

West African Journal of Industrial and Academic Research Vol.7 No. 1 June 2013 3

A Class Coupling Analyzer for Java Programs

Boukari Souley and Baba Bata

Mathematical Sciences Programme

Abubakar Tafawa Balewa University(ATBU), Bauchi, Nigeria
bsouley2001@yahoo.com +2348069667696, +2347034568741

Abstract
Increasingly, object-oriented measurements are being used to evaluate and predict the quality of

software. A growing body of empirical results supports the theoretical validity of these metrics.

Strategies were presented on how analysis of byte code with metrics can be integrated in an

ongoing software development project and how metrics can be used as a practical aid in code-

and architecture investigations on already developed systems. An experimental study was

conducted as an attempt to further validate each metric and increase knowledge about them. The

tool was fully tested and can serve as a guide for software developers and maintainers to identify

early enough what quality measures (coupling or cohesion) may affect the quality of the

software.

Introduction
 Software complexity measures are meant
to indicate whether the software has
desirable attributes such as
understandability, testability, maintainability,
and reliability. As such, they may be used to
suggest parts of the program that are prone
to errors. An important way to reduce
complexity is to increase modularization [9]
. Modularity of software design can be
measured with two qualitative properties:
cohesion and coupling [2].
 Cohesion describes a module’s
functionality; the highest degree of cohesion
is obtained when a module performs one
function. On the other hand, coupling is the
degree of interdependence between pairs of
modules; the minimum degree of coupling is
obtained by making modules as independent
as possible. Ideally, a well designed
software system maximizes cohesion and
minimizes coupling.
 An external attribute is concerned with
how the product relates to its environment.
Practitioners, whether they are developers,
managers, or quality assurance personnel,

are really concerned with the external
attributes. However, they cannot measure
many of the external attributes directly until
quite late in a project’s or even a product’s
life cycle. Therefore, they can use product
metrics as leading indicators of the external
attributes that are important to them. By
having good leading indicators, it is possible
to predict the external attributes and take
early action if the predictions do not fit a
project’s objectives. For instance, if we
know that a certain coupling metric is a
good leading indicator of maintainability as
measured in terms of the effort to make a
corrective change, then we can minimize
coupling during design because we know
that in doing so we are also increasing
maintainability [4] [11].
 Internal structure attributes characterize
software products used or produced in the
early stages of software development.
Moreover, these attributes can be measured
directly. It is therefore common practice to
use internal structure measures as early
indicators for software quality.

West African Journal of Industrial and Academic Research Vol.7 No. 1 June 2013 4

Related Literature
Traditional Measures of Complexity
 The earliest software measure, which was
proposed in the late 1960s, is the Source
Lines of Code (SLOC) metric, which is still
used today. It is used to measure the amount
of code in a software program. It is typically
used to estimate the amount of effort that
will be required to develop a program, as
well as to estimate productivity or effort
once the software is produced. Two major
types of SLOC measures exist:

• Physical SLOC and

• Logical SLOC.

Physical SLOC: This is a count of non-
blank, non-comment lines in the text of the
program's source code.

Logical SLOC: This measures attempt to
measure the number of statements; however
their specific definitions are tied to specific
computer languages. Therefore, it is much
easier to create tools that measure physical
SLOC, and physical SLOC definitions are
easier to explain. However, physical SLOC
measures are sensitive to logically irrelevant
formatting and style conventions, while
logical SLOC is less sensitive to formatting
and style conventions.
 In [8] a measure known as Cyclomatic

Complexity was defined. It may be
considered as a broad measure of soundness
and confidence for a program. It measures
the number of linearly-independent paths
through a program module and it is intended
to be independent of language and language
format.
 Function points, which were pioneered in
[1], are a measure of the size of computer
applications and the projects that build them.
The size is measured from a functional, or
user, point of view. It is independent of the
computer language, development
methodology, technology or capability of
the project team used to develop the
application. The original metric has been

augmented and refined to cover more than
the original emphasis on business-related
data processing.

Object-Oriented Metrics
 Object-oriented design and development
is becoming very popular in today's software
development environment. Object-oriented
development requires not only a different
approach to design and implementation but
it requires a different approach to software
metrics. Since object oriented technology
uses objects and not algorithms as its
fundamental building blocks, the approach
to software metrics for object oriented
programs must be different from the
standard metrics set. Metrics, such as Lines
of code and Cyclomatic complexity, have
become accepted as standard for traditional
functional or procedural programs and were
used to evaluate object-oriented
environments at the beginning of the object-
oriented design revolution. However,
traditional metrics for procedural approaches
are not adequate for evaluating object
oriented software, primarily because they
are not designed to measure basic elements
like classes, objects, polymorphism, and
message-passing [7].

Definitions of Coupling
 Myers defined six distinct levels of
coupling to measure the interdependence
among the modules; the coupling levels
were ordered by Page-Jones according to
their effects on the understandability,
maintainability, modifiability and reusability
of the coupled modules.
 Coupling is increased between two
classes A and B if:

• A has an attribute that refers to (is of
 type) B.
• A calls on services of a B object.
• A has a method which references B
 (via return type or parameter).
• A is a subclass of (or implements) B.

West African Journal of Industrial and Academic Research Vol.7 No. 1 June 2013 5

If two modules are coupled in more than one
way, they are considered to be coupled at
the highest level:
 Coupling types are ranked on a 6 point
ordinal scale from loosely coupled (i = 1) to
tightly coupled (i = 5). If there is no
coupling between x and y then i = 0. The
types of coupling, in order of lowest to
highest coupling, are as follows:

1. DataCoupling (low and best)

 Data coupling is when modules share data
through, for example, parameters. Each
datum is an elementary piece, and these are
the only data which are shared (e.g. passing
an integer to a function which computes a
square root).

2. Stamp Coupling

 (Data-structured coupling)
 Stamp coupling is when modules share a
composite data structure, each module not
knowing which part of the data structure
will be used by the other (e.g. passing a
student record to a function which calculates
the student's GPA).

3. Control Coupling
 Control coupling is one module
controlling the logic of another, by passing it
information on what to do (e.g. passing a
what-to-do flag).

4. External Coupling

 External coupling occurs when two
modules share an externally imposed data
format, communication protocol, or device
interface.

5. CommonCoupling

 Common coupling is when two modules
share the same global data (e.g. a global
variable).

6. ContentCoupling(worst)
 Content coupling is when one module
modifies or relies on the internal workings
of another module (e.g. accessing local data
of another module).

Disadvantages of high coupling include:
• A change in one class forces a ripple

of changes in other classes.
• Difficult to understand a class in

isolation.
• Difficult to reuse or test a class

because dependent class must also be
included.

Definitions of Cohesion
 Cohesion was first introduced within the
context of module design.. The cohesion of
a module is measured by inspecting the
association between all pairs of its
processing elements. The term processing

element was defined as an action performed
by a module such as a statement, procedure
call, or something which must be done in a
module but which has not yet been reduced
to code. A scale of cohesion that provides an
ordinal scale of measurement that describes
the degree to which the actions performed
by a module contribute to a unified function
was developed. There are seven categories
of cohesion which range from the most
desirable (functional) to least desirable
(coincidental). They stated that it is possible
for a module to exhibit more than one type
of cohesion; in this case the module is
categorized by its least desirable type of
cohesion. In the principle of good software
design it is desirable to have highly cohesive
modules, preferably functional[9]. Cohesion
is decreased if:

• The responsibilities (methods) of a
 class have little in common.

• Methods carry out many varied
activities, often usingcoarsely-grainedor
unrelated sets of data.
 The types of cohesion, in order of the
worst to the best type, are as follows:

CoincidentalCohesion (worst)
 Coincidental cohesion is when parts of a
module are grouped arbitrarily (at random);
the parts have no significant relationship
(e.g. a module of frequently used
mathematical functions).

West African Journal of Industrial and Academic Research Vol.7 No. 1 June 2013 6

Logical Cohesion
 Logical cohesion is when parts of a
module are grouped because they logically
are categorized to do the same thing, even if
they are different by nature (e.g. grouping
all I/O handling routines).

Temporal Cohesion
 Temporal cohesion is when parts of a
module are grouped by when they are
processed - the parts are processed at a
particular time in program execution (e.g. a
function which is called after catching an
exception which closes open files, creates an
error log, and notifies the user).

Procedural Cohesion
 Procedural cohesion is when parts of a
module are grouped because they always
follow a certain sequence of execution (e.g.
a function which checks file permissions and
then opens the file).

Communicational Cohesion
 Communicational cohesion is when parts
of a module are grouped because they
operate on the same data (e.g. a module
which operates on the same record of
information).

Sequential Cohesion
 Sequential cohesion is when parts of a
module are grouped because the output from
one part is the input to another part like an
assembly line (e.g. a function which reads
data from a file and processes the data).

Functional Cohesion (best)
 Functional cohesion is when parts of a
module are grouped because they all
contribute to a single well-defined task of
the module
 Disadvantages of low cohesion (or "weak
cohesion") are:

• Increased difficulty in understanding
 modules.
• Increased difficulty in maintaining a
system, because logical changes in the
domain affect multiple modules, and

because changes in one module require
changes in related modules.

• Increased difficulty in reusing a
module because most applications would not
need the random set of operations provided
by a module. Types of cohesion

Methodology

Analysis: Identification of Coupling

Using Byte Code Analysis

 The coupling types are determined by
information that is usually not available at
the design level and they must be computed
from the program source code. Doing so,
however, is difficult because some of the
relationships appear only implicitly. The
information must be extracted from the byte
code of the software by an analysis tool.
Programming languages have subtle
complexities that make finding coupling
information more difficult than might be
expected. Some calls are implicit instead of
explicit. There are several types of global
variables and uses, and the effect of
inheritance with regard to coupling is not
obvious.

Occurrences of parameter coupling
 In Java, parameter coupling occurs
through only method and constructor calls.
Parameter coupling to be viewed as the
occurrence of an invocation of a call to a
method or constructor through an object or
class.
 Java allows two explicit types of method
calls, instance and static, and one implicit
type, through a constructor. If a method in

class A explicitly calls method m() in class

B through an object instance (b.m()), this

represents parameter coupling between A
and B. An explicit static call occurs when

classA calls a public static method m() in

class B (that is, B.m()). An implicit

constructor call is made when a variable of
type B is defined and instantiated in class A,
for example, Bb = new B(). All three of
these types are considered to be parameter
coupling in this research, even if no actual

West African Journal of Industrial and Academic Research Vol.7 No. 1 June 2013 7

parameter value is passed in and no value is
returned.
 The three types of parameter coupling can
be summarized as:

1. Bb = new B(); // implicit,
constructor

2. b.m(); // explicit, through an object
 reference

3. B.m(); // explicit, static

 It is very important to differentiate
between different classes (inter-class) as
opposed to couplings between methods in
the same class (intra-class). The effects of
intra-class couplings are very different from
the effects of inter-class couplings. Intra-
class coupling has no direct impact on the
external system, although it can have an
indirect impact. If the class is viewed as a
black box, then intra-class coupling is
invisible. Inter-class parameter coupling has
the potential to propagate problems from
within one class to other classes, especially
during maintenance and reuse.

Global, Inheritance, and External

Coupling
1. Global coupling is a kind of inter-
class coupling that refers to the coupling that
takes place through variables that are
defined in one class and used in others.
These variables will typically have public or
protected package access specifiers. Public
variables represent a traditional, or true
global coupling, if the variable is static;
otherwise it is a global coupling with an
object reference. All of these variations must
be detected.

2. Inheritance coupling refers to the
coupling that is related to the inheritance
between pairs of classes. The coupling takes
place through attributes and methods that are
inherited and used by a subclass but that are
not re-defined. If a subclass does not
actually use anything from its super class, or
if it re-defines everything it uses, this is not
considered to be inheritance coupling.

 In Java, the inheritance relation is

established through the keywords extends

and implements. Therefore, an

implementation can detect an inheritance
coupling between two classes or interfaces if
one class extends from another class or
implements one or more interfaces, or if an
interface extends from another interface.

3. External coupling is defined as access to
an external device by two or more classes.
In other words, external coupling happens
when two classes share something that is
outside the application that owns the classes.
External resources can include files on a
hard disk, printers, or other shared devices.
The challenge in designing an algorithm to
analyze coupling is to find out the unique
interfaces between these resources and the
application. Specifically, different classes or
applications may use the same resource, but
refer to them with different names. Binding
to a physical device may be done at the OS
level, not the program. This is necessary for
symbolically linked files and devices with
multiple names. If there is no unique
interface, then all interfaces must be
enumerated.

Actual types and dynamic binding
 When analyzing the software for
coupling, the analyzer must first discover
the types of each reference. This is simple
for direct references to names. However,
when a reference is made through an object

reference (o.b or o.m()), the type of o must

first be found. Inheritance and dynamic

binding means that the type of o cannot be

determined statically, because it can change
during execution.

Metric Descriptions
 In the process of choosing what metrics
are to be used as measurement, the first
thing that has to be considered is from
what viewpoint the measure is to be
evaluated. What the main goal of the
measurement is. As an example consider a
metric for evaluating the quality of a text.

West African Journal of Industrial and Academic Research Vol.7 No. 1 June 2013 8

Some observers might emphasize layout,
others might consider language or grammar
as quality indicators. Since all of these
characteristics give some quality
information it is difficult to derive a single
value (metric) that describes the quality of a
text. The same problem occurs for computer
software. This observation indicates that a
metric must be as unambiguous and specific
as possible in its measure. The metrics, the
code analyzer will calculate and displays for
each class are :

Coupling between object classes (CBO):
 The coupling between object classes
(CBO) metric represents the number of
classes coupled to a given class (efferent

couplings, Ce). This coupling can occur
through method calls, field accesses,
inheritance, arguments, return types, and
exceptions [12].

Lack of cohesion in methods (LCOM):
 A class's lack of cohesion in methods
(LCOM) metric counts the sets of methods
in a class that are not related through the
sharing of some of the class's fields. The
metric considers all pairs of a class's
methods. In some of these pairs both
methods access at least one common field of
the class, while in other pairs the two
methods do not share any common field
accesses. The lack of cohesion in methods is
then calculated by subtracting from the
number of method pairs that don't share a
field access the number of method pairs that
do [12].

 Weighted methods per class (WMC):
 A class's weighted methods per class
(WMC) metric are simply the sum of the
complexities of its methods. As a measure of
complexity we can use the cyclomatic

complexity, or we can arbitrarily assign a
complexity value of 1 to each method. The
program assigns a complexity value of 1 to
each method, and therefore the value of the
WMC is equal to the number of methods in
the class.

Depth of Inheritance Tree (DIT):
 The depth of inheritance tree (DIT) metric
provides for each class a measure of the
inheritance levels from the object hierarchy
top. In Java where all classes inherit Object
the minimum value of DIT is 1.

Number of Children (NOC):
 A class's number of children (NOC)
metric simply measures the number of
immediate descendants of the class.

Response for a Class (RFC):
 The metric called the response for a class
(RFC) measures the number of different
methods that can be executed when an
object of that class receives a message
(when a method is invoked for that object).
Ideally, we would want to find for each
method of the class, the methods that class
will call, and repeat this for each called
method, calculating what is called the
transitive closure of the method's call graph.
This process can however be both expensive
and quite inaccurate. In this program, we
calculate a rough approximation to the
response set by simply inspecting method
calls within the class's method bodies.

Afferent couplings (Ca):
 A class's afferent couplings are a measure
of how many other classes use the specific
class. Ca is calculated using the same
definition as that used for calculating CBO
(Ce).

 Number of Public Methods (NPM):
 The NPM metric simply counts all the
methods in a class that are declared as
public. It can be used to measure the size of
an API provided by a package.

Afferent Couplings (Ca):
 The number of other packages that
depend upon classes within the package is
an indicator of the package's responsibility.
Efferent Couplings (Ce):

West African Journal of Industrial and Academic Research Vol.7 No. 1 June 2013 9

 The number of other packages that the
classes in the package depend upon is an
indicator of the package's independence.
 In addition the following metrics are also
of great importance while trying to consider
quality of large object oriented programs.

Instability (I):
 The ratio of efferent coupling (Ce) to total
coupling (Ce + Ca) such that I = Ce / (Ce +
Ca). This metric is an indicator of the
package's resilience to change.
 The range for this metric is 0 to 1, with
I=0 indicating a completely stable package
and I=1 indicating a completely instable
package [10].

Abstractness (A):
 The ratio of the number of abstract classes
(and interfaces) in the analyzed package to
the total number of classes in the analyzed
package [10] The range for this metric is 0
to 1, with A=0 indicating a completely

concrete package and A=1 indicating a
completely abstract package.

Distance from the Main Sequence (D)
 The perpendicular distance of a package
from the idealized line A + I = 1. This
metric is an indicator of the package's
balance between abstractness and stability.
A package squarely on the main sequence is
optimally balanced with respect to its
abstractness and stability. Ideal packages are
either completely abstract and stable (x=0,
y=1) or completely concrete and instable
(x=1, y=0).
 The range for this metric is 0 to 1, with
D=0 indicating a package that is coincident
with the main sequence and D=1 indicating
a package that is as far from the main
sequence as possible

System model:
 Figures 1 and figures 2 below illustrate
the and the Class diagram of the coupling
Analyzer.

Figure 1: Activity diagram

West African Journal of Industrial and Academic Research Vol.7 No. 1 June 2013 10

Figure 2: class diagram of class Analyzer

Testing And Results
 The analyzer was developed using Java. T
he various components were fully tested.

After running the analyzer on a certain
numbers application on a number of test
cases, the following results were obtained:

West African Journal of Industrial and Academic Research Vol.7 No. 1 June 2013 11

Package: epayment.adapters

Figure 2.: Showing WMC, DIT, NOC, CBO, RFC, LCOM, Ca, And NPM Of The Package

Epayment.Adapters.

Table 1:The classes and metrics of test case1

 METRICS

PACKAGES CLASSES WMC DIT NOC CBO RFC LCOM Ca NPM

XYZ Gateway 7 1 0 5 9 21 0 7 Epayment.Adapters

ABCGateway 7 1 0 5 9 21 0 7

IPaymentCommand 1 1 0 3 1 0 1 1

IgatewayAdapter 6 1 0 3 6 15 2 6

IPaymentResponse 2 1 0 0 2 1 3 2

IPaymentRequest 6 1 0 0 6 15 2 6

AbstractPaymentCommand 3 1 0 5 4 1 0 2

Epayment.Framework

paymentException 1 3 0 0 2 0 3 1

Sales command 2 0 0 5 5 1 0 2

CaptureCommand 2 0 0 5 5 1 0 2

AuthorizeCommand 2 0 0 5 5 1 0 2

VoidSaleCommand 2 0 0 5 5 1 0 2

Epayment.Commands

CreditCommand 2 0 0 5 5 1 0 2

PaymentProcessorConfig 2 1 0 2 4 1 1 2 Epayment.Processor

PaymentProcessor 5 1 0 5 14 8 1 4

Epayment.Response PaymentResponse

West African Journal of Industrial and Academic Research Vol.7 No. 1 June 2013 12

Table 2: showing the instability of test case 1.

Package name Ca Ce Instability

epayment.adapters 0 2 1

epayment.processor 1 2 0.6

epayment.commands 0 5 1

epayment.response 0 1 1

epayment.request. 0 1 1

epayment.framework 3 0 0

Table 3: showing the classes and their metrics of test case2

 METRICS
PACKAGES CLASSES WMC DIT NOC CBO RFC LCOM Ca NPM

Analyzer 2 1 0 5 6 1 0 2 Kirk.Analyzer

Configuration 3 1 0 0 13 1 1 2

XMLUISummary 20 1 0 6 67 58 0 5

JarAnalyzertask 8 0 0 3 21 10 0 7

Summary 2 1 0 0 2 1 3 2

Analyzer.Textui

DotSummary 13 1 0 4 43 66 0 5

JarCollection 7 1 0 1 17 21 1 7

JarBuilder 1 1 0 2 1 0 0 1

JarPackage 5 1 0 1 5 10 1 5

Analyzer.
Framework

CollectionDecorator 8 1 0 2 16 0 0 8

JarMetrics 5 1 0 0 5 10 1 5

JarClass 5 1 0 0 5 10 1 5

kirkk.jar

Jar 18 1 0 2 18 153 3 18

Table 4: showing the instability of test case 2.
Package name Ca Ce Instability

kirkk.analyzer 1 5 0.83

Kirkk.framework 4 4 0.5

kirkk.bcel 1 5 0.83

kirkk.bcelbundle 1 7 0.88

kirkk.jar 2 4 0.67

kirkk.textui 0 7 1

Discussion of Results
 The Coupling between objects of test case
1is high, it is not desired while that of test
case 2 is low and desired. The lack of
Cohesion of both test cases is lower, so there
is higher similarities between the methods in
the class. When the RFC of test case 1 is
higher, there is a probability that the classes
are fault prone while that of test case 2 is
low. The Lesser NOC of test case 1
indicates there is no reusability while test
case 2 has high reusability. The larger WMC
of both test cases, indicates that there is a
chance that the classes are fault prone.

Conclusion
 Based on the analysis carried out, we
conclude that coupling and cohesion
analyzer can tell the stability of a java
application by investigating the
relationships between the efferent coupling
and afferent coupling, it also shows how
software metrics which quantify the internal
complexity of a design can be used to
characterize it’s external quality. It is
important to note that the Coupling Analyzer
calculates the metrics from the code
appearing in the compiled byte code files.
This can serve as a benchmark for java
programmers and maintainers in assessing
the quality of their products before final
release.

West African Journal of Industrial and Academic Research Vol.7 No. 1 June 2013 13

ReferencesReferencesReferencesReferences
[1] Albrecht, A.J.(1979) Measuring Application Development. In IBM Applications Development Joint

 SHARE/GUIDE symposium, Monterey California, USA, pp 83-92.
[2 Constantine L. L., Stevens W.P, and Myers G.J.(1974) Structured Design. IBM Systems

 Journal,13(2):115-139.
[3] Diomidis S.(2002). Tool writing: A forgotten art?

 http://www.spinellis.gr/pubs/jrnl/2005-IEEESW-TotT/html/v22n4.html)
4] Fenton, N.E. and. Neil, M (1999) Software Metrics: Successes, Failures and New Directions. The

 Journal of Systems and Software, 47:149-157.
[5] Gonzalez. R.R.(1995.) A Unified Metric of Software Complexity: Measuring Productivity, Quality
 and Value. The Journal of Systems and Software, 29(1):17-37,
[6] Linda H. R..(1998). Applying and interpreting object oriented metrics

(http://www.stc-online.org/cd-rom/1998/slides/p7lrosenberg.PDF
[7] Lorenz, M. and Kidds , J.(1994) Object-Oriented Software Metrics. Object-Oriented Series,
 Englewood Cliffs, USA Prentice Hall
[8] McCabe, T.(1976). A Software Complexity Measure.IEEE Transactions on Software Engineering,
 2(4):308-320,
[9] Myers. G. (1974) Reliable Software Through Composite Design. Mason and Lipscomb
[10] Robert C. M, (2003) Agile Software Development, Pearson Education Inc

Publishers, New York, USA.
[11] Shooman, M.L.(1983) Software Engineering: Design, Reliability and Management. McGraw Hill,

 New York, USA.
 [12] Shyam R. C. and Chris F. K.(1994) A metrics suite for object oriented design. IEEE Transactions

 on Software Engineering, 20(6):476–493, (http://dx.doi.org/10.1109/32.295895))

