Capstone Project : Marketing-Airplane Passenger Satisfaction Prediction Using MachineLearningTechniques

Bekee Sorbarisere Yirakpoa¹ and Mercy Nwanyanwu²

^{1,2}Department of Computer Science Captain Elechi Amadi Polytechnic, Port Harcourt

Abstract.

Customer satisfaction questionnaires are a rich and strong source of information for companies to seek loyalty, customer and client retention, opti-mize resources, and repurchase products. Several advanced machine learning and statistical models have been employed to estimate the customer satisfaction score; however, there is not a single model that can yield the best result in all situations. Ensembles of regression techniques have demonstrated their effective-ness for various applications, where the success of these models lies in the con-struction of a set of single models. Iperformed an experimental study using a real dataset of 90917samples from US airline carrier 'Falcon airlines', in order verify the ben-efits of ensemble models for predicting customer satisfaction. Accordingly, in this project I evaluated the following models; Logistic Regression, Decision Tree, Bagging classifier and Random forest. The obtained results indicate that the Random forest performs better in terms of Recall and Precision.

Keywords: Logistic regression, customer satisfaction, Bagging classifier and Random forest.

Introduction Problem Description

Airline businesses globally are faced with the challenge of grounding especially due to the pandemic. To stay in business, Airline operators need to determine relative parameters that can contribute to the satisfaction of passengers. This is the dilemma of a reputed US airline carrier 'Falcon airlines'. They aim to determine the relative importance of each parameter with regards to their contribution to passenger satisfaction. To achieve this Aim a random sample of 90917 individuals who travelled using their flights is provided. The on- time performance of the flights along with the passengers' information is published in the Marketing Project-Flight data.csv file named 'Flight data'. These passengers were asked to provide their feedback at the end of their flights on various parameters along with their overall

experience. These collected details are as available in the Marketing Project-Survey data.csv 'Survey data'.

In the survey, the respondents were requested to express their satisfaction or not with their overall flight experience and that is captured in the data of survey report under the variable labelled 'Satisfaction'. The need for this study by 'Falcon airlines' is to give themselves a competitive edge over other airline operators by identifying critical factors that lead to customer satisfaction.

Motivation For Project

It is obvious that at the end of the pandemic, there will be an increase demand for air travel as most persons may wish to be on vacations. Hence the need for 'Falcon airlines' to carry out this study to ascertain Passengers level of satisfaction with their services to give themselves a competitive edge over other airline

Aim and Objectives

This project was a few weeks' efforts to develop a predictive model for Airline passenger satisfaction using data from US airline carrier 'Falcon airlines'. I hope the outcome of the project will help streamline the analysis and prediction of passenger's satisfaction for US airline carrier 'Falcon airlines' and other airlines.

The objective of this project are-

1.To understand which parameters play an important role in swaying a passenger feedback towards 'satisfied'.

2. To predict whether a passenger will be satisfied or not given the rest of the details are provided, using supervised machine learning techniques.

3. To compare different classification techniques to understand which is best suitable for this application.

No doubt the development of a framework and codes that incorporate analytics and machine learning concepts studied in the program is the goal. The success of the project is predicated on the accuracy of the classification results and the extent of analysis conducted. It is my hope that

.Working steps of Machine learning technique Limitations of the Study

In this project, I evaluated the effectiveness of using specific supervised machinelearning techniques to address the problem of predicting passengerssatisfaction on Airline flight and survey data provided. Thelimitations of the methods applied in the course of this project study are as follows:

I used a pre-labelled dataset to train the algorithms. However, usually, it isdifficult to find labelled data and thus applying supervised machine learningtechniques may not be feasible. In such cases, the option should be to evaluate unsupervisedtechniques which were beyond the scope of this project.

Lterature Review

This part of the project seeks to review considerable literature on the subject matter. A few researchers havealso conducted literature reviews of articles published on airline passenger satisfaction and the techniques used. the final report will serve as a benchmark for further development on this topic.

Research Methodology

The typical machine learning approach was followed in this project. The identified dataset has labelled class variable, which was used as the prediction variable in machine learning models.

Through exploratory analysis, we analysed the data set in detail and identified possible predictors.Through various visualization techniques, we observed the separation between Satisfied and neutral or non-satisfied assengers. To solve the Airline passenger satisfaction prediction problem, we experimented with a few supervisedmachine learning techniques – Logistic Regression, Decision tree, Bagging classifier and Random Forest,

Performance measures, like Confusion Matrix and Area Under Curve (AUC), wasused to compare the performance of the models.

This analysis was conducted using Python through Jupyter notebook. In-built libraries and methods were used to run the machine learning models. When needed, functions were defined to simplify specific analyses or visualizations. The diagram below shows in detail the full process that was followed in the project

This project considers marketing survey and flight data that was mined byUS airline carrier 'Falcon airlines' only. I evaluated a few machine learning algorithm – Logistic Regression, Decision tree, Bagging classifier and RandomForest. Although the result of the study using these algorithms is good, it isnecessary to evaluate other techniques to determine which algorithm works bestfor this application. Due to the large size of data, I was limited by computation capacity to explore different other techniques

Air travel is one of the most convenient way for long distance travel at both national and international level [Park et al.,2009]. There are many airline service providers (ASPs) around the world. The competitive world motivates the airlines company to attract the customers.However, a traveller considers quite a few factors before deciding on any airline.

These points can be airfare, tour time, quantity of stoppages, number of baggage allowed, and existing customer feedback etc. Therefore, all ASPs are working in all these client service

areas to enhance their facility and in-flight remedy in order to attract the customers.

It is very vital to recognize the desires and remedy level of customers i.e.customersatisfaction for the duration of the flight. Therefore, client remarks are vervimportant or any airline industry. There could be quitea possible pproaches to gather the customer feedback. The most easiest and regular way is the customer feedback structure available during the journey. However, most of the passengers do no longer show any activity in filling feedback forms. Another shortcoming of this strategy is that it may additionally or can also not have appropriate questionnaire and might also be biased on positive parameters i.e.the feedbackform mayalso only have sure unique qu estions. Other processes for purchaser feedback collection could be via online website or on-

line mobile purposes of the airlines.

After the journey, an electronic mail with a link can be despatched to the

passenger to request for a feedback. However, there is no guarantee of its success. Another strategy is to send a message

on passenger's cellular cellphone and ask them to rate your provider (1 for negative and 5

for excellent) on certain parameters. All these standard strategies opted by means of the industry are limited to certain parameters only. The greater handy way for a passenger

is to express their feedback, as they want.

Sumary of related work

Pramod., et al 2019] in their work"a literaturec review: customer satisfaction on airline tweet susing machine learning"; presents the earlier work done by the various researchers in the field Therefore, the most convenient way for the passengers to share their opinions is the social media instead of feedback form.Socialmedia pre sents a platform the place a consumer can freely categorical his feedbacks on any issues they observed all through flight. Twitter [https://en.wikipedia.org/wiki/Twitter] is one of platforms the famous worldwide. Theinformation from Twitter can be utilized to strengthen a recommender system [Abel et al.,2019]. In addition, travellers are more comfortable in sharing their views about tour experiences on Twitter.

A variety of fundamental issues influences the emotions of a passenger in air travel. These issues can be cabin crew behavior, food quality, loss of baggage, seat comfort, flight delay, airfare etc. All these issues may give upward push to each superb and bad emotion. Also, if there is a continuous trend of terrible tweets for an airline, then it might also put a negativeimpact to the financial growth of the airline company. Therefore, it is ital to understand the issues that provide upward e to terrible tweets so that the respective airline company can take splendid action on time. There are large number airlines operating every day to join different geographical places [www.quor a.com]. Therefore, we might so anticipate alarge number of people journeyin g every day in these flights. In addition, the number of tweets by passengers for airways would be very large. Therefore, it is a difficult assignment toextract the hidden emotion at the back of a tweet. Therefore, we required some tools and techniquesthat are in a position to take care of such a large quantity of tweet database and can provide insights to assist airline industry

of customersatisfaction of airline tweets using machine-learning techniques such as logistic regression, SVM, KNN, randomforest,Naïve Bayesclassifier, Adaboostetc as shown below

West African Journal of Industrial and Academic Research vol. 23 No2, June 30, 2022

Authors	Description	Publishin
		Year
T.HemakalaandS.S anthoshkumar GuoningHuetal.	In this research, design a framework for sentiment analysis with opinion mining for thecase of airlines service feedback.Most available datasets ofhotel reviews are not labelled which presents many works for researchers as faras text data pre-processing task is concerned. Twitter is a SNS that has a hugedata with user posting, with this significant amount of data, it has the potentialof research related to text mining and could be subjected to sentiment analysis.The airline industry is a very competitive market, which has grown rapidly inthe past 2 decades. Airline companies resort to traditional customer feedbackforms which in turn are very tedious and time consuming. In this work, workedon a dataset comprising of tweets for 6 major Indian Airlines and performed amulti-classs entiment analysis.This approach starts with pre-processing techniques used to clean the tweets and then representing these tweets as vectors using a deep learning concept to do a phrase-leve analysis.The analysis was carried out using 7 different classification strategies: DecisionTree,RandomForest,SVM,K-Nearest Neighbors, Logistic Regression, Gaussian Naïve Bayes and Ada Boost. The outcome of the test set is the tweetsentiment. Analyzetheopinionof19MTwitteruserstowards62popularindustries, encompassing 12,898 enterprise and consumer brands, as well as associatedsubject matter topics, via sentiment analysis of 330M tweets over a eriodspanningamonth.We find that users tend to be most positive towards manufacturing and most negative towards service industries. In addition,heytend to be more positive ornegative when interacting with brands than generally on Twitter. We also find that sentiment towards brands within anindustry varies greatly and we demonstrate this using two industries as usecases. In addition, we discover that there is no strong correlation between topics entiments of different industries,demonstrating that topics entiments are highly dependent on the context of the industry that they are mentioned in.We demonstrate the value	2018

YasminYashodha	This study examines the extensive strategic analysis of Air	2012
	AsiaBerhad that hasenabledit tosustain its	
	competitiveadvantageasAsia'sleading lowcostcarrier (LCC). The	
	study demonstrates the diverse business-level, corporatelevel and	
	competitive strategies of Air AsiaBerhad, played crucial roles in	
	theLCC to successfully penetrate the under-served market segment	
	of the airlineindustry within the ASEAN region. An in-depth	
	analysis using a wide array of a cademic resources, relevant	
	financial, legal and management resources and authorized websites,	
	including face-to-face interviews were used to provide amore	
	consequential comprehension on the varied business and	
	international strategies that were implemented by AirAsiaBerhad.	
	This research exhibits critical analysis pertaining to the current	
	macro environment of the	
	aviationindustrywhichincludesthePESTELframeworkandPorter'sIn	
	ustryAnalysis.ThecompetitiveenvironmentanalysisforAirAsiaBerha	
	disthoroughlyscrutinisedtoexaminethedrivingdeterminantsthatattrib	
	utedtotheorganization'scompetitiveadvantage in the industry.	
M.Vadivukarassie	In Twitter, the customer of airline services can tweet their opinions	2018
al.	about their travelled experiences in flight. So Twitter contains	
	massive amount of data and information regarding airline services.	
	These tweets are collected and explored the sentiments about the	
	airline services to track customer satisfaction reports and	
	todiscoverlocationofthecustomer.	
Janet R. McColl-	Contextualized in post purchase consumption in business-to-	2018
Kennedyetal.	business settings, the authors contribute to customer experience	
	(CX) management theory and practice in three important ways. Firs	
	by offering a novel CX conceptual framework that integrates prior	
	CX research to better understand, manage, and improve CXs—	
	comprisedofvaluecreationelements(resources, activities, context, inte	
	actions, and customerrole), cognitive responses, and discrete emotions a	
	touchpointsacrossthecustomerjourney.Second,bydemonstratingtheu	
	efulnessofalongitudinalCXanalyticbasedontheconceptual	
	framework that combines quantitative and	
	qualitativemeasures. Third, by providing a step-by-step guide for	
	implementing the text miningapproach in practice, thereby showing	
	that CX analytics that apply big datatechniques to the CX can offer	
	significant insights that matter. The	
	authorshighlightsixkeyinsightspractitionersneedinordertomanageth	
	ircustomers' journey, through (1) taking a customer perspective, (2	
	identifyingrootcauses,(3)uncoveringat-	
	risksegments,(4)capturingcustomers'emotionalandcognitiverespons	
	es,(5)spottingandpreventingdecreasingsales, and (6) prioritizing	
	actions to improve CX. The article concludes withdirectionsfor	
	future research.	

Rida Khan and SiddhalingUrol agin	Social media today is an integr al part of people'sdaily routines and the live lihood of some. As a result, it is abundant in user opinions. The analysis of brand specific opinions can inform companies on the level of satisfaction within consumers. This research focus is on analysis of tweets related to airlines based in fourregions: Europe, India, Australia and America for consumer loyalty prediction. Sentiment Analysis is carried out using Text Blobanalyzer.	2018
AnkitaRaneand	The airline industry is a very competitive market which has grown rapidly in the past 2 decades. Airline companies resort to traditional customer feedback	2018

nandkumar	Forms which in turn are very tedious and time consuming. This is where Twitter data serves as a good source to gather customer feedback tweets and perform a sentiment analysis. In this paper, we worked on a dataset comprising of tweets for 6 major US Airlines and perform edamulti-classsentimentanalysis. This approach starts off with pre-processing techniques used to cleanthe tweets and then representing these tweets as vectors using a deep learningconcept (Doc2vec) to do a phrase-level analysis. The analysis was carried outusing7different classification strategies: Decision Tree, Random Forest, SVM, K-Nearest Neighbors, Logistic Regression, Gaussian Naïve Bayes andAda Boost. The classifiers were trained using 80% of the data and tested usingthe remaining 20% data. The outcome of the test set is the tweet sentiment(positive/negative/neutral). Based on the results obtained, the accuracies were calculated to draw a comparison between each classification approach and the overall sentiment count was visualized combining all six airlines.	
YunWanandQigan gGao	In airline service industry, it is difficult to collect data about customers' fee dback by questionnaires, but Twitter provides a sound data source for them to do customers entiment analysis.However,little research has been doneinthe domain of Twitter sentiment classification about airline services. In this paper, an ensembles entiment classification strategy was applied based on Majority Vote principle of multiple classification methods, including NaiveBayes, SVM,Bayesian Network, C4.5 Decision TreeandRandom Forest algorithms. In our experiments, six individual classification approaches, and the proposed ensemble approach were all trained and tested using the samedataset of 12864 tweets, in which 10 fold evaluation is used to validate the classifiers. The results show that the proposed ensemble approach outperformstheseindividual classifiersinthisairline serviceTwitter dataset.	2015

MustafaAltinkök	This research was conducted for the purpose of analyzing the effect	2016
	of the movement education program through a12-week-	
	coordination on the development of basic motor movements of	
	pre-school children. A total of 78students of pre-school period, 38	
	of whom were in the experimental group and 40 of whom were in	
	the control group, were incorporated into the study in line with	
	theirown consent after their families had also been informed.	
M.Vadivukarassie	Analyzed the twitter airline dataset for finding the best and the	2018
al.	worst airlines and alsotopredict the most common issues occurred	
	during the airline services. Then the word clouds of negative	
	tweets are created and also thelocation of the negatively tweeted	
	customer is predicted and visualized using geographical analysis.	
	Finally training and testing was done on the dataset and also	
	compared with seven different classifierssuch as Logistic	
	Regression classifier KNeighbors classifier SVC Decision	
	Treeclassifier RandomForestclassifier AdaBoostclassifierandGauss	i
	anNB Theresults of our experiments demonstrate that the Random	1
	forest approach works best in real world practice	
	onsontimental assification of tweetdate	
	onsentimenterassificationortweetdata.	
DeeVeeLieu	The purpose of this paper is to study the consumer opinion towards	2016
Bee Y eeLiau	the law sosteinlingsonlaw sost somigra(LCCs) (the set water mase	2010
and Pei Pei I an	une low-costammesonow- cost carners(LCCs) (the set woter misare	
	used inter changeably) industry in Malaysia to better understand	
	consumers' needs and to provide better services. Sentiment analysis	
	is undertaken in revealingcurrent customers' satisfaction level	
	towards low-cost airlines. About 10,895 tweets (data collected for	
	two and a half months) are analyzed. Text miningtechniques are	
	used during data pre-processing and a mixture of statistic	
	altechniques are used to segment the customers opinion. There	
	sults with two different sentiment algorithms show that there is	
	more positive than negative polarity across the different	
	algorithms.ClusteringresultsshowthatbothK-	
	Me an sands phericalK-Meansalgorithms delivered similar results	
	and the four main topics that are discussed by the consumerson	
	Twitter are customer service, LCC stickets promotions, flight	
	cancellations and delays and post-booking management.	
XiangJietal.	An important task of public health officials is to keep track of health	2015
	issues, such as spreading epidemics. In this paper, we are addressing	
	the issue of spreading public concern about epidemics.Public	
	concern about acommunicable disease can be seen as a problem of	
	its own. Keeping track oftrends in concern about public health and	
	identifying peaks of public concernare therefore crucial tasks.	
	However, monitoring public health concerns is not only expensive	
	with traditional surveillance systems, butal so suffers from	
	limited coverage and significant delays.	

Methodology

This methodology served as the deliverables of the project. It describes the results each phase that wastried out and do a comparison between them to i dentify which is the best technique to address

projectdeliverables

theairline passenger satisfaction prediction problem.

Eachphaseoftheprojecthasanoutputthatdescribes thefindingsinthatphase.These deliverables were used inthisfinalprojectareexplainedbelow

MethodologyPhases	ProjectDeliverables
Understandingthedataset	Reportonthesummaryofthedatasetandeachvariable
	it containsalong with necessaryvisualizations
ExploratoryDataAnalysis	 Report on analysis conducted and critical findings with a full description of data slices considered Visualizations and charts that show the differences between stisfied and neutral or non-setisfied
	passengers • Pythoncode of the analysis performed
	• I ymoneodeor meanarysisperiormed
Modeling	 Report on the results of the different techniques tried out, iterations that were experimented with, data transformations and the detailed modelingapproach Python code used to build machine learning models
FinalProjectReport	• Final report summarizing the work done over the course of
	the project, highlighting the work done over the course of models and identifying best model for predicting airline passenger satisfaction

Tools used

This project was entirely done using Python, and the analysis was documented in aJupyternotebook. Standard python libraries were used to conduct different analyses. These libraries are described below–

- sklearn-usedformachine learningtasks
- *seaborn*-usedtogeneratechartsandvisualizations
- pandas-usedforreadingandtransformingthedata
- Gridsearch used for model tuning

Dataset

The problem consists of 2 separate datasets: Flight data & Survey data. The flight data has information related to passengers and the performance of flights in which they travelled. The survey data is the aggregated data of surveys

Data Information

<class 'pandas.core.frame.DataFrame'> Int64Index: 90917 entries, 0 to 90916 Data columns (total 24 columns): # Column

- 0 CustomerId
- 1 Satisfaction

collected post service experience. You are expected to treat both the datasets as raw data and perform any necessary cleaning/validation steps as required

Non-Null Count Dtype

90917 non-null int64 90917 non-null object

2	Seat_comfort	90917 non-null object
3	Departure_Arrival_time_convenient	82673 non-null object
4	Food_drink	82736 non-null object
5	Gate_location	90917 non-null object
6	Inflightwifi_service	90917 non-null object
7	Inflight_entertainment	90917 non-null object
8	Online_support	90917 non-null object
9	Ease_of_Onlinebooking	90917 non-null object
10	Onboard_service	83738 non-null object
11	Leg_room_service	90917 non-null object
12	Baggage_handling	90917 non-null object
13	Checkin_service	90917 non-null object
14	Cleanliness	90917 non-null object
15	Online_boarding	90917 non-null object
16	Gender	90917 non-null object
17	CustomerType	81818 non-null object
18	Age	90917 non-null int64
19	TypeTravel	81829 non-null object
20	Class	90917 non-null object
21	Flight_Distance	90917 non-null int64
22	DepartureDelayin_Mins	90917 non-null int64
23	ArrivalDelayin_Mins	90633 non-null float64

Objects will need to be converted to category as demonstrated with a few variable. DATA TYPES: float64(1), int64(4), object(19)

Exploratory Data Analysis

			T V PI	Run 📕 C	Dode Code	~ (IIII)			
		1							
	In [196]:	df_out	ter.describe()# displays	the statiscal	summary for the me	rged dataset		
	Out[196]:		Customerid	Age	Flight_Distance	DepartureDelayin_Mins	ArrivalDelayin_Mins		
		count	90917 000000	90917.000000	90917.000000	90917.000000	90633.000000		
		mean	195423.000000	39,447166	1981.629442	14.686593	15.059930		
		std	26245.621549	15.129794	1026.779932	38.669260	39.038523		
		min	149965.000000	7.000000	50.000000	0.000000	0.00000		
		25%	172694 000000	27.000000	1360.000000	0.000000	0.000000		
		50%	195423.000000	40.000000	1927.000000	0.000000	0.000000		
		75%	218152.000000	51.000000	2542.000000	12.000000	13.000000		
		max	240881.000000	85.000000	6950.000000	1592.000000	1584.000000		
		Туре А	Aarkdown and L	.aTeX: α^2					
•	I n [197]:	df_out	ter.describe(include=["ca	ategory"])				
	Out[197]:								

Mean Age respondents is 39.4 and Standard deviation 15.1, mean light distance 1981.6 & Standard deviation 1026.8, mean DepartureDelayin_Mins 14.6 Std 38. ArrivalDelayin_Mins 15.1 Std 39.0

Fil	e l	Edit	View	Insert	Cell Kern	el Widgets	Help	Not Trusted	F	ythor	13
5	+	≫ €	ð 🖪	↑ ↓	NRun	C 🏕 Code	~				
			Type Ma	arkdown	an <mark>d L</mark> aTeΧ: α²						
Þ	In [:	197]:	df_out	er.descr	ribe(include=	["category"])				
	Out[:	197]:		Gender	Customer Type	TypeTravel	Class				
			count	90917	81818	81829	90917				
			unique	2	2	2	3				
			top	Female	Loyal Customer	Business travel	Business				
			freq	46186	66897	56481	43535				
			Check f	or missin	g values						

Gender have unique count of 2, top being female, CustomerType have unique count of 2, top being Loyal Customer with count indication some value are missing same to TypeTravel and Class with 3 unque count

Data set

The problem consists of 2 separate datasets: Flight data & Survey data. The flight data has information related to passengers and the performance of flights in which they travelled. The survey data is the

aggregated data of surveys collected post service experience. You are expected to treat both the datasets as raw data and perform any necessary cleaning/validation steps as required

90917 non-null int64

90917 non-null object 90917 non-null object

82673 non-null object

82736 non-null object

90917 non-null object

83738 non-null object

90917 non-null object 90917 non-null object

81818 non-null object

90917 non-null int64

81829 non-null object

Data Information

<class 'pandas.core.frame.DataFrame'> Int64Index: 90917 entries, 0 to 90916 Data columns (total 24 columns): # Column Non-Null Count Dtype

- 0 CustomerId
- 1 Satisfaction
- 2 Seat_comfort
- 3 Departure_Arrival_time_convenient
- 4 Food_drink
- 5 Gate_location
- 6 Inflightwifi_service
- 7 Inflight_entertainment
- 8 Online_support
- 9 Ease_of_Onlinebooking
- 10 Onboard_service
- 11 Leg_room_service
- 12 Baggage_handling
- 13 Checkin_service
- 14 Cleanliness
- 15 Online_boarding
- 16 Gender
- 17 CustomerType
- 18 Age
- 19 TypeTravel

West African Journal of Industrial and Academic Research vol. 23 No2. June 30. 2022

20 Class90917 non-null object21 Flight_Distance90917 non-null int6422 DepartureDelayin_Mins90917 non-null int6423 ArrivalDelayin_Mins90633 non-null float64Objects will need to be converted to category as demonstrated with a few variable.DATA TYPES: float64(1), int64(4), object(19)Data Preprocessing

The data set contains CustomerId variable which of type int, in my opinion I feel this variable may not add any significant value to prediction variable so I decided to drop it.

Fixing Categorical Variables (Data Type)

Before putting our data through models, two steps that need to be performed on categorical data is encoding and dealing with missing nulls. Encoding is the process of converting text or boolean values to numerical values for processing. This approach was adopted for 19 columns that forcolmnincategorical_variables: df_outer[colmn]=df_outer[colmn].astype('category') <class 'pandas.core.frame.DataFrame'> df_outer.drop(columns=["CustomerId"], inplace=True)

are of type object. First the object were converted to Categories and the Ordinal values were passed as shown below;categorical_variables=df_outer.select_dtyp es(exclude=["number","bool_"]).columns.tolist()# list of categorical variables

Int64Index: 90917 entries, 0 to 90916

- Data columns (total 23 columns):
- # Column
- 0 Satisfaction 90917 non-null category 1 Seat comfort 90917 non-null category 2 Departure_Arrival_time_convenient S 82673 non-null category 3 Food drink 82736 non-null category 4 Gate_location 90917 non-null category 5 Inflightwifi service 90917 non-null category 6 Inflight_entertainment 90917 non-null category 7 Online_support 90917 non-null category 8 Ease_of_Onlinebooking 90917 non-null category 9 Onboard_service 83738 non-null category 10 Leg_room_service 90917 non-null category 11 Baggage_handling 90917 non-null category 12 Checkin_service 90917 non-null category 13 Cleanliness 90917 non-null category 14 Online_boarding 90917 non-null category 15 Gender 90917 non-null category 16 CustomerType 81818 non-null category 17 Age 90917 non-null int64 18 TypeTravel 81829 non-null category 19 Class n-null

Non-Null Count Dtype

West African Journal of Industrial and Academic Research vol. 23 No2, June 30, 2022

1	in [164]: df	_outer.head((20)								
c.	out[164]:	Satisfaction	Seat_comfort	Departure_Arrival_time_convenient	Food_drink	Gate_location	Inflightwifi_service	Inflight_entertainment	Online_support	Ease_o	
		0 0	2	2	2	3	4	З	4		
		1 0	2	2	2	2	4	2	4		
		2 0	2	3	2	2	0	3	0		
		3 0	2	2	2	2	3	0	3		
		4 0	2	2	2	2	4	2	4		
		5 0	2	2	0	2	4	1	1		
		6 0	2	2	0	2	4	2	4		
		7 0	2	3	2	2	4	2	4		
		8 0	2	2	2	2	0	0	0		
		9 0	2	2	2	0	4	2	4		
	1	0 0	2	2	2	0	1	2	1		
	1	1 0	2	5	2	1	1	4	5		
	1	2 0	2	3	2	1	5	2	5		
	1	3 0	2	5	2	3	3	2	3		
	1	4 0	2	5	2	3	5	4	4		
	1	5 0	2	3	2	3	2	5	5		
	1	6 0	2	5	2	3	0	2	1		
	1	7 0	2	3	Z	3	5	2	5		
	1	8 0	2	5	2	3	4	2	3		
	1	9 0	2	5	2	3	5	0	0		

Missing Value

Missing value in a dataset is a very common phenomenon in the reality. Missing value correction was carried out on the data set to reduce bias and to produce data set suitable

: Departure_Arrival_time_convenient 8244 Food_drink 8181 Onboard_service 7179

CustomerType	9099
TypeTravel	9088
ArrivalDelayin_Mins	284

modelling. The following variables contained missing values

They were corrected with the following codes for numerical and categorical respectively

Outlier Detection & Treatment

Outlier detection and treatment was carried out on the dataset, the outcome is shown below;

54.7 % of the passengers are satisfied while 45.3% are of the respodent fall into the group neutral or dissatisfied

Seat_Comfort 22.6% responent acceptable, 22% indicate seat need improvement, 21.8% indicate good, 13.8 % excellent

West African Journal of Industrial and Academic Research vol. 23 No2. June 30. 2022

inflight service has six categories with 24% good, 22.3 excellent and 21%, 20.8 acceptable & need improvement repectively

Leg_room_service

2. To predict whether a passenger will be satisfied or not given the rest of the details that are provided in the data set.

The alternate approach to this problem would be to build, test and implement a classification model.

Airline Good has the has highest percentage, followed by excellent and acceptable with 17 & 16.7 respectively

Alternate Analytical Approach

The two objective of this project are-

1.To understand which parameters play an important role in swaying a passenger feedback towards 'satisfied'.

Building Model

Logistic regression is a is a type of supervised machine learning used to predict the probability of a target variable. The most common logistic regression models a binary outcome; The output of the dependent variable is represented in discrete values such as 0 and 1, true/false, yes/no, etc. In some case logistic regression can model scenarios where there are more than two possible discrete outcomes that is referred to as Multinomial logistic regression. Logistic regression is a useful analysis method for classification problems, where you are trying to determine if a new sample fits best into a category. As aspects of cyber

Security are classification problems, such as attack detection, logistic regression is a useful analytic technique.

With the above explanation, it is clear that logistic regression modelling technique suit the Airline passenger satisfaction prediction problem.

Importing the libraries

To build our model, the first step is to import the necessary libraries. I used the Pandas library to load in the CSV or the dataset, and Numpy to convert the data frame into arrays.

The second step was to define the target variable(Y) and the independent variables, and then split the data set into the training set and the test set. We will use the training set to train our logistic regression algorithm. Similarly, the test data set will be used to validate the logistic regression model. To split the data into two sets, we will use Sklearn. The train_split_function can be used and we can specify the amount of data we want to set aside for training and testing

From sklearn.model_selection import train_test_split

Splitting data into training and test set:

X_train, X_test, y_train, y_test =train_test_split(X, y, test_size=0.3, random_state=1,stratify=y) print(X_train.shape, X_test.shape) (63641, 22) (27276, 22)

Building The Logistic Regression Mode

Next was to build the logistic regression model and fit it to the training data set. First, we will need to import the logistic regression algorithm from Sklearn

Next, was to create predictions on the test dataset and train data with the model performance as shown

low Accuuracy of 74% and pression 75%

Next the AUC-ROC curve was used to visualize how well our machine learning classifier is performing.

The Receiver Operator Characteristic (ROC) curve is an evaluation metric for binary classification problems. It is a probability curve that plots the TPR against FPR at various threshold values and essentially separates the 'signal' from the 'noise'. The Area Under the Curve (AUC) is the measure of the ability of a classifier to distinguish between classes and is used as a summary of the ROC curve. The result obtained is as below

The AUC of 0.81% looks quite good performance .

Build Different Models

DecisionTreeClassifier, RandomForestClassifier, BaggingClassifier were used on the data set. A result of the comparison of the different models are as bellow The best model is the rf, rf_wt performance of 95% accurate prediction on Recall and Precession.

Feature Importance

The RandomForestClassifier was used to check for featre importance and the result obtained is as below

Inflight_entertainment is the most important feature for prediction followed by Seat_comfort ,Ease_of_Onlinebooking and Online_support.

Tunned Models Compared Alongside Initial Models

The results of the comparison of the different models are as bellow.

Tunned Decision tree

TUNNED RANDOM FOREST

Model Comparison Results.

[Parallel(n_jobs=-1)]: Using backend LokyBackend with 8 concurrent workers. [Parallel(n jobs=-1)]: Done 1 out of 1 | elapsed: 11.9s finished The accuracy of model LogisticRegression is 0.75 precision recall f1-score support 0.80 0.78 14929 0 0.75 1 0.74 0.68 0.71 12347 ccuracy 0.75 27276 0.75 0.74 0.74 27276 macroavg weightedavg 0.75 0.75 0.75 27276 The accuracy of model DecisionTreeClassifier is 0.92 precision recall f1-score support 0 0.92 0.93 0.93 14929 1 0.91 0.91 0.91 12347 0.92 accuracy 27276 macroavg 0.92 0.92 0.92 27276 0.92 0.92 0.92 27276 weightedavg The accuracy of model DecisionTreeClassifier is 0.87 recall f1-score support precision 0 0.85 0.92 0.88 14929 1 0.89 0.80 0.84 12347 0.87 27276 accuracy macroavg 0.87 0.86 0.86 27276 weightedavg 0.87 0.87 0.86 27276 The accuracy of model BaggingClassifier is 0.94 precision recall f1-score support

95 0.94 14929 0.92 0.93 12347 1 0.94 accuracy 0.94 27276 0.94 0.94 0.94 27276 macroavg 27276 0.94 0.94 0.94 weightedavg The accuracy of model BaggingClassifier is 0.95 precision recall f1-score support 0.96 0.95 0.95 14929 0 1 0.94 0.95 0.95 12347 accuracy 0.95 27276 0.95 0.95 0.95 macroavg 27276 weightedavg 0.95 0.95 0.95 27276 The accuracy of model RandomForestClassifier is 0.95 precision recall f1-score support 0.95 0.95 0.95 14929 0 1 0.94 0.94 0.94 12347 accuracy 0.95 27276 0.95 0.95 0.95 macroavg 27276 weightedavg 0.95 0.95 0.95 27276 The accuracy of model RandomForestClassifier is 0.95 precision recall f1-score support 0 0.95 0.95 0.95 14929 0.94 0.94 1 0.94 12347 0.95 27276 accuracy macroavg 0.95 0.95 0.95 27276 weightedavg 0.95 0.95 0.95 27276 The accuracy of model DecisionTreeClassifier is 0.92 precision recall f1-score support 0 0.92 0.93 0.93 14929 1 0.91 0.91 0.91 12347 accuracy 0.92 27276 0.92 0.92 macroavg 0.92 27276 weightedavg 0.92 0.92 0.92 27276 The accuracy of model RandomForestClassifier is 0.95 precision recall f1-score support 0.96 0.95 0 0.95 14929 1 0.94 0.95 0.94 12347 27276 accuracy 0.95 macroavg 0.95 0.95 0.95 27276 weightedavg 0.95 0.95 0.95 27276 The accuracy of model BaggingClassifier is 0.95 The accuracy of model RandomForestClassifier is 0.95

Randomforestclassifier Important Features

Inflight_flight entertainment is the most important variable for predicting airline passengerssatisfactionfollowed by seat_comfort, ease_of_online booking, Class, customerType and Flight_Distance.

Conclusion

A predictive classification model has been built. Given the performance in terms of Precision and Recall, the model can be deployed to identify Passengers who may not be satisfied or are indifferent to the Airline services and shall take appropriate actions to build and improve on services that drive passengers satisfaction. Factors that drive satifaction - Inflight_entertainment, Seat_comfort,Ease_of_Onlinebooking and Online_support.

Business Insights and Recommendations

I recommend that airlines should focus on improving the Inflight_entertainment experience.

In addition, airlines should also focus on Ease of Online Booking, as business passengers prioritize on ease and convenience in their travel.Finally, I hope that the model will provide a reference for airlines and be utilized for business value

References

https://www.researchgate.net/figure/Machine-Learning-Model-Training-Process_fig1_336020567/download retrieved 28/06/2021

Park, Y., Gates, S.: Towards real-time measurement of customer satisfaction using automat-ically generated call transcripts. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management, pp. 1387–296. ACM (2009)

https://en.wikipedia.org/wiki/Twitter Accessed 28 June 2021

Abel F, Gao Q, Houben G-J, Tao K (2013) Twitter-based user modeling for news recommendations. In: Rossi F (ed)

IJCAI 2013, proceedings of the 23rd international joint conference on artificial intelligence, Beijing, China, August3–9, 2013.IJCAI/AAAI.

https://www.quora.com/How-many-airplanes-fly-each-day-in-the-world retrieved 28/06/2021

Jehad Ali, Rehanullah Khan, Nasir Ahmad, Imran Maqsood," Random Forests and Decision Trees", IJCSI

International Journal of Computer Science Issues, Vol. 9, Issue 5, No 3, September 2012.

Leture slides and Jupyter notebook on Supervised learning and Model tuning file from Greatlearning.