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Abstract 
Power Conservation is one of the most important challenges in wireless sensor networks. In this 

paper, we present a minimum-energy routing algorithm. Our main goal is to reduce power 

consumed and prolong the lifespan of the network. The protocol, named CODEXT: Coordination-

based Data dissemination for Sensor Networks eXTension, addresses the sensor networks 

consisting of mobile sinks. CODEXT which is an improvement over CODE protocol 

Coordination-based Data dissemination for sensor networks considers energy conservation not 

only in communication but also in idle-to-sleep state. Better informed routing decisions can often 

be made by sharing information among neighbouring nodes. To this end, we describe the 

CODEXT protocol, a generic outline for Wireless Sensor Network (WSN) protocols that focuses 

on locally sharing feedback with little or no overhead. This paper describes one instantiation of it, 

CODEXT protocol for optimizing routing to multiple sinks through reinforcement learning. Such a 

routing situation arises in WSNs with multiple, possibly mobile sinks, such as WSNs with 

actuators deployed in parallel to sensors. This protocol is based on GAF protocol and grid 

structure to reduce energy consumed. Our simulation results show that CODEXT gain energy 

efficiency and prolong the network lifetime. 
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1.0 Introduction 

    A wireless sensor network is randomly 
deployed by hundreds or thousands of 
unattended and constrained sensor nodes in 
an area of interest. These networking sensors 
collaborate among themselves to collect, 
process, analyze and disseminate data. In the 
sensor networks, a data source is defined as a 
sensor node that either detects the stimulus or 
is in charge of sensing requested information. 
The sources are usually located where 
environment activities of interest take place. 
A sink is defined as a user’s equipment such 
as PDA, laptop, etc. which gathers data from 
the sensor network. 
    Limitations of sensors in terms of memory, 
energy, and computation capacities give rise 
to many research issues in the wireless sensor 

networks. In recent years, a bundle of data 
dissemination protocols have been proposed 
[3]. Most of these efforts focus on energy 
conservation due to the energy limitation and 
the difficulty of recharging batteries of 
thousands of sensors in hostile or remote 
environment. Generally, the power 
consumption of sensors can be used for three 
functionalities - the power consumed for the: 
(a) transmission of packets (b) reception of 
packets and (c) the power consumed when 
the network is idle. Besides, recent studies 
have shown that radio communication 
dominates energy consumption in the sensor 
networks, rather than computation [7]; 
therefore, power conservation is an especially 



 

 

important challenge at the communication 
layers. 
    Each sensor network possesses its own 
characteristics to cater for different 
applications. An example of such 
applications is the monitoring and control of 
safety-critical military, environmental, or 
domestic infrastructure systems. Depending 
on each application, the sinks may be mobile 
while the sensors are stationary. On the other 
hand, the number of sinks may be large since 
many users may simultaneously access the 
sensor networks. In this paper, we propose 
an energy-efficient data dissemination 
approaches which have been built as an 
improvement over the CODE protocol. 
These protocols individually address the 
sensor networks consisting of mobile sinks 
and the sensor networks consisting of a large 
number of sinks. 
    The algorithm, Coordination-based Data 
Dissemination Protocol Extension (or 
CODEXT for short), addresses mobile sinks. 
The authors are motivated by the fact that 
handling mobile sinks is a challenge of 
large-scale sensor network research. Though 
many researches have been published to 
provide efficient data dissemination 
protocols to mobile sinks [9]; they have 
proposed how to minimize energy consumed 
for network communication, regardless of  
idling energy consumption. In fact, energy 
consumed for nodes while idling cannot be 
ignored [10], show that energy consumption 
for idle:receive:send ratios are 1:1.05:1.4, 
respectively. Consequently, they suggest that 
energy optimizations must turn off the radio. 
Doing this not only simply reduces number 
of packets transmitted but also conserves 
energy both in overhead due to data transfer, 
and in idle state energy dissipation when no 
traffic exists, especially in sensor networks 
with high node density. In CODEXT, we 
take into account the energy for both 
communication and idle states. CODEXT 
provides an energy efficient data 
dissemination path to mobile sinks for 
coordination sensor networks. CODEXT is 
based on grid structure and coordination 
protocol GAF [13]. The key observation 

driving the CODEXT notion is that wireless 
communication between neighbouring nodes 
is not a private, point-to-point exchange 
between them, but rather it is broadcast, 
implying that it can be received by all nodes 
within range. Extensive amounts of local 
data exist on the single nodes in a wireless 
network, which, if shared, could improve the 
performance of the routing and or 
application levels. This data is usually small, 
such as residual energy, available routes to 
sinks, route costs to specific sinks, 
application role assigned to the node, link 
quality information, etc. When shared with 
neighbours, this information could be used 
for adjusting existing routes and taking 
routing decisions to minimize costs. 
    To better understand the rest of the paper, 
the authors first describe the general protocol 
design goals of sensor networks in Section 2. 
Then in section 3 and 4, we present the 
protocol and its performance evaluation.. 
The discussion about benefit of the proposed 
approach is given right after its evaluation. 
Section 5 concludes the paper. 
 

1.1 Protocol Design Goals 

    The wireless sensor network has its own 
constraint that differs from adhoc networks. 
Such constraints make designing routing 
protocol for sensor networks very 
challenging [1]. Firstly, sensor nodes are 
limited in power, processing capacities and 
memory. These require careful resource 
management. Secondly, sensor nodes may 
not have global identifications (IDs). 
Therefore, classical IP-based protocol can 
not be applied to the sensor networks. 
Thirdly, sensor nodes might be deployed 
densely in the sensor networks. Unnecessary 
nodes should turn off its radio while 
guaranteeing connectivity of the entire 
sensor field. Fourthly, generated data traffic 
has significant redundancy in it since 
multiple sensors may generate same data 
within the vicinity of a phenomenon. Such 
redundancy needs to be exploited (through 
compression techniques) by the routing 
protocols to improve energy and bandwidth 



 

 

utilization. This will be addressed in the 
clustering algorithm to be proposed later. 
    In order to design a good protocol for the 
sensor networks, such constraints should be 
managed in an efficient manner. In this 
paper, emphases was placed on three major 
design goals in data dissemination protocol 
for wireless sensor networks. 
 

1.1.1   Energy Efficiency/Network 

Lifetime 

     Energy efficiency is the most important 
consideration due to the power constraint of 
sensor nodes. Recent studies have shown 
that radio communication is the dominant 
consumer of energy in the sensor networks. 
Most of recent publications mainly focus on 
how to minimize energy consumption for 
sensor networks. Besides, multi-hop routing 
will consume less energy than direct 
communication, since the transmission 
power of a wireless radio is proportional to 
the distance squared or even higher order in 
the presence of obstacle. However, multi-
hop routing introduces significant overhead 
for topology management and medium 
access control [1]. Another characteristic of 
the common sensor networks is that sensor 
nodes usually generate significant redundant 
data. Therefore similar packets from multiple 
nodes should be aggregated so that the 
number of packets transmitted would be 
reduced [8]. Several work, [7], [11], suggest 
that unnecessary nodes should be turned off 
to conserve energy and reduce collision. 
 

1.1.2   Latency 

    The user is interested in knowing about 
the phenomena within a given delay. 

Therefore, it is important to receive the data 
in a timely manner [5], [7]. 
 

1.1.3   Scalability 

    Scalability is also critical factor. For a 
large scale sensor network, it is likely that 
localizing interactions through hierarchical 
and aggregation will be critical to ensure 
scalability [5]. Keeping these design goals in 
mind, in this paper we propose a data 
dissemination protocols for large-scale 
sensor networks to achieve energy efficiency 
while guaranteeing a comparable latency 
with existing approaches. 
 

1.2 CODEXT: A Coordination-Based 

Data Dissemination Protocols To 

Mobile Sink 

    CODEXT addresses the sensor networks 
consisting of mobile sinks. In CODEXT, we 
rely on the assumptions that all sensor nodes 
are stationary. Each sensor is aware of its 
residual energy and geographical location. 
Once a stimulus appears, the sensors 
surrounding it collectively process the signal 
and one of them becomes the source to 
generate data report. The sink and the source 
are not supposed to know any a-priori 

knowledge of potential position of each 
other. To make unnecessary nodes stay in the 
sleeping mode, CODEXT is deployed above 
GAF-basic protocol [10]. Fig.1 depicts 
CODE general model where the routing 
algorithm is implemented above the GAF 
protocol. In this paper, we only focus on 
CODEXT routing algorithm. Details of GAF 
algorithm can be referred in [13]. 

 
 

 
                                            Fig.1.CODEXT System Model 

    



 

 

    The basic idea of CODEXT is to divide 
sensor field into grids. Grids are indexed 
based on its geographical location. 
According to GAF, each grid contains one 
coordinator which acts as an intermediate 
node to cache and relay data. CODEXT 
consists of three phases: data announcement, 
query transfer and data dissemination. As a 
stimulus is detected, a source generates a 
data-announcement message and sends to all 
coordinators using simply flooding 
mechanism. Each coordinator is supposed to 
maintain a piece of information of the source 
including the stimulus and the source’s 
location. As a mobile sink joins in the 
network, it selects a coordinator in the same 
grid to act as its Agent. When it needs data, it 
sends a query to this Agent. The Agent is in 
charge of forwarding the query to the source 
based on the target’s location and grid IDs. 
An efficient data dissemination path is 
established while the query traverses to the 
source. Receiving a query, the source sends 
the data to the sink along the data 
dissemination path. The Agent helps the sink 
to continuously keep receiving data from the 
source when the sink moves around. 
Periodically, the sink checks its location. If 
the sink moves to another grid, it first sends 
cache-removal message to clear out the 
previous data dissemination path and then re-
sends a query to establish a new route. 
 

1.3   CODEXT  Theory 

A. Grid Indexing 
    We assume that we have partitioned the 
network plane in virtual MxN grids (for 
example in Fig.2 that is 3x2 grids). Each grid 
ID which has a typed [CX.CY] is assigned as 
follows: at the first row, from left to right, 
the grid IDs are [0.0], [1.0], and [2.0]. 
Likewise, at the second row, grid IDs are 
[0.1], [1.1], and [2.1] and so forth. To do 
this, based on the coordinate (x, y), each 
node computed itself CX and CY:  
  

     (1) 
  
where r is the grid size and [x] is largest 
integer less than x. 

 
Fig.2.Grid Indexing 

B. CODEXT Algorithms 

a) Data Announcement 

    When a stimulus is detected, the source 
propagates a data-announcement message to 
all coordinators using simply flooding 
mechanism. Every coordinator stores a few 
piece of information for the data 
dissemination path discovery, including the 
information of the stimulus and the source 
location. In this approach, the source 
location does not mean the precise location 
of the source, but its grid ID. Since the 
coordinator role might be changed every 
time, the grid ID is the best solution for 
nodes to know the target it should relay the 
query to. To avoid keeping data-
announcement message at each coordinator 
indefinitely, a source includes a timeout 

parameter in data-announcement message. If 
this timeout expires and a coordinator does 
not receive any further data-announcement 

message, it clears the information of the 
stimulus and the target’s location to release 
the cache. 
 

b) Query Transfer 

    Every node is supposed to maintain a 
Query INformation Table (hereafter called 
QINT) in its cache. Each entry is identified 
by a tuple of (query, sink, uplink) (sink is the 
node which originally sends the query; 
uplink is the last hop from which the node 
receives the query). By definition, two 
entries in QINT are identical if all their 



 

 

corresponding elements are identical. For 
example in Fig.3, node n1 and node n2 
receive a query from sink1 and sink2, 
therefore it maintains a QINT as Fig.4. 

 
 

Fig.3.Query Transfer And Data 

Dissemination Path Setup 

 

 
                        Fig.4.Query Information Table Maintained At Nodes n1 and n2 

 
    Receiving a query from an uplink node, a 
node first checks if the query exists in its 
QINT. If so, the node simply discards the 
query. Otherwise, it caches the query in the 
QINT. Then, based on target’s location 
stored in each coordinator, it computes the 
ID of next grid to forward the query. This 
algorithm is described in Fig.5. In this figure, 
NODE is the current node handling the query 
packet and src_addr contains the target’s 
location. If NODE is the source, it starts 
sending data along the data dissemination 
path. Otherwise, it finds the next grid which 
is closest to the target to relay the query. In 
case the next grid contains no node (so-
called void grid) or the next grid’s 
coordinator is unreachable, it tries to find a 
round path. To do this, it first calculates the 
disparity, δCX, δCY_.. 

 
The next grid will be 
NextGrid.CX = NODE.CX δCX 

NextGrid.CY = NODE.CY δCY 

 
Fig. 5. Pseudo-Code of Finding Next  

Grid ID Algorithm



 

 

 
 

   Each node is supposed to maintain a one-

hop-neighbour table. (i.e. information about 
its one-hop neighbours). If a node can not 

find the next grid’s coordinator in this table, 
it considers that grid as a void grid

. 

 
Fig.6.Multi-Hop Routing Through Coordinators 

 
 
For example in Fig.6, the sink1 sends query 
to the source src along the path [4.1], [3.2], 
[2.3], [1.3], [0.3]. However, with the sink2, 
the grid [3.0]’s coordinator can not find grid 
[2.1]’s neighbour (due to void grid) and grid 
[3.1]’s coordinator also can not find grid 
[2.2]’s neighbor (due to unreachable node) in 
its one-hop-neighbour table. Therefore, it 
finds the round path as [3.1], [3.2], [2.3], 
[1.3], [0.3]. A data dissemination path is 
discovered by maintaining a QINT at each 
intermediate node. A query from a sink is re-
transmitted when the sink moves to another 
grid. The path length of each neighbour for 
each sink are stored in a Neighbour Table, 
e.g.,  
1:     init: 
2:     CODEXT.init(); 
3:     routeData(DATA): 
4:    
CODEXT.updateFitness(DATA.Routing,   

 DATA.Feedback); 
5:     if (myAddr in Routing) 
6:         if (explore) 
7:     possRoutes =   

PST.getAllRoutes(DATA.Routing.si
nks); 

8:     route = explore.select(possRoutes); 
9:     else 
10:   route =  

CODEXT.getBestRoute(DATA.Rout
ing.sinks); 

11:   DATA.Feedback.value =   
CODEXT.getBestCost(DATA.Routi
ng.sinks); 

12:   DATA.Routing = route; 
13:   sendBroadcast(DATA); 
 
Fig. 7. CODEXT Pseudo Code 

Initialization And Processing Of One 

DATA Packet

 

c) Data Dissemination 
A source starts generating and transmits 

data to a sink as it receives a query. Upon 
receiving data from another node, a node on 
the dissemination path (including the source) 
first checks its QINT if the data matches to 
any query to which uplinks it has to forward.           
If it finds that the data  
 
 

matches several queries but with the same 
uplink node, it forwards only one copy of 
data. Doing this reduces considerable 
amount of data transmitted throughout the 
sensor network. For example in Fig.4, node 
n1 receives the same query A of sink1 and 
sink2 from the same uplink node (n2). 
Therefore, when n1 receives data, it sends 
only one copy of data to n2. Node n2 also 
receives the same query A of sink 1 and sink 
2 but from different uplink nodes (n3, n4). 



 

 

Thus, it must send two copies of data to n3 
and n4. Likewise, the data is relayed finally 
to the sinks. 
                                       

2.0  Handling Sink Mobility 
    CODEXT is designed for mobile sinks. In 
this section, the authors describe how a sink 
keeps continuously receiving updated data 
from a source while it moves around within 
the sensor field. 
    Periodically, a sink checks its current 
location to know which grid it is located. 
The grid ID is computed by the formula (1). 
If it is still in the same grid of the last check, 
the sink does nothing. Otherwise, it first 
sends a cache-removal message to its old 
Agent. The cache-removal message contains 
the query’s information, the sink’s 
identification and the target’s location. The 
old Agent is in charge of forwarding the 
message along the old dissemination path as 

depicted in Fig.8. After receiving a cache-

removal message, a node checks its QINT 
and removes the matched query. When this 
message reaches the source, the whole 
dissemination path is cleared out, i.e. each 
intermediate node on the path no longer 
maintains that query in its cache. 
Consequently, the source stops sending data 
to the sink along this dissemination path. 
After the old dissemination path is removed, 
the sink re-sends a query to the target 
location. A new dissemination path is 
established as described in section (b) above. 
By doing this, the number of queries which 
is needed to be re-sent is reduced 
significantly compared with other 
approaches. Hence, collision and energy 
consumption is reduced. Also, the number of 
lost data packet is decreased. In case the sink 
moves into a void grid, it selects the closest 
coordinator to act as its Agent. 

 
Fig.8.Handling Sink Mobility 

 

2.1  CODEXT Performance 

A. Simulation Model 
    Here, the authors developed a simulator 
based on OMNET++ simulator to evaluate 
and compare CODEXT to other approaches 
such as Directed Diffusion (DD) and CODE. 
To facilitate comparisons with CODE and 
DD, we use the same energy model used in 
n2 that requires about 0.66W, 0.359W and 
0.035W for transmitting, receiving and 
idling respectively. The simulation uses 
MAC IEEE 802.11 DCF that OMNET++ 
implements. The nominal transmission range 
of each node is 250m, [13]. 

    Our goal in simulating CODEXT is to 
examine how well it actually conserves 
power, especially in dense sensor networks. 
In the simulation, we take into account the 
total energy consumed for not only 
transmitting, receiving but also idling. The 
sensor network consists of 400 sensor nodes, 
which are randomly deployed in a 
2000mx2000m field (i.e. one sensor node per 
100mx100m grid). Two-ray ground is used 
as the radio propagation model and an omni-
directional antenna having unity gain in the 
simulation. Each data packet has 64 bytes, 
query packet and the others are 36 bytes 



 

 

long. The default number of sinks is 8 
moving with speed 10 m/sec (i.e. the fastest 
human speed) according to random way-

point model (David B, J and David A.M 
1996). Two sources generate different 
packets at an average interval of 1 second. 
Initially, the sources send a data-
announcement to all coordinators using 
flooding method. When a sink needs data, it 
sends a query to its Agent. As a source 
receives a query, it starts generating and 
sends data to the sink along the data 
dissemination path. The simulation lasts for 
200 seconds. Four metrics are used to 
evaluate the performance of CODEXT. The 
energy consumption is defined as the total 
energy network consumed. The success rate 
is the ratio of the number of successfully 
received packets at a sink to the total number 
of packets generated by a source, averaged 
over all source-sink pairs. The delay is 
defined as the average time between the time 
a source transmits a packet and the time a 
sink receives the packet, also averaged over 
all source-sink pairs. We define the network 
lifetime as the number of nodes alive over 
time. 
 

2.2  Performance Results 

a) Impact of Sink Number 

    The impact of the sink number on 
CODEXT is first of all studied. In the default 
simulation, we set the number of sink 
varying from 1 to 8 with the max speed 
10m/s and a 5-second pause time.  

 
Fig.8.Energy Consumption For Different 

Numbers Of Sinks 

 

Fig.8 shows total energy consumption of 
CODEXT. It demonstrates that CODEXT is 
more energy efficient than other source 
protocols. This is because of three reasons. 
Firstly, CODEXT uses QINT to efficiently 
aggregate query and data along data 
dissemination path. This path is established 
based on grid structure. Hence CODEXT can 
find a nearly straight route between a source 
and a sink. Secondly, CODEXT exploits 
GAF protocol, so that nodes in each grid 
negotiate among themselves to turn off its 
radio. Thirdly CODEXT uses the concept of 
SHARING TREE. The goal in CODEXT is 
to route the data to multiple sinks. Because 
standard routing tables show single sink 
routes, we need a new data structure to 
manage options for routing data through 
different combinations of neighbours to 
reach different combinations of multiple 
sinks. For this, we use the CODEXT Sharing 
Tree, a data structure that allows for easy 
selection of the next hop(s) for a given set of 
sinks. The name CODEXT sharing tree 
derives from the tree shape of the data 
structure, as well as our goal to allow a 
single packet to share a path as it travels to 
multiple sinks. This section outlines the key 
properties of the CODEXT [5]. 

 

 
Figure 9:  The Neighbour Table For A Sample 

“Home Node” And Part Of Its Corresponding 

CODEXT Sharing Tree 

 

2.2.1   Functionality Of The CODEXT 

Sharing Tree 

    The CODEXT sharing tree is maintained 
at each node to keep all possible routes to all 
sinks through all combinations of 
neighbours. It is worth noting that each node, 
referred to as the home node in its CODEXT 
sharing tree, maintains only one sharing tree, 
independent of the number of sources, sinks, 

CODEX
T 

CODE 



 

 

and neighbours. Here we explore the 
CODEXT sharing tree through its interface. 
init(): The CODEXT sharing tree is 
initialized with data contained in the 
Neighbour Table. Here, we illustrate the 
CODEXT sharing tree contents through the 
small example in Figure 9 where the home 
node has 2 neighbours, N1 and N2, and the 
system has 3 sinks, A, B, and C. The 
intention is to use the CODEXT sharing tree 
to select the neighbours to serve as the next 
hop(s) for each of the destination sinks. As 
the goal is to share the routes as much as 
possible, the options of using a single 
neighbour to serve multiple sinks are 
considered. To illustrate the routing choices 
available, we observe that N1 can route 
packets toward any of the following 
neighbour combinations: {A}, {B}, {C}, 
{A,B}, {A,C}, {B,C}, {A,B,C}. The same 
subsets can be reached through N2. To select 
the next hops for all sinks, we must choose 
sets of these neighbour combinations, such 
that their union includes all desired sinks 
exactly once. For example, to route a packet 
to all three sinks, we could select {A,B}N1 
and {C}N2, where the subscript indicates the 
neighbour to which the combination belongs. 
Alternately, {A,B,C}N1 is sufficient. The set 
of all possible routes for all three sinks is the 
brute force combination of all neighbour 
combinations. To structure these choices, a 
tree is constructed where each node is a 
neighbour combination. In this tree, a path 
from any leaf to the root represents a routing 
option to reach all of the sinks. For example, 
in Figure 9, the path from the first leaf to the 
home node (the tree’s root) corresponds to 
the first selection above. The final 
initialization step annotates each node of the 
CODEXT sharing tree with it fitness value, 
update Fitness(route, f). As previously 
observed, fitness values are initial estimates 
which are updated as the system receives 
new fitness values through the feedback 
mechanism of the CODEXT 
FRAMEWORK. 
    Therefore, whenever a packet is 
overheard, its feedback values are used to 
update the corresponding neighbour 

combinations, the node(s) in the CODEXT 
sharing tree. update Tree(): Each time the 
Neighbour Table changes due to the 
insertion or deletion of a neighbour or sink, 
the CODEXT sharing tree must be updated. 
Since the fitness values are calculated only at 
initialization and updated later through 
feedback, it is important not to lose them 
during an update. Therefore, rather than 
rebuild the CODEXT sharing tree from 
scratch, an update function that makes only 
the required changes is provided. 
 
GetAllRoutes(sinkSet) 

    Every packet carries the subset of sinks 
that it should be routed to by the receiving 
node. The CODEXT sharing tree has the 
responsibility to take this subset and 
enumerate the possible options for the next 
hop(s). These options can be visualized as a 
set of partial paths in the CODEXT sharing 
tree starting at the home node. Each path 
must include PST nodes, which union 
includes exactly the destination sinks. 
getBestRoute(sinkSet): During the stable 
phase of our CODEXT protocol, we rotate 
among all available best routes for a 
specified sink subset. For convenience, we 
place the responsibility for balancing the 
selection among multiple options inside the 
CODEXT sharing tree, providing a single 
function that returns only one route. 
Therefore, it reduces significantly energy 
consumption. In contrast, DD (Direct 
Diffusion) always propagates the new 
location of sinks throughout the sensor field 
in order for all sensor nodes to get the sink’s 
location. In CODE, the new multi-hop path 
between the sink and the grid is rebuilt. Also, 
data dissemination path of CODE is along 
two sides of a right triangle. 
    Fig.10 demonstrates the average end-to-
end delay of CODEXT. As shown in this 
figure, the delay of CODEXT is shorter than 
CODE and slightly longer than DD. In 
Fig.10, it shows that the success rate of 
CODEXT is always above 90 percent. It 
means that CODEXT delivers most of data 
successfully to the multiple sinks.  



 

 

 
Fig.10 .Delay For Different Numbers Of 

Sinks 

 

 
Fig.11. Success Rate For Different Numbers 

Of Sinks 
2.2.2  Impact of Sink Mobility 

    In order to examine the impact of sink 
mobility, CODEXT is measured for different 
sink speeds (0 to 30 m/sec). In this 
experiment, the network consists of 8 mobile 
sinks and 400 sensor nodes.  

 
Fig.13.  Delay For Different Sink Speeds 

 

 
Fig.14. Success Rate For Different Sink 

Speeds 

 

    Fig.12 demonstrates total energy 
consumed as the sink speed changes. In both 
low and high speeds of the sinks, CODEXT 
shows the total energy consumed is better 
than other protocols, about twice less than 
CODE and three times less than DD. The 
reason is that, aside from above 
explanations, the mobile sink contact with 
the coordinator to receive data while it is 
moving. Thus, the query only needs to 
resend as it moves to another grid. Fig.13 
shows the delay of CODEXT which is 
comparable with CODE and longer than DD. 
In Fig.14, the success rate is also above 90 
percent. These results show that CODEXT 
handles mobile sinks efficiently. 
 

2.2.3   Impact Of Node Density 

     To evaluate the impact of node density on 
CODEXT, we vary the number of nodes 
from 300 (1 node/cell on average) to 600 
nodes (2 nodes/cell). Eight sinks move with 
speed 10m/sec as default. Fig.15 shows the 
energy consumption at different node 
densities. In this figure, CODEXT 
demonstrates better energy consumption than 
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T 

CODE 
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T 

CODE 

DD 

DD 
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other protocols. As the number of nodes 
increase, the total energy consumption 
slightly increases. This is because of turning 
off node’s radio most of the time. Therefore, 
energy is consumed mostly by the 
coordinators. While in CODE and DD, nodes 
which don’t participate in communication 
still consume energy in sleeping mode.  

 
Fig.15 .Energy Consumption For 

Different Node Density 

 

2.2.4  Network Lifetime 

    In this experiment, the number of sinks is 
8 moving with speed 10 m/sec. The number 
of sensor nodes is 400. A node is considered 
as a dead node if its energy is not enough to 
send or receive a packet. Fig.15 shows that 
number of nodes alive of CODEXT is about 
60 percent higher than CODE at the time 
600sec. This is due to two reasons: The first 
is that CODEXT focuses on energy 
efficiency. The second is that rotating 
coordinators distribute energy consumption 
to other nodes, thus nodes will not quickly 
deplete its energy like other approaches. 
CODEXT concentrates on dissemination 
nodes to deliver data, therefore such nodes 
will run out of energy quickly. We do 
believe that when the node density is higher, 
the lifetime of CODEXT will be prolonged 
much more than other approaches.  

 
Fig.16.   Number Of Node Alive Over 

Time 

2.3   Conclusion 

    Many sensor network protocols have been 
developed in recent years. [2], [4], [12]. One 
of the earliest work, SPIN [3] addresses 
efficient dissemination of an individual 
sensor’s observation to all the sensors in the 
network. SPIN uses meta-data negotiations 
to eliminate the transmission of redundant 
data. Directed Diffusion [3] and DRP [7] are 
similar in that they both take the data-centric 
naming approach to enable in-network data 
aggregation. In Directed Diffusion, all nodes 
are application-aware. This enables diffusion 
to achieve energy saving by selecting 
empirically good paths and by caching and 
processing data in-network. DRP exploits 
application-supplied data descriptions to 
control network routing and resource 
allocation in such a way as to enhance 
energy efficiency and scalability. GRAB 
[14] targets at robust data delivery in an 
extremely large sensor network made of 
highly unreliable nodes. It uses a forwarding 
mesh instead of a single path, where the 
mesh’s width can be adjusted on the fly for 
each data packet. GEAR [14], uses energy 
aware neighbour selection to route a packet 
towards the target region. It uses Recursive 
Geographic Forwarding or Restricted 
Flooding algorithm to disseminate the packet 
inside the destination regions. 
    While such previous work only addresses 
the issue of delivering data to stationary 
sinks, other work such as CODE [6], SEAD 
[2] and SAFE [9], [3] target at efficient data 

CODE 

CODEXT CODE 



 

 

dissemination to mobile sinks. CODE 
exploits local flooding within a local cell of a 
grid which sources build proactively. Each 
source disseminates data along the nodes on 
the grid line to the sink. However, it does not 
optimize the path from the source to the 
sinks. When a source communicated with a 
sink, the restriction of grid structure may 
multiply the length of a straight line path by 
2. Also, CODE frequently renews the entire 
path to the sinks. It therefore increases 
energy consumption and the connection loss 
ratio. SAFE uses flooding that is 
geographically limited to forward the query 
to nodes along the direction of the source. 
SAFE uses geographically limited flooding 
to find the gate connecting itself to the tree. 
Considering the large number of nodes in a 
sensor networks, the network-wide flooding 
may introduce considerable traffic. Another 
data dissemination protocol, SEAD, 
considers the distance and the packet traffic 
rate among nodes to create near-optimal 

dissemination trees. SEAD strikes a balance 
between end-to-end delay and power 
consumption that favors power savings over 
delay minimization. SEAD is therefore only 
useful for applications with less strict delay 
requirements. 
    CODEXT differs from such protocols in 
three fundamental ways. First, CODEXT 
exploits GAF protocol [13] to reduce energy 
consumption and data collision while the 
nodes make decision to fall into sleeping 
mode. Second, based on grid structure, 
CODEXT can control the number of 
transmitted hops and disseminates data along 
a path shorter than others such as CODE. 
Third, the number of re-transmitted queries 
is reduced by maintaining an Agent to relay 
data to the sink when it moves within a grid. 
In addition, CODEXT takes into account of 
query and data aggregation [5], [6] to reduce 
the amount of data transmitted from multiple 
sensor nodes to sinks like other approaches. 

___________________________________________________________________________ 
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