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Abstract 
We considered strong convergent stochastic schemes for the simulation of stochastic 

differential equations. The stochastic Taylor's expansion, which is the main tool used for the 

derivation of strong convergent schemes; the Euler Maruyama, Milstein scheme, stochastic 

multistep schemes, Implicit and Explicit schemes were considered. A simple SDE, which is 

known to have analytic solution, was used to illustrate the simulation technicalities. A 

MatLab script file was written to implement the Euler Maruyama and the Milstein schemes.  

The result showed graphically the closeness of the Milstein and the Euler Maruyama 

scheme as well as the error between the analytic result and the numerical approximation. 

The error appeared dispersed as t increases and tens to T.  

 

__________________________________________________________________________ 
 

 

 

 1.0 Introduction 
     The concept of Stochastic Differential 
Equations though not new, is not as 
popular as the deterministic ordinary 
differential equations. Consequently, the 
method of solutions is much more 
unpopular. More so, the fact that most 
stochastic differential equations of 
practical applications are not analytically 
solvable makes it even more unpopular. 
Despite these facts, there are wide range 
of stochastic numerical schemes in 
literature that can be used for the 
simulation of the trajectories of SDEs. 
The focus of this work is to survey of 
applicable strong convergent numerical 
schemes for the simulation of stochastic 
differential equations, [6].  
     Stochastic calculus is a branch of 
mathematics that operates on stochastic 
processes. It allows a consistent theory of 
integration to be defined for integrals of 
stochastic processes with respect to 

stochastic processes. It is used to model 
systems that behave randomly the best 
known of which is the Wiener process 
(named in honour of Norbert Wiener), 
which is used for modelling Brownian 
motion as described by Albert Einstein 
and other physical diffusion processes in 
space of particles subject to random 
forces. Since the 1970s, the Wiener 
process has been widely applied in 
financial mathematics and economics to 
model the evolution in time of stock 
prices and bond interest rates, [4]. 
     The Itō calculus is named after 
Kiyoshi Itō and it extends the methods of 
calculus to stochastic processes such as 
Wiener process. It has important 
applications in mathematical finance and 
stochastic differential equations. The 
central concept is the Itō stochastic 
integral which is a generalization of the 
ordinary concept of a Riemann–Stieltjes 
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integral. The generalization is in two 
respects. Firstly, if deals with random 
variables (more precisely, stochastic 
processes). Secondly, the method allows 
integration with respect a non-
differentiable function (technically, 
stochastic process), [3]. An alternative 
method to the Ito calculus is the 
Stratonovich calculus which was 
introduced by Ruslan L. Stratonovich and 
D. L. Fisk is the preferred method for 
modelling stochastic processes  in applied 
mathematics, [5]. 
 

1.1 Itó Integral 
     The stochastic calculus of Itô 
originated with the investigation of 

conditions under which the drift and the 
diffusion coefficient of the diffusion of 
Markov process could be used to 
characterize this process. Kolmogorov 
had made similar attempt but Itó focused 
on the functional form of the process 
which resulted to some meaningful 
mathematical formulation for stochastic 
differential equations, [2]. 
     Following the Einstein’s explanation 
of Brownian motion in the first decade of 
the 19th century, there were rigorous 
efforts by Langevin and others to 
formulate the dynamics of the motion in 
terms of stochastic differential equation. 
The resulting equation were written in the 
form 

 

tttt dWXtbXtadX ),(),( +=        (1.1) 

 
This symbolic differential form can be written in integral form as  

∫ ∫++=
t

ts

t

st dBXsbdsXsaXX
0 0

0 ),(),(      (1.2) 

     
Since the Brownian motion  is a 

derivative of the Wiener process , the 

second integral in equation (1.1) above 
cannot be interpreted as the Riemann or 
Lebesgue integral because Brownian 
motion is nowhere differentiable. 
Furthermore, because the continuous 
sample path of Brownian motion is not of 
a bounded variation in any interval, the 
integral cannot also be interpreted as 
Riemann-Stieljes integral. The integral of 

the form  where  is 

adapted to the 
filtration  is called a 

stochastic or Itó integral because the 
concept was originally introduced by Itó 
and was used to construct the diffusion 
process which is a subclass of the Markov 
process. This type of integral arises 
naturally as a solution of stochastic 
differential equations or martingale.  
 

 

 

1.2 Stochastic Differential Equations 
     Differential equations are used 
generally to describe the evolution of a 
system over time. Stochastic differential 
equation arises when a differential 
equation is subject to some random 
perturbation called the White noise. For 
example, if x(t) is a differential equation 
defined for t 0, u(x,t) is a function of  

and  and the following relation is  

satisfied for all t, 0  t T 

0)0(),),(()(
)(

xxttxutx
dt

tdx
==′=    (1.4)  

      

     Then  is said to be the solution of 

the ordinary differential equation (1) with 

the initial condition . Equation 

(1) can be written as   

and by the continuity of , we can 

write: 
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∫+=
t

dsssxUxtx
0

)),(()0()(            (1.5)       

As mentioned above stochastic differential 
equation arises when a differential 
equation is put to a random perturbation 
by a White noise. The White noise is 

defined as a derivative of a Brownian 

motion i.e. )(
)(

)( tB
dt

tdB
t ′==ξ .  

Now, the White noise does not exist as a 
usual function of t since a Brownian 
motion is now where differentiable. If we 

denote by  the intensity of the noise 

at a point x at time t, then we can write 

∫ ∫ ′=
T T

tdtBdttxttttxt
0 0

)()()),()(()()),()(( σξσ ∫=
T

tdBttxt
0

)()),()((σ   (1.6) 

 
      The integral in equation (1.4.2) above 
is an Ito integral; hence, we can say that 
stochastic differential equation arises 
when the coefficients of ordinary 
differential equation are perturbed by 
white Noise.  
 

2.0 Stochastic Taylor’s Formula 
     In order to appreciate the stochastic 
Taylor's formula, it is appropriate to start 
from the deterministic Taylor's formula 
before proceeding to the stochastic 
counterpart

.  

    Let  be a 1-dimensional ordinary differential equation so that 

           (2.1) 

with initial value  for where This can be written in integral form as: 

        (2.2) 

Suppose (2.2) above is sufficiently smooth and has a linear growth bound and let  

be a continuously differentiable function, then by the chain rule,  
 

         (2.3) 

If we use the operator  

              (2.4) 

we can then express the integral in (2) above as 
 

        (2.5) 

for all . When , we have  and (2.5) reduces 

 to (2.2) i.e. 

         (2.6) 

Applying the relation (5) to  in the integral in (2.6) we obtain 
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and this is the simplest nontrivial Taylor’s expansion for . We can apply (5) again to the 

function  in the double integral to have 

3
0 0

0
0

00
)()()( RdzdsXLaXLadsXaXX

t

t

s

t
st

t

t
ttt +++= ∫ ∫∫           (2.8) 

where the remainder  
 

                          (2.9)  

 

for . For a general  times differentiable function , this method gives the 

classical Taylor formula in integral form as:  
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for  and r = 1,2,3, ... 

     
    The Taylor’s formula presented above 
has been a vital tool for both practical and 
theoretical investigation in numerical 
analysis as it allows for the 
approximation of sufficiently smooth 
functions in the neighbourhood of a given 
point to and desired level of accuracy. 
We can therefore use this method too to 

expand increment of smooth function of 
Ito process which will allow us to derive 
relevant formulae for the numerical 
solutions of stochastic differential 
equations, [7].   
    Consider the integral form of the Ito 
process, which is given as

: 

      (2.11) 

 

for  where the second integral 

in (11) is a stochastic integral and the 

coefficients are sufficiently 

smooth real valued functions satisfying a 

linear growth bound. For any twice 
continuously differentiable 

function  the Ito formula is 

given as 

: 

  

  

for  where  

          (2.12)  

and            (2.13) 

Clearly, for  we have  

and  which mean that equation 

(12) reduces to the original Ito equation 

for , that is   
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      (2.14) 

Just like the deterministic case presented 
earlier, if we apply the formula (12) to 

the function  in (3.2.14), 

we obtain 
: 

  

with remainder  
 

  
     This is the simplest nontrivial Ito-
Taylor’s expansion. We can continue it, 

for example, by applying the formula 
(2.5.12) in which we shall have

: 

   (2.15) 

with remainder 
 

 
     The Stratonovich counterpart which is 
called the Stratonovich-Taylor’s 
expansion can similarly be presented as 

follows. The 1-dimensional Stratonovich 
stochastic differential equation in its 
integral form is of the form

: 

                        (2.16) 

for  where the second integral 

is a Stratonovich stochastic integral and 

the coefficients  are sufficiently 

smooth real valued function satisfying the 
linear growth bound and when  

 the Ito equation in (3.5.1) 

and the Stratonovich equation in (18) 
have the same solutions. The solution of 
the Stratonovich SDE for a function 

 where  is any twice 

continuously differentiable function 
transforms according to the deterministic 
chain rule to 

 

   (2.17) 

  

for  with the operators 
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   (2.18)  

and  

    (2.19) 

 

For  we have   and 

 in which case (19) reduces to 

integrand function  and  in 

(20) and this gives

 

            (2.20)

  

  

     (2.21)  

with remainder 
 

  
and this is the simplest nontrivial 
Stratonovich-Taylor’s expansion of 

. We can continue expanding, for 

example, if we apply (2.18) to the 

integrand  in (23), we shall have 

 

     (2.22) 

  and the equivalent Stratonovich equation  

    (2.23) 

 where  

       (2.24) 

for .In both SDEs,  is a standard m-dimensional Wiener 

process adapted to an increasing family of -algebra . 

 

3.0 Strong Convergent Schemes for 

Simulation of Stochastic Differential 

Equations 
     It is well known that only a few 
stochastic differential equations have 
explicitly known solutions. This makes 
simulation techniques to be a very 
important method for solving SDEs. This 

is can be done through the use of the 
discrete time approximation methods. 
The discrete time approximation methods 
provide suitable algorithm that can be 
used to recursively compute the solutions 
of SDE at its discretization points with 
the values at intermediary points 
computed through interpolation, [7]. 



 

 

 
West African Journal of Industrial & Academic Research   Vol.12 No.1   December 2014         97 

 

Through this, an appropriate sample path 
of the driving SDE can be obtained for 
the Wiener process, which is usually 
simulated with an appropriate pseudo-
random number generator. Consequently, 
we shall now consider numerical schemes 
for simulation of stochastic differential 
equations.  
 

3.1 The Euler Maruyama Scheme 
     One of the simplest discrete 
approximations of an Ito process is the 
Euler approximations also called the 
Euler-Maruyama approximations. We 
consider the Ito process 

 satisfying the 

stochastic differential equation  

 (.3.1)

  

on   with the initial value 

 
For a given discretization 

 

of the time interval , an Euler-

Maruyama approximation is a continuous 
time stochastic process 

 satisfying the 

iterative scheme 

         (3.2) 

 

   (3.3) 

for  with the initial value  . If we write  

 

  for the nth increment and  

 for the maximum step size, 

then  for some integer N. 

If the diffusion coefficient , then the 

stochastic iterative scheme reduces to the 
ordinary deterministic Euler’s scheme so 

that the sequence of  is 

computed in the usual manner. The   

 
approach is similar for the stochastic 

case, that is for  only that in this 

case we need to generate the random 

increment   for 

 by using a suitable pseudo 

random number generator. The Euler-
Maruyama scheme can be written in a 
simpler form as  

  

      (3.4) 

 for . The recursive 

structure of the scheme makes it suitable 
to be implemented on a digital computer. 
Each of the approximation method 
determines the value of the 
approximating process at the 
discretization times only. When required, 
intermediate values can be determined 
using the method of interpolation. In 
general, the paths of an Ito process inherit 
the irregularity of the sample paths of the 
driving Wiener process such as the non-
differentiability.  
 

3.2 The Order 1.5 Strong Taylor’s 

Scheme 
     The multiple stochastic integrals 
provide additional information about the 
sample path of the driving Wiener 
process with the discretization 
subinterval. The necessity of their 
inclusion in higher order schemes is a 
fundamental difference between the 
numerical analysis of deterministic 
differential equations and that of 
stochastic differential equations. By 
including more terms from the Ito 
Taylor’s scheme for an autonomous 1-

dimensional case , we obtain 

the order 1.5 strong Taylor’s scheme, [3]: 
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  (3.4) 

An additional random variable  

 is required. 

 is a random variable that is normally 

distributed with  and 

variance  and 

covariance  and can 

be generated with  from two 

independently N(0,1) distributed random 
variables. It should be noted that the last 
term of (1) above contains the triple Ito 
integral  

    (3.5) 

In general, the multidimensional case 

with  of the order 1.5 

strong Taylor’s scheme has the form : 
 

   

  

  

  for 

.          (3.6) 

 

3.3 The Order 2.0 Strong Taylor’s 

Scheme 
    Higher order schemes could be derive 
by including more terms from the 
stochastic Taylor’s expansion. Platen 
(2003) observed that  the scheme 
becomes more complicated in the general 
case but reasonably simple for special 
cases. For the multidimensional case with 
d = 1, 2, 3, … with scalar noise, i.e., m = 

1, the kth component of the order 2.0 
strong Taylor’s scheme is given by: 
 

   

 

 

          (3.7) 

Here the Gaussian random variable  

and  has the usual meaning.  

3.4 Explicit Strong Convergence 

Schemes 
     One of the major disadvantage of the 
strong Taylor’s approximations is that it 
requires that the derivatives of the various 
orders of the drift and diffusion 
coefficients must be determined and 
evaluated at each steps in addition to the 
coefficient themselves.  The explicit 
strong schemes avoid the use of 
derivatives just like the Runge-Kutta 
method of the ordinary deterministic 
differential equations does, [8]. Below 
are the explicit strong convergence 
schemes for the simulation of stochastic 
differential equations. 
 

3.5 Explicit Order 1.0 Strong 

Scheme 
     The explicit order 1.0 scheme for a 1-
dimension case with d=m=1 proposed by 
Platen  is given by  

    
with the supporting value  

        (3.9)  

where  is the Stratonovich corrected 

drift. The ratio  
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 is the forward difference for at 

. Hence, (3,8) is a derivative free 

counterpart of the Milstein scheme. The 
general multidimensional case for 

 for the explicit 

order 1.0 strong scheme has the kth 
component as: 

 

                                            (3.10) 
with the vector supporting values 
 

  

     There are various explicit order 1.0 
schemes involving the Ito drift 

coefficient . For instance for general 

noise, Platen proposed the scheme 
 

  

  

with   

The above schemes all converge with 

order  under conditions similar to 

that of the Milstein scheme.  
 

3.6 Explicit Order 1.5 Strong 

Scheme 
     The explicit order 1.5 strong scheme 
results when the derivatives in the order 
1.5 Taylor’s scheme are replaced by the 
corresponding finite difference.  For 
notational simplicity we shall simply 
state the scheme for the autonomous case.  
 

In the autonomous 1-dimensional case 

 such an explicit order 1.5 

scheme proposed by Platen (1980) has 
the form: 

   

 

  

   

 (3.11)  

with   and 

  

Here  is the multiple Ito integral. I 

could be noted that  must be evaluated 

at three points and b at five supporting 
values for each time step.  
     In the general multi-dimensional 

autonomous case with  the 

kth component of the explicit order 1.5 
strong Taylor’s scheme due to Platern 
satisfies 
 

  

  

  

 3.12)
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  with   and 

  

where   is written for  in the 

summation terms. The multiple Ito 
integral here can be approximated by 
multiple Stratonovich. 
 

 
3.7 Explicit Order 2.0 Strong 

Scheme 
     The explicit order 1.0 and 1.5 are 
usually derived by replacing the 
derivatives in the Taylor’s scheme by the 
equivalent finite difference. This 
procedure is good enough for low order 
explicit schemes. However, for higher 
order schemes, the procedure becomes 
too complicated. This can be avoided by 
taking advantage of some special 
structures of the equations under 
consideration to derive relatively simple 
higher order explicit schemes which do 
not involve the derivatives of the drift 
and the diffusion coefficients [8]. Here 
we shall consider a special case in which 
the noise term is additive. That is 

 for all  and . 

     For the autonomous 1-dimensional 

case  an explicit order 2.0 

strong scheme for additive noise due to 
Chang (1987) has the form 
 

 (3.13)

  
with  

   

where the random variable ,  and 

 can be approximated in the usual 

manner.  
     In the multi-dimensional case d = 1, 2, 
… with m = 1 the explicit order2.0strong 
scheme for scalar additive noise has kth 
component 
 

  

                                                (3.14) 
with 

 for  k = 1, … d.  
 

3.8 Stochastic Multistep Schemes 
     From the experience of the 
deterministic ordinary differential 
equations, multistep schemes are more 
known to be computationally efficient 
that the one step scheme of the same 
order. Also in most cases, such multi step 
schemes are often more stable for larger 
time step. Some stochastic multistep 
methods are hare presented.  
 

3.9 A Two-Step order 1.0 Strong 

Scheme 
Though it is not easy to write out and 
investigate higher order multi-step 
schemes in the most general case, we can 
take advantage of the structure of certain 
types of stochastic differential equations 
to obtain relatively simple multi-step 
schemes. For example, consider the 2-
dimensional Ito system 

  

   (3.15)
     
The Milstein scheme for (1) is of the 
form 

 
  

 

        (3.16)
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and has a strong order 1.0. It can be noted 
that a simplifying feature of this scheme 
is the absence of the Ito double integral 

. Moreover the first equation can be 

solved for  

 

  

and  substituted into the second equation 
to obtain a two step scheme for the first 

component provided we use an 

equidistant discretization. This resulting 
two step scheme 

  (3.17) 

This scheme was due to Lépingale, D and 
Ribémont B (1991). Thus we have a 
multistep scheme for the first component 

of the approximation which is equivalent 
to the 2-dimensional Milstein’s scheme 
for the system, [7]. 

 

3.10 A Two-Step order 1.5 Strong Scheme 
For the 1-dimensional case d=m=1 we propose the two step order 1.5 strong scheme 

   

 (3.18) 

With  

  

where the random variable ,  are take as usual. 

 In the general multidimensional case d=m=1, 2, … we have in vector form the two-
step order1.5 scheme 

    (3.19) 

with  

   

  

where the Ito Integrals here can be approximated in the usual manner.  
 

4.0 Implicit Strong Taylor’s Schemes 
The implicit strong Taylor’s scheme is 
obtained by adapting the corresponding 
strong Taylor’s schemes. 
 

4.1  The Implicit Euler’s Scheme 

The implicit Euler Scheme is the simplest 
implicit strong scheme and it has a strong 

order . In the one dimensional 

case  has the form 

  (4.1) 

where we . A family of implicit Euler schemes  

  

where the parameter  characterises the degree of implicitness.  
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    In the general multidimensional case  the family of implicit Euler schemes 

has the kth component 
 

  (4.32)
    

with  the parameter  for . 

 

4.2 The Implicit Milstein Scheme   
      
The implicit Milstein scheme is the 
counter part of the order 1.5 strong 
Milstein scheme earlier discussed. In the 

1-dimensional case  it has the 

Ito version 

 

 

              (4.3)
 and the Stratonovich version  
 

                 (4.4)

where .  

As with the Euler scheme, we can 
interpolate between the explicit and the 
implicit Milstein scheme of the same 
type. In the general multi-dimensional  
 

 
 
case d= m= 1,2, … with cumulative noise 
the Ito version of the family of implicit 
Milstein scheme with the kth component 
is 

   

   (4.5)
     

where  is the Kronecker delta symbol  

  

and a Stratonovich version with kth component 

 

 

           (4.6)
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Here the parameter  indicates the 

degree of the implicitness of the kth 

component for k = 1, …, d. When  

we have the explicit Milstein scheme in 
the kth component, and the implicit 
Milstein scheme when it equals 1.0.  The  

case    gives an order   

generalization of the deterministic 
trapezoidal method, [7]. 
4.3  The Implicit Order 1.5 Strong 

Taylor’s Scheme 
     The simplest version of the implicit 
order 1.5 strong Taylor’s scheme for the 
autonomous case d=m=1is of the form 

 

  

  

      (4.7) 

where  and  are Gaussian random variables with zero mean and 

 and .  

     In the general multi-dimensional case 
we obtain the family of implicit order 1.5 

strong Taylor’s schemes with the kth 
components 

 

   

     (4.8)  

where the parameters  for .  

4.4 The Implicit Order 2.0 Strong Taylor’s Scheme 

     In the 1-dimensional case , the Stratonovich version has the form 

  

   

         (4.9)

        The multiple integrals appearing 
here can be approximated in the usual 
manner. 

     In the general multi-dimensional case 
d=m=1, 2, … the kth component of the 
implicit order 2.0 strong Taylor’s scheme 
is given by 
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     (4.10) 

where the parameters  for .  

 

5.0 Numerical Experiments 
     Computer has remained a vital tool for 
solving mathematical problems ever since 
its introduction. In other to do justices to 
this work, MATLAB which is designed 
for high level numerical simulation and 
visualization. Whereas MAPLE is ideally 
suited for manipulations with stochastic 
calculus and stochastic differential 
equations particularly in the aspect of 
derivation of numerical schemes for 
SDEs and finding analytic solutions 
where it exist. Higham D. J et.al (2001) 
pointed out that although numerical 
simulations are possible in MAPLE, it is 
more convenient in MATLAB. 
Conversely, although MATLAB permits 
symbolic computations through its 

symbolic Math Toolbox, theses facilities 
are only a subset of those offered in 
Maple. Consequently, MATLAB was 
chosen as the software toll because the 
interest of this work is numerical 
solutions of the stochastic differential 
equations rather than the symbolic 
solution.  
We considered the SDE  
 

100;5)0(; 0 ≤≤==+= ttXdWdtdX tttt σµ

             (5.1) 
     A Matlab scripts file that implements 
the Euler and Milstein schemes were 
written, compiled and implemented.  
Below is the result of the simulation

.   
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