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Abstract 
 
Cure models are survival models basically developed to estimate the proportion of patients cured in 

a clinical trial. These models estimate the cured proportion and also the probability of survival. 

Cure models are a special type of survival analysis model where it is assumed that there are a 

proportion of subjects who will never experience the event and thus the survival curve will 

eventually reach a plateau. Cure has become an important measure of long term survival benefit 

derived from therapy. This study was intended at determining the flexible Parametric Cure Fraction 

Model for Gastric cancer Data. Suitability of four parametric mixture cure models were considered 

namely; Log Normal (LN) cure fraction model, Log Logistic (LL) cure fraction model, Weibull (W) 

cure fraction model and Generalized Gamma (GG) cure fraction model. AIC, mean time to 

cure), variance and cure fraction (c) were used to determine the flexible Parametric Cure Fraction 

Model  among the considered models. Gastric Cancer data from 76 patients received adjuvant CRT 

and 125 receiving resection (surgery) alone were used to confirm the suitability of the models. The 

data was from a retrospective study in patients with gastric adenocarcinoma who underwent 

curative resection with D2 lymphadenectomy in the Barretos Cancer Hospital between January 

2002 and December 2007. The survival for this data refers to the times until death in months since 

surgery.The Log-Logistic (LL) gave the minimum value for AIC, minimum means, minimum mean 

time to cure ( ) as well as cure fraction with values (525.865, 272.671); (0.529, 0.583); (1.697, 

1.791) and (0.122, 0.123) using GCS and GCC, respectively. Also, GG gave the highest cure 

fraction with C = 0.374 and 0.599 for both GCS and GCC. Cure fraction obtained using GG 

presented the model as being best in terms of proportion to cure in GCS and GCC. The Log-

Logistic (LL) showed a promising result being the best flexible model in terms of AIC, minimum 

variance, means and mean time to cure, while Generalized Gamma performed best in terms the 

value of cure fraction which gives the proportion of cured.  

Keywords: Cure Fraction Model, Gastric Cancer, flexible Model, AIC, Mean time to cure. 

 

 

1.0 Introduction 

     Survival analysis is commonly applied in 
many fields such as biology, medicine, public 
health, and epidemiology. A distinctive 
analysis of survival data comprises the 
modelling of time-to-event data, such as the 
time until death. The time to the event of 
interest is called either survival time or failure 
time [22]. In survival analysis, a set of data 
can be exact or censored, and it may also be 
truncated. Exact data set, also known as 
uncensored data, occurs when the particular 
time until the event of interest is known. 

Censored data arises when a subject’s time 
until the event of interest is known only to 
occur in a certain period of time [22]. 
Recently, the development of new therapy has 
resulted in patients living longer with diseases 
such as cancer. The motivation of this work 
came from the fact that the achievement of 
cure is paramount in any epidemiological 
research. An effective Medical intervention is 
when a significant number of patients can be 
cured from a particular disease but due to 
some factors and different body chemistry, 
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not all patients will benefits from medical 
intervention. As medical treatments progress, 
one would like to distinguish between a 
change in the probability of cure and an 
increase in the expected survival time for 
uncured patients. The study covered four 
parametric mixture cure models and gastric 
cancer data were used to validate the most 
flexible one among the considered 
models.This paper is aimed to determine the 
flexible Parametric Cure Fraction Model for 
Survival Data, (b) to review cure fraction 
model theoretically and analytically, and (c) 
to compare the efficiency of the parametric 
cure fraction model that were considered, (d) 
to recommend for the flexible models within 
the parametric cure fraction models that best 
explain in practical situation, (d) to validate 
with hypothetical cancer data. The rest of the 
paper is organized as follows: the next 
sections briefly review some literature on cure 
models. Section 3 presents Method and model 
specification. Section 4 discusses the results. 
While the last section concludes the paper.   
 
2.0 Review of Past literatures 

Cure model was first modeled in the 
survival function of the uncured group as a 
product of the survival functions of a log-
normal distribution and some background 
distribution for the normal population [4]. 
Berkson and Gage developed Boag model and 
the model was later studied extensively by 
several authors [2]. 

 Several researchers started using a special 
case of the weighted Poisson distribution and 
formulated the long-term survival function 
[6], [18], [19] [20]. Reviewed on existing cure 
model and consideration of a fraction of long-
term survivors of time-changing risk related 
to the relapse of leukaemia observed in 
patients treated for Hodgkin's disease was 
done in 2003 [16]. 

Development about Bayesian methods for 
right censored multivariate failure time data 
for populations with a cure fraction[9] as well 
as study that found out the most commonly 
used statistical methods for evaluating 
treatment or prognostic effects on cancer 
outcome are the logrank test and Cox 

regression analysis which relies on the 
proportional hazards (PH) assumption[15]. 

Employing a competing risks model 
which is equivalent to a mixture model that is 
the prevalent technique for cure data was also 
studied [3]. Yin et al. reviewed and worked 
on unified cure rate model [21].  Lambert et 

al. improved the parametric non-mixture cure 
fraction model to incorporate background 
mortality, by promoting estimates of the cure 
fraction in population-based cancer 
investigations [10] [11] [12]. Yi Li et al. 
derived new cure models from the perspective 
of competing risks and model the dependence 
between the censoring time and the survival 
time by means of a class of Archimedean 
copula models and consider the parameter 
estimation. They considered large sample 
outcomes by applying martingale principle 
though the simulation [23]. 

 Abu Bakar et al. evaluated the cure 
fraction models and used it to monitor time 
trends in cancer patient survival which give 
valuable information to solve some problems 
with the cure fractions models [1]. Ortega, et 
al defined a negative binomial-generalized 
gamma distribution with a flexible cure rate 
survival model by assuming that the number 
of competing causes of the event of interest 
follows the negative binomial distribution and 
the time to event follows a generalized 
gamma distribution [13].  Fauzia et al 
investigate a survival model with cure fraction 
and change-point effect based on the bounded 
cumulative hazard model (BCH) [8]. 

 
3.0 Method and Model Specification 

3.1 Method 

Cure models are survival models which 
allow for a cured fraction in the study 
population. These models extend the 
understanding of time-to-event data by 
allowing for the formulation of more accurate 
and informative conclusions. These 
conclusions would otherwise be unobtainable 
from an analysis that fails to account for a 
cured fraction in the population.  

If a cured component is not present, the 
model reduces to standard approaches of 
survival model. Most cure models assume that 
the susceptible individuals are homogeneous 
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in risk [17]. The model is divided into two 
categories namely: 
 

Mixture cure model:  can estimate the 
proportion of patients cured and the survival 
function of the uncured patients [2][4]. 
Non-Mixture Cure Model or the Bounded 
Cumulative Hazard Model (BCH) 
[18][19][20]. 
3.2 Model Specification (Mixture Cure 

Model) 

     This model was first developed by Boag 
(1949) and was modified by Berkson & Gage 
(1952) which can be defined as: 

   

     
 (1)   
Where 

•    =   The survival functions of the 

entire population  

•  =   The survival functions of the 

uncured patients  

•  = 

 
 
In cure models, the population is divided into 
two sub-populations so that an individual is 
either cured with probability 1- , or has a 

proper survival function S(t), with Probability 
. 

 

3.2.1  Estimations of Cure Fraction Model 

(Mixture Cure Model) 

     The parameter of mixture cure fraction 
model was employed using Maximum 
Likelihood (ML) approach. Parameters in 
cure models can be estimated parametrically 
and non-parametrically. Thus; the estimation 
employed shall be parametric in nature. Given 
the cure model in equation (1), the estimate of 

parameter  

                (2) 

       

3.2.2 Likelihood Estimation of Cure 

Fraction Model 

     The likelihood estimation of cure fraction 
model is:  
 

        (3) 

       

=  

is zero if the patients is cured and one 

otherwise. 

 
  

  , we obtained  
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 (4) 

 (4), we have; 
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     Taking the logarithms of equation (6) to 
have the log likelihood function of cure 
model : 

 +   

 

3.3 Distributions of Cure Models 

     The Four different univariate distributions 
were examined for the mixture cure model to 
estimate the corresponding  
(Proportion of cure patients), their mean 

and variance. 

 

3.3.1 The Log Logistic Distribution 

     A random variable t is said to be 
distributed log-logistic if it pdf is given as;  
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The cdf  of  loglogistic cure model is given as  
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And the survival function is given as 
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3.3.2 Log-normal Distribution 
     A random variable t is said to be 
distributed log-normal if it pdf is given as: 

 ( )
2

log

2

1

2

1
,;








 −
−

= σ
µ

πσ
σµ

t

e
t

tf

  
t > 0, µ = 0, σ = 0             (13) 

 
The cdf of lognormal cure model is given as 
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With survival function given as  
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3.3.3 Weibull Distribution 
     A random variable t is said to follow a Weibull distribution if it satisfies the  
density function: 
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The cdf of weibull cure model is given as 
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And the survival function is given as 
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3.3.4 The Generalized Gamma Distribution 

     The density function of the generalized gamma distribution is given by 
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The cdf of generalized gamma cure model is given as 
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And the survival function is given as 
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3.4      Estimations and Inferences 

3.4.1 Estimations  
     Using log likelihood functions of cure 
models in equation 7 at a baseline 

distribution, the parameters σµ, and  can be 

found by differentiating it with respect to the 

parameters. The MLE of µ,  and C are 

obtained using numerical approach
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This is repeated for all the cure models distribution that we considered. 
 
4.0      Analysis and Results 

     The data used to validate the parametric 
cure model was a gastric data from 76 patients 
received adjuvant CRT and 125 receiving 
resection (surgery) alone. The Gastric cancer 
data were entered into excel spread sheet for 
cleaning and analysed with R version 3.22. R 
codes were used to estimate µ,  and C of the 

considered distributions as it were showcase 
in the previous chapter. 
 
4.1.1 Results  

     Table 1 is a comparison table showing the 
validation of considered distribution of 
Parametric Cure Model parameters while 
table 2 reveals the Comparison of Model 
evaluation which reveals their AIC, means, 

variance, expected mean time ( ), and c. Fig 

1 and 2 shows the Survival Plot of lognormal 
Cure Model for surgery and CRT 
respectively. Fig 3 and 4 shows the Survival 
Plot of weibull Cure Model for surgery and 
CRT respectively. Fig 5 and 6 shows Survival 
Plot of log logistic Cure model for surgery 
and CRT respectively. Fig 7 and 8 shows 
Survival Plot of generalized gamma Cure 
model for surgery and CRT respectively.            
Figures 9 and 10 show Survival Plots of 
Examined Cure Models for surgery and CRT 
respectively. 
 

 

Table 1: Distribution of Parametric Cure Model parameters (Surgery and CRT) 
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Lognormal 1) Surgery  CRT 

Parameter Coefficients Std-Error P.V Parameter Coefficients Std-Error PV 

C 0.3253112 0.1195319 0.006 C 0.5103684 0.0792443 0.000 

Alpha 2.4705506 0.3624391 0.000 Alpha 2.8472763 0.1241601 0.000 

Beta 1.2957284 0.2220184 0.000 Beta 0.4839343 0.0905987 0.000 

Weibull 2) Surgery  

CRT 

Parameter Coefficients Std-Error PV Parameter Coefficients Std-Error PV 

C 0.3710059 0.1130479 0.001 C 0.543705 0.0632408 0.000 

Alpha 0.8184908 0.1347899 0.000 Alpha 2.693517 0.4223474 0.000 

Beta 15.0576272 6.6330697 0.023 Beta 19.779680 1.6370140 0.000 

Log-logistic 3) Surgery  

CRT 

Parameter Coefficients Std-Error PV Parameter Coefficients Std-Error PV 

C 0.1219107 0.0808121 0.131 C 0.1227404 0.1196919 0.305 

Alpha 1.3003154 0.1419246 0.000 Alpha 4.6355618 0.6747078 0.000 

Beta 7.2741926 1.1404804 0.000 Beta 15.4666846 1.0737646 0.000 

Generalized 

Gamma 

4) Surgery  

CRT 

Parameter Coefficients Std-Error PV Parameter Coefficients Std-Error PV 

C 0.4283083 0.0652524 0.000 C 0.6724405 0.0502801 0.000 

Alpha 10.3233229 4.1420285 0.013 Alpha 0.5073054 0.0074725 0.000 

Beta 0.6366691 0.0930672 0.000 Beta 140.2669372 NA NA 

Theta 0.6278258 0.1297477 0.000 Theta 4.0318602 0.0597890 0.000 
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Fig 1: Survival Plot of Lognormal Cure Model (Surgery) 
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Fig 2: Survival Plot of Lognormal Cure Model (CRT) 
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Fig 3: Survival Plot of Weibull Cure Model (Surgery) 
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Fig 4: Survival Plot of Weibull Cure Model (CRT) 
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Fig 5: Survival Plot of log logistic Cure model (Surgery) 
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Fig 6: Survival Plot of log logistic Cure model (CRT) 
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Fig 7: Survival Plot of Generalized Gamma Cure model (Surgery) 
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Fig 8: Survival Plot of Generalized Gamma Cure model (CRT) 

 
Table 2: Comparison of Model evaluation 

Model evaluation(Surgery) 

Model AIC Means Variance  C 

Lognormal 570.7455 2.4705506 1.2957284 11.82902 0.3253112 

Weibull 560.2464 0.6285831 0.0291504 1.874952 0.3710059 

Log logistic 525.8647 0.5287214 0.0017197 1.696761 0.1219107 

Gen-Gamma 544.3250 0.6168598 0.0197841 1.853098 0.374726 

Model evaluation(CRT) 

Model AIC Means Variance  c 

Lognormal 311.1869 2.847263 0.4839343 17.240759 0.5103684 

Weibull 313.1283 0.6707620 0.0194086 1.955727 0.543705 

Loglogistic 272.6705 0.5828985 0.0000403 1.791227 0.1227404 

Gen-Gamma 16154.7444 0.5998050 0.0000000 1.821763 0.5998050 
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Fig 9: Survival Plots of Examined Cure Models (Surgery-Alone) 

FiF

Fig. 10: Survival Plots of Examined Cure Models (CRT-Alone) 

 

5.1 Conclusion  
     This study has been able to showed that 
generalized gamma model , gives the highest 
cure fraction (c), thus, it’s indicated that this 
model has the highest proportion to cure for 
both surgery and chemotherapy for the data 
analyzed. it was discovered that from the four 
examined parametric cure models for both 
surgery and chemotherapy, log-logistic gives 
the minimum value for AIC , minimum means 
as well as cure fraction (c) which is the 
proportion of cure patients that we  are 
interested in and minimum mean time to cure. 
The result also showed that generalized 
gamma model , gives the highest cure fraction 
(c), thus, it’s indicated that this model has the 
highest proportion to cure for both surgery 
and chemotherapy for the data analyzed. From 
the summary of the results, we can conclude 
that log logistics is the flexible best model 

that explained the gastric cancer used for the 
study in terms of AIC and means and mean 
time to cure. But using the value of c, 
generalized gamma model has the highest 
proportion of cure which we can conclude that 
the model is preferred and could be the best 
among the considered parametric cure model. 
 

Direction for Further Research 

     It was observed that the four parametric 
cure models were used on mixture cure model 
only and covariates were not included in the 
model. 
     Further research work will focus on the 
extensions of the flexible model which will be 
able to account for the non-mixture 
models.Female genital cancer from UCH 
Nigeria will be used. Thus, predictor’s 
variable will be included in the model. 
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