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Abstract 
Distributional properties of poverty indices are generally unknown due to the fact that statistical 

inference for poverty measures are mostly ignored in the field of poverty analysis where attention 

is usually based on identification and aggregation problems. This study considers the possibility 

of using Pearson system of distributions to approximate the probability density functions of 

Forster-Greer-Thorbecke (FGT) poverty indices. The application of the Pearson system reveals 

the potentials of normal and four parameter distributions in poverty analysis.  
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1.0 Introduction    

    The poverty situation in Nigeria presents a 
paradox, because despite the fact that the 
nation is rich in natural resources, the people 
are poor. [1] referred to this situation as 
poverty in the midst of plenty. In 1992, for 
instance, 34.7 million Nigerians (one-third of 
the population) were reported to be poor, 
while 13.9 million people were extremely 
poor [1]. The incidence of poverty increased 
from 28.1 percent in 1980 to 46.3 percent in 
1985. The poverty problem grew so worse in 
the 1990s that in 1996, about 65.6 percent of 
the population was poor, while the rural areas 
accounted for 69.3 percent [2]. Recent data 
showed that in 2004, 54.4 percent of 
Nigerians were poor [3]. Also, more than 70 
percent of the people are poor, living on less 
than $1 a day. Similarly, Nigeria’s Human 
Development Index (HDI) of 0.448 ranks 
159th among 177 nations in 2006, portraying 
the country as one of the poorest in the world 
[4-5]. This paradox was further highlighted 
in (Soludo, 2006). He noted that Nigeria is a 
country abundantly blessed with natural and 
human resources but the potential remain 
largely untapped and even mismanaged. 
With a population estimated at about 140 
million, Nigeria is the largest country in 

Africa and one sixth of the black population 
in the world. It is the eight largest oil 
producers and has the sixth largest deposit of 
natural gas in the world. The growth in per 
capita income in the 1990s was zero while 
the incidence of poverty in 1999 was 70% 
[6].  
    Traditional approaches to measurement 
usually start with the specification of poverty 
line and the value of basic needs considered 
adequate for meeting minimum levels of 
decent living in the affected society. Poverty 
can also be measured using the head count 
ratio which is based on the ratio or 
percentage of the number of individuals or 
households having incomes not equal to the 
poverty line to the total number of 
individuals or households [7-9]. Another 
method of measuring intensity of poverty is 
the “income-gap” ratio. Here the deviation of 
the incomes of the poor from the poverty line 
is averaged and divided by the poverty line 
[10]. These are the convectional approaches 
to poverty analysis where the population is 
classified into two dichotomous groups of 
poor and non-poor, defined in relation to 
some chosen poverty line based on household 
income/expenditure [11]. In the last few 
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years, poverty analyses made substantial 
improvements by gradually moving from the 
conventional one-dimensional approach to 
multidimensional approach [12-14]. 
    Statistical inference for poverty and 
inequality measures are widely ignored in 
the field of poverty analysis where attention 
is usually based on identification and 
aggregation problems [15] . The implication 
of this is that distributional properties of 
poverty and inequality indices are generally 
unknown. This study therefore intends to 
demonstrate how moments and cumulants of 
Forster-Greer-Thorbecke (FGT) poverty 
indices could be obtained from knowledge of 
their probability density functions from the 
Pearson system of distributions. 
 
2.0  FORSTER-GREER THORBECKE (FGT) 

         POVERTY INDICES 
    In analyzing poverty, it has become 
customary to use the so called FGT P-Alpha 
poverty measures proposed by [11]. These 
FGT P-Alpha measures are usually used to 
measure the poverty level. This is a family of 
poverty indexes, based on a single formula, 
capable of incorporating any degree of 
concern about poverty through the “poverty 
aversion” parameter, α. This measure is 
given as  
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where z is the poverty line; n is the total 
number of individuals in the reference 
population;  is the expenditure/income of 
the household in which individual  lives, α   
takes on values, 0, 1, and 2. The quantity in 
parentheses is the proportionate shortfall of 
expenditure/income below the poverty line. 
This quantity is raised to a power α. By 
increasing the value of α, the aversion to 
poverty as measured by the index is also 
increased [16]. The P-alpha measure of 
poverty becomes head count, poverty gap 
and square poverty gap indices respectively 
when α = 0, 1, and 2 in that order. 
 

3.0 The Pearson System of Distributions 

    Several well known distributions like 
Gaussian, Gamma, Beta  and Student’s t -

distributions belong to the Pearson family. 
The  system  was introduced   by  [17]  who 
worked  out  a set  of four-parameter   
probability  density  functions  as solutions  
to the differential  equation 
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where f is a density function and 
a , b 0 , b 1  and b 2   are the parameters of the 
distribution.  What m a k e s  the Pearson’s  
four-parameter s y s t e m  pa r t icula r ly    
appealing i s  the direct c o r r e s p o n d e n c e  
between the parameters and the central 
moments 1 2 3 4( , ,  )andµ µ µ µ of the 
distribution [18]. The parameters are defined 
as 
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The scaling parameter A is obtained from 
3 2

4 2 2 310 18 12A µ µ µ µ= − −    (4)   
When  the  theoretical  central  moments  
are replaced  by their  sample  estimates,   
the  above  equations  define the moment 
estimators  for the Pearson parameters   
a , b 0 ,b1  and b 2 . As alternatives   to the 
basic four-parameter   systems, various 
extensions have been proposed with the use 
of higher-order polynomials or restrictions 
on the parameters.   Typical extension 
modifies (2) by setting P (x) = aO +a1 x so 
that 
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    This parameterization   characterizes t h e  
same distributions b u t  has the advantage 
t h a t  a1 can be zero and the values of the 
parameters are bound when the fourth 
cumulant exists [19]. Several attempts   to 
parameterize t h e  model using cubic and 
quadratic curves have been made already 
by Pearson and o t h e r s , but these systems 
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proved too cumbersome for general use.  
Instead the simpler scheme with linear 
numerator and quadratic d e n o m i n a t o r  
are more acceptable. 
 
3.1 Classification and Selection of 

Distributions in the Pearson 

System 

There  are  different  ways  to  classify 
the  distributions   generated  by  the  roots  
of the  polynomials  in (2) and  (5).  
Pearson himself organized the solution to 
his equation i n  a system of twelve classes 
identified by a number.   The numbering 
c r i t e r i o n  has no systematic b a s i s  and 

it has varied depending on the source.  An 
alternative approach suggested by 
[20] for distribution selection based 
on two statistics t h a t  are functions of the 
four Pearson parameters will be adopted.   
The scheme is presented i n  Tables 1 and 2 
where D and λ denote the selection 
criteria. D and λ are defined as  
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Table 1: Pearson Distributions 

The table provides a classification of the Pearson Distributions, f(x) satisfying the differential 

equation 
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Table 2: Pearson Distributions (Continued) 
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 The advantage of this approach in 
statistical modeling in the Pearson  
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framework i s  its simplicity. 
Implementation is done in accordance with 
the following steps: 
 
(1)   Estimate m o m e n t s  from data. 
(2)   Calculate the  Pearson parameters   

a ,  b 0 ,  b 1  and b 2  using (3) and 
(4). 

(3) Use the e s t i m a t e s  o f  t h e  
parameters   to compute the selection 
criteria D and λ as given in (6). 

(4)  Select an appropriate   distribution 
from Tables (1) and (2) based on the  
s i g n s  o f  t h e  v a l u e s  o f  t h e   
s e l e c t i o n  c r i t e r i a .  

 

4.0 Bootstrapping 

    Poverty indices are complex in nature and 
this makes direct analytic solutions very 
tedious and complex. Alternative numerical 
solutions are possible through simulation 
Bootstrapping. Bootstrapping is essentially a 
re-sampling method. That is, re-sampling is 
a Monte-Carlo method of simulating data set 
from an existing data set, without any 
assumption on the underlying population. 
Bootstrapping was invented by [21-22] and 
further developed by [23]. It is based on re-
sampling with replacement from the original 
sample. Thus each bootstrap sample is an 
independent random sample of size n from 
the empirical distribution. The elements of 
bootstrap samples are the same as those of 
the original data set. Bootstrapping, like 
other asymptotic methods, is an approximate 
method, which attempts to get results for 
small samples (unlike other asymptotic 
methods). The estimates of the parameters 
of the selection criteria for the purpose of 
selecting appropriate probability 
distributions from the Pearson system for 
head count, poverty gap and square poverty 
gap indices were obtained through bootstrap 
simulation method. The bootstrap sample 
size was 10,000 and the number of iterations 
was 5,000.  
 

5.0 Results and Discussion  

    The methods presented are applied to The 
Nigerian Living Standard Survey (NLSS, 
2004) data. The survey was designed to give 

estimates at National, Zonal and State levels. 
The first stage was a cluster of housing units 
called numeration Area (EA), while the 
second stage was the housing units. One 
hundred and twenty EAs were selected and 
sensitized in each state, while sixty were 
selected in the Federal Capital Territory. 
Ten EAs with five housing units were 
studied per month. Thus a total of fifty 
housing units were canvassed per month in 
each state and twenty-five in Abuja. Data 
were collected on the following key 
elements: demographic characteristics, 
educational skill and training, employment 
and time use, housing and housing 
conditions, social capital, agriculture, 
income, consumption expenditure and non-
farm enterprise. The total number of 
households in the survey was 19,158.  
    The estimates of the selection criteria for 
the selection of probability distributions 
from the Pearson system were obtained as 
shown in Table 3. Based on the values and 
signs of these criteria, the normal and four 
parameter beta distributions were selected 
for the poverty indices based on the 
classifications in Tables 1 and 2. The normal 
distribution was selected for the head count 
index while, the four parameter beta 
distribution was selected for both poverty 
gap and square poverty gap indices 
respectively. The estimates of the 
parameters of these selected distributions 
were equally estimated as shown in Tables 
4, 5 and 6. 
 
Table 3: Estimates of Selection Criteria 

(
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Poverty Indices 
 P0 

Poverty 

Head  

Count Index 

P1 

Poverty 

Gap 

Index 

P2 

Square 

Poverty 

Gap Index 

b0 -1.13687 X 
10-5 

-3.40804 X 
10-6 

-1.62081 X 
10-6 

b1= 

a 

-4.91928 X 
10-5 

-3.84213 X 
10-5 

-1.33289 X 
10-5 

b2 -1.45081 X 
10-2 

6.80230 X 
10-3 

6.40434 X 
10-3 

D 1.62518 X 
10-7 

-2.46587 X 
10-8 

-1.05579 X 
10-8 

λ 3.08817 X 6.36771 X -1.71151 X 
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10-6 10-2 10-2 

A 2.17318 
X10-14 

4.32546 X 
10-16 

4.67674 X 
10-17 

 
Table 4: Parameter Estimates of the 

Normal Distribution for Head Count 

Poverty Index  

 

Parameter Estimate 

µ 0.52096 
σ 0.00345 

 
 
Table 5: Parameter Estimates of the Four 

Parameter Beta Distribution for Poverty 

Gap Index  
Parameter Estimate 

α1 224.73 
α2 388.02 
a 0.17752 
b 0.27147 

 
 
Table 6: Parameter Estimates of the Four 
Parameter Beta Distribution for Square 
Poverty Gap Index  
 
 

Parameter Estimate 

α1 47.953 
α2 48.085 
a 0.10164 
b 0.12648 

 
6.0 Conclusion 

    The probability distributions of head 
count, poverty gap and square poverty gap 
indices have been determined. The 
distributions appropriate for the indices 
obtained using the procedure given by 
Andreev for the selection of probability 
distributions from the Pearson system of 
distributions were the normal distribution 
for head count index and the four parameter 
beta distribution for both poverty gap and 
square poverty gap indices. The normality 
confirms the applicability of laws of large 
numbers and the consequent validity of the 
central limit theorem. Hence, study on 
poverty indices should involve large 
samples. The selection of the beta 
distribution for the two indices may be due 
to the fact that the Beta distribution is often 
used to mimic other distributions when a 
vector of random variables is suitably 
transformed and normalized. 
 

______________________________________________________________________________
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