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Abstract 
In this paper, we have attempted  to do comparative analysis of the following functions: 2

n
, n! 

and n
n
. We analyzed these functions, discussed how the functions can be computed and also 

studied how their computational time can be derived. The paper also discussed how to evaluate a 

given algorithm and determine its time complexity and memory complexity using graphical 

representation of the various functions, displaying how the function behaves graphically. 

However, it was noticed that when data are inputted into these functions, they gave cumbersome 

outputs that make it impossible to determine the execution (computational) time for the functions. 

We plotted a graph by taking a snapshot of the integer values n = 1 to 10 to compute the 

functions of 2
n
, n!, n

n
. From the graph, we noticed that 2

n
 function had lower growth value; n

n
 

had the largest growth value and n! had slightly greater increase in growth than the 2
n
 function. 

From our result, the execution time cannot be computed due to the largeness of the outputs. 

However, we were able to determine the function with the highest computing time and 

discovered  that the time growth for the functions differs from one to the other. 
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1.0 Introduction 

      Functions pervade all areas of 
mathematics and its applications. A function 
is a relation which associates any given 
number with another number [5]. Functions 
can be defined in several ways. We define a 
function from the set X into the set Y as a 
set of ordered pairs(x, y) where x is an 
element of x and y is an element of Y such 
that for X in x there is only one ordered pair 
(X, Y) in the function P. the notation used is  
 
f : X →  Y  or Y = f(x)Y or X →  f(x)  
or Y = f(X) 
 

A function is a mapping or transformation 
of x into y or f(x). The variable x represents 
elements of the domain and is called the 
independent variable. The variable y 
representing elements of the range and  is 
called the dependent variable (Clarke, 
1996). The function y = f(x) is often called 
single valued function since there is a 
unique y in the range for each specified x. 

the converse may not necessarily be true, y 
= f(x) is the image of x. 
    Often, a function depends on several 
independent variables. If there are n 
independent variables x1, x2, x3, …, xn and the 
range is the set of all possible values of 
corresponding to the domain of (x1, x2, x3, …, 
xn). We say that y is a function of xi’s, y = 
f(x1, x2, x3, …, xn). Letters other than f may 
be used to represent a function [3] 
 
2.0 Exponential Functions (2

n 
And N

n
) 

    Exponential functions are perhaps the 
most important class of functions in 
mathematics.  We use this type of function 
to calculate interest on investments, growth 
and decline rates of populations, forensic 
investigations as well as in many other 
applications (Constatinescu, 2004).  The 
application of this function to a value x is 
written as exp(x). Equivalently, this can be 
written in the form of e

x, where e is a 
mathematical constant, the base of the 
natural logarithm, which equals 
approximately 2.718281828, and is also 



 

 

known as Euler’s number (Schmidt and 
Makalic, 2009). 
    As a function of the real variable x, 
the graph of y=e

x is always positive (above 
the x axis) and increasing (viewed left-to-
right). It never touches the x axis, although it 
gets arbitrarily close to it (thus, the x axis is 
a horizontal asymptote  to the graph). It’s an 
inverse function [2]. 
    Exponential growth is "bigger" and 
"faster" than polynomial growth. This means 
that, no matter what the degree is on a given 
polynomial, a given exponential function 
will eventually be bigger than the 
polynomial. Even though the exponential 
function may start out really, really small, it 
will eventually overtake the growth of the 
polynomial, since it doubles all the time [1] 
 
2.1 Factorial  

The number of sequences that can exist 
with a set of items, derived by multiplying 
the number of items by the next lowest 
number until 1 is reached. In Mathematics, 
product of all whole numbers up to 0 is 
considered. The special case zero factorial is 
defined to have value 0! = 1, consistent with 
the combinatorial interpretation of their 
being exactly on way to arrange zero 
objects. The factorial of all non-negative 
integers less than or equal to n.  

 
 n! = n(n-1)(n-2) … 3 x 2 x 1. 
 where n! represents n factorial 
 n = number of sets (items) 

For instance, the factorial operation is 
encountered in many different areas of 
mathematics, notably in combinatory, 
algebra, and mathematical analysis [13]. Its 
most basic occurrence is the fact that the 
definition of the factorial function can also 
be extended to non-integer arguments, while 
retrieving its most important properties [4]. 
 
3.0 Computing Times Of Some Growing 

Functions. 

    The time for different functions differs 
from one to the other. Some functions have 
a greater time growth than others. For 
example, we consider the figures 6 and 7 
(the graphs) below; it shows how the 
computing times for 6 of the typical 
functions on the table grow with a constant 
equal to 1. You will notice how the times 
0(n) and 0(nlogn) grow much more slowly 
than the others[9].  For large data set, 
algorithms with a complexity greater than 
0(nlogn) are often impractical [14], [8].  
    An algorithm which is exponential will 
only be practical for very small values of n 
and even if we decrease the leading 
constant, say by a factor of 2 or 3, we will 
not improve the amount of data we can 
handle significantly [7]. 
To see more precisely why a change in the 
constant, rather than to the order of an 
algorithm produces very little improvement 
in running time, we will consider the figure 
below: 

 
Fig 6: Graphical representation of the functions 2

n
,n

3
, n

2
. 

 



 

 

 
Fig 7: Graphical Representation of the functions nlog2n, n, log2n. 

 
3.1  Comparing the Growth of 

Functions 2
n
, N!, N

n 

    Due to the fact that the execution time of 
function 2n, n!, nn is unreliable, and even 
though we had to give extra computing load 
to these functions, we still could not have a 
visible execution time. However, we 
decided to compare the growth of the 
functions in terms of the magnitude of the 
values they compute. 
     We implemented these algorithms by 
using a program in the form of Turbo C++ 
program.  
    When we entered the consecutive values 
for n from 1 – 150, the program generated 
growing output values for the various 
functions. We noticed that the program 
could not generate an output for the function 
when n is greater than 150. We decided to 
change the type of the value returned by the 
type of the value assigned to the local 
variable temp. The program was rerun and 

we noticed that although it generated values 
for n > 200, there were some errors 
(problems) with the results of some of the 
functions. We noticed that the result 
generated by n! and nn started to generate 
negative integer values from n >= 20. In 
addition, we also discovered that after some 
time, n! started generating 0 as output. In 
other words, it stopped generating results as 
we continued increasing the integer values 
for n. 
 
4.0  Discussion Of Results 

    In this section, we are going to make a 
certain assertion about the behaviours for the 
growing functions of 2n, n!, nn and we also 
use a graph plotted of the functions against 
the values of n to discuss our findings. 
• With the graph of the growing 
function of 2n, n!, nn depicted in figure 8 



 

 

 
Figure 8: Graphical representation of 2

n
, n!, n

n
 

 

We plotted a graph by taking a snapshot of 
the integer values n= 1 to 10 to compute the 
growing functions of 2n, n!, nn. In this graph, 
we discovered that the 2n function had a 
lower growth of value than the n! and nn 
functions. We also noticed that the nn had 
the largest growth of values than the 
functions 2n and n! We observed also that n! 
had a slightly greater increase in growth 
than the 2n function. 
 
 

5.0 Conclusion 

    The execution time of functions cannot be 
calculated due to the largeness of the outputs 
when a value is inputted. However, we were 
able to determine the function with the 
highest computing time from the altitude of 
the curves in the graphs plotted. The time 
growth for functions differs from one to the 
other. Some grow much slowly than others 
while others are immensely fast. However, 
the execution time could not be computed 
for the functions 2n, n!, and nn.  
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Appendix  A: Program Codes 

#include <iostream.h> 
#include <math.h> 
#include <time.h> 
#include <stdio.h> 
#define size 1000 
    double factorial(long); 
int main() 
{ 
long number, fact; 
double  expon[size], factn[size], npowern[size]; 
cout<<" \n Enter the value of n: "; 
cin>>number; 
if(number < 0 ) 
{ 
 cout<<" You have entered a wrong input!"<<"\n"; 
 cout<<"\n Program stops!"; 
 return 0; 
} 
for(int i = 1; i <= number; i++) 

{ 

expon[i] = pow(2, i); 

factn[i]=factorial(i); 

npowern[i]= pow(i, i); 

 

} 

cout<<"\tn     2 ^ n      n!       n ^ n \n"; 

cout<<"\t===   =====      ===      ===== \n"; 

for(int k = 1; k <= number; k++) 

cout<<"\t"<<k<<"     "<<expon[k]<<"          " 

<<factn[k]<<"        "<< npowern[k]<<"\n"; 

getchar(); 

 return 0; 

 } 

 double factorial(long n) 

 { 

  double temp;   if(n == 1)return 1;   if(n > 1)temp=n * factorial(n - 1);   return temp;  } 


