reducible one. We

can achieve this by converting a structured

loop into a loop with multiple headers

[14]. For example, see the code below:

Before: After:

Statement 1;

while (condition1)

{

Statement2;

}

Statement 1;

if(condition2)

{

Statement2';

while (condition1){

Statement2;

}

else {

while (condition1){

Statement2;

}}

else {

while (condition1){

Statement2;

}}

 In this algorithm, we had a simple while

condition. We split the statement to make

it appear more complicated than it actually

is.

Add Redundant Operands

 Adding some insignificant terms to the

code, in the basic calculations confuses the

reverse engineer. For example, let‟s

assume that there is an integer variable,

„p‟ that stores the product of two integer

variables – „a‟ and „b‟. The code below

shows we can make the calculations look

complex to the attacker. [40]

Before: After:

public int sum{

int a = 5;

int b = 7;

int p;

p = a * b;

System.out.println(“

Product =” + p);

}

public int sum{

int a = 5, b = 7;

double i = 0.0005;

double j = 0.0007;

double p;

p = (a * b) + (i*j);

System.out.println(“

Product =” + (int) p);

West African Journal of Industrial & Academic Research Vol.10 No.1 April
2014 64

Both of these code snippets will generate

exactly the same output, just that the

second one looks more complex than the

original one. [40] warns that using this

technique all through the application has

the potential to degrade its performance.

Framework Implementation

 KDefender is implemented in C# and

uses an ANTLR generated parser [1] for

parsing the program. The IDE used for

development is Microsoft Visual

Studio.Net. The tool applies all the

obfuscation techniques in one step and

gives the option of reviewing the code

before it is saved. The input and output are

both Java source code. As mentioned

above, the tool uses various data structures

for implementing different obfuscation

techniques.

 KDefender implements maximum

number of obfuscation techniques as

compared to any other tool on the market.

All the tools on market implement

different set of techniques while

KDefender provides a prototype for a tool

that implements most of these techniques

in one place. KDefender makes the Java

code difficult to reverse engineer by

applying various obfuscation techniques.

The techniques that can be implemented to

enhance the tool are mentioned in this

paper. It is left as future work to enhance

the capabilities of the tool to make it a

commercially useful tool.

Figure 10: KDefender Implementation

Conclusion

 With the availability of so many

advanced tools and techniques, Java

programs are vulnerable to reverse

engineering attacks. The research

described in this paper has lead to the

creation of a new tool to automate the

application of strong anti-reversing

techniques to Java programs. This effort

can go a long way in addressing the

problems of unauthorized access to source

code and IP theft using reverse

engineering attacks that the industry

currently faces it might very well be

impossible to eradicate it but our tool can

surely make the reverse engineering effort

hard and practically worthless.

 In this paper, we presented the different

techniques that are helpful in protecting

Java software from reverse engineering

West African Journal of Industrial & Academic Research Vol.10 No.1
April 2014

65

attacks. We discussed the different

obfuscation techniques previously

developed. We identified the techniques

that could be automated and then

developed a prototype to demonstrate the

automated application of these techniques.

 The obfuscation can be applied to the

java source code files and our tool

generates an obfuscated version of the

code as its output.

Recommendation

 The current prototype of KDefender

works on one Java source file at a time. A

full version could be easily created by

enhancing the prototype and that would

work on an entire project containing

several Java files.

 Our framework implements several

obfuscation techniques in total. Further

research based on this ground work would

lead to automation of even more

techniques and in fact, development of

more advanced techniques based on future

needs.

 Needless to say, if all the known

obfuscation techniques could be

automated, it would make this tool even

more powerful.

.

References

[1] ANTLR (n.d.) Retrieved from the ANTLR website: http://www.antlr.org/
[2] Antoniol, G., Casazza, G., Penta, M.D., & Fiutem, R. (2001). Object-oriented design

patterns recovery, Journal of Systems and Software, Volume 59, Issue 2,

[3] Baker, B.S. (1995, July). On finding duplication and near-duplication in large software

systems. In proceedings of the Working Conference on Reverse Engineering.

[4] Baxter, I.D., Bier, L., Moura, L., Sant‟Anna, M., and Yahin, A. (1998). Clone detection

using Abstract Syntax Trees. In Proceedings of the International Conference on

Software Maintenance, pages 368-377

[5] Belur, S. & Bettadapura, K. (2006). Jdec: Java Decompiler. Retrieved November 20,

2010 from: http://jdec.sourceforge.net/

[6] Benedusi, P., Cimitile, A., & Carlini U.D. (1992, November). Reverse engineering

processes, design document production, and structure charts. Journal of Systems and

Software, Volume 19, Issue 3,

[7] Biggerstaff, T.J. (1989, July). Design Recovery for Maintenance and Reuse. IEEE

Computer Business Software Alliance (May 2008). Fifth Annual BSA and IDC Global

Software Piracy Study. Retrieved on February 2, 2011 from BSA website:

[8] Byrne, E. (1991). Software reverse engineering. Software – Practice and Experience,

21(12):1349-1364.

[9] Canfora, G., Cimitile, A., Lucia, A. De, & Lucca, G. A. Di (2000). Decomposing legacy

programs: a first step towards migrating to client-server platforms. Journal of Systems

and Software, 54(2):99-110. 84

 [10] Canfora, G. & Di Penta, M. (2007, May). New Frontiers of Reverse Engineering. In

2007 Future of Software Engineering (May 23 - 25, 2007). International Conference on

Software Engineering. IEEE Computer Society, Washington, DC,

[11] Chen, Y., Fu, B., & Richard III, G. (2006, March). Some New Approaches For

Preventing Software Tampering. ACM SE’06 March 10-12, Melbourne, Florida, USA

[12] Chikofsky, E.J.; Cross II, J.H. (1990). Reverse Engineering and Design Recovery: A

Taxonomy in IEEE Software [Electronic version]. IEEE Computer

West African Journal of Industrial & Academic Research Vol.10 No.1
April 2014

66

[13] Cipresso, T. (2009). Software Reverse Engineering Education. Master’s thesis, San Jose

State University, CA. [Electronic version] Retrieved December 3, 2010, from Software

Reverse Engineering (SRE) – Web supplement

[14] Collberg, C., Low, D., & Thomborson C. (1997). A Taxonomy of Obfuscating

Transformations. Technical Report. Department of Computer Science, University of

Auckland, New Zealand. Retrieved October 21, 2010

[15] Collberg, C. & Thomborson, C. (2002). Watermarking, Tamper-Proofing, and

Obfuscation – Tools for Software Protection. IEEE traction on software engineering

8(28), pages 735- 746

[16] DaCosta, D., Dahn, C., Mancoridis, S., & Prevelakis, V. (2003). Characterizing the

security vulnerability likelihood‟ of software functions. In ICSM, pages 266-275. IEEE

Computer Society.

[17] Doorn, L.V., Kravitz, J., & Safford, D., (2003). Take control of TCPA, Linux Journal.

[Electronic version] Volume 2003 Issue 112. Retrieved October 31, 2010 from

http://www.linuxjournal.com/article/6633

[18] Easterbrook, S.M., Holt, R.C., and Elliot Sim, S. (2003). Using benchmarking to

advance research: A challenge to software engineering. In proceedings of the 25th

International Conference on Software Engineering (ICSE 2003), May 3-10, Portland,

Oregon, pages 74-83

[19] Eilam, E. (2005). Reversing: Secrets of Reverse Engineering. Indianapolis, Indiana:

Wiley Publishing, Inc.

[20] Emden, E.V. & Moonen, L. (2002, November). Java quality assurance by detecting

code smells. In Ninth Working Conference on Reverse Engineering (WCRE 2002),

Richmond, VA, USA, pages 97-107. DOI:10.1109/WCRE.2002.1173058

[21] Feng, L., Maletic, J.I., and Marcus, A. (2003). Source Viewer 3D (sv3D) – a framework

for software visualization. In proceedings of the 25th International Conference on

Software Engineering (ICSE 2003),

 [22] Haggar, P. (2001). Java bytecode: Understanding bytecode makes you a better

programmer. [Electronic version] Retrieved October 21, 2010 from

 http://www.ibm.com/developerworks/ibm/library/it-haggar_bytecode

[23] Heuzeroth, D., Holl, T., Högstorm, G., and Löwe, W. (2003). Automatic design pattern

detection. In 11th International Workshop on Program Comprehension (IWPC 2003),

Portland, Oregon, USA, pages 94-103

[24] Hoenicke, J. (2002). JODE – Decompiler and Optimizer for Java. Retrieved November

20, 2010, from http://jode.sourceforge.net/

[25] Javac – The Java Compiler (n.d.). The Java(tm) Tools Reference Pages. Telemedia,

Networks, and Systems Group, MIT Laboratory for Computer Science, Cambridge,

MA. Retrieved December 29, 2010 from Telemedia, Networks, and Systems Group‟s

website:

[26] Kalinovsky, A. (2004). Covert Java: Techniques for Decompiling, Patching, and

Reverse Engineering. Bedford, UK: Sam Publications

[27] Kazman, R., Woods, S. S., & Carri`ere, S. J. (1998). Requirements for integrating

software architecture and reengineering models: Corum II. In Proceedings of the

Working Conference on Reverse Engineering, pages 154–163

[28] Koschke, R. (2000). Atomic Architectural Component Recovery for Program

Understanding and Evolution. Ph.D. thesis, University of Stuttgart, Germany.87

[29] Kouznetsov, P. (1997). Jad – the fast Java de-compiler. Retrieved December 3, 2010,

[30] Leblanc, C., Mayrand, J., and Merlo, E. (1996). Experiment on the automatic detection

of function clones in a software system using metrics. In Proceedings of the

International Conference on Software Maintenance, pages 244-253, Monterey,CA

West African Journal of Industrial & Academic Research Vol.10 No.1
April 2014

67

[31] Lemay, L. & Perkins C.L. (1996). Teach Yourself JAVA in 21 Days. Indianapolis,

Indiana: Sams.net Publishing, Inc.

[32] Low, D. (1998). Java Control Flow Obfuscation. Master‟s thesis. University of

Auckland, Auckland, New Zealand.

[33] Low, D. (1998). Protecting Java Code Via Code Obfuscation. ACM Crossroads, Spring

1998 issue. Retrieved from The University of Arizona website on June 30, 2010:

[34] Machine code (2010). Wikipedia. Retrieved December 4, 2010, from

 http://en.wikipedia.org/wiki/Machine_code

[35] Memon, A.M., Banerjee, I., & Nagarajan, A. (2003). GUI ripping: Reverse engineering

of graphical user interfaces for testing. In Tenth Working Conference on Reverse

Engineering (WCRE 2003), 13-16 November, Victoria, Canada, pages 260-269

[36] Merlo, E., Gagne, P.-Y., Girard, J.-F., Kontogiannis, K., Hendren, L.J., Panangaden, P.,

& Mori, R. de (1995). Reengineering user interfaces. IEEE Software, 12(1):64-73

[37] Moonen, L. (2001). Generating robust parsers using island grammars. In Proceedings of

the Working Conference on Reverse Engineering, pages 13–22 88

[38] Moore, M. (1998). User Interface Reengineering, Ph.D. thesis, Georgia Institute of

Technology, USA

[39] Muller, H.A., Storey, M.D., Tilley, S., and Wong, K. (1995). Structural re-

documentation: A case study. IEEE Software, pages 46-54

[40] Nolan, G. (2004). Decompiling Java. Chapter 4 – Protecting Your Source: Strategies

for Defeating Decompilers, pages 79 – 210. New York, USA: Springer-Verlag New ,

Inc.

[41] Obfuscated code (2010). Wikipedia. Retrieved November 4, 2010, from

http://en.wikipedia.org/wiki/Code_obfuscation

[42] Parr, T. (2007). The Definitive ANTLR Reference. Building Domain-Specific

 Languages. The Pragmatic Programmers, LLC

[43] Potrich, A. and Tonella, P. (2005). Reverse Engineering of Object Oriented Code.

Springer-Verlag, Berlin, New York

[44] Stamp, M. (2006). Information Security: Principles and Practices. New Jersey: John

Wiley & Sons, Inc. 89

[45] Systä, T. (2000). Static and Dynamic Reverse Engineering Techniques for Java

Software Systems. PhD thesis, University of Tampere, Finland

[46] Yuschuk, O. (2000). OllyDbg. Retrieved December 3, 2010, from

http://www.ollydbg.de/

