Recurrent Pericardial Effusion Associated with Hypothyroidism in Down Syndrome: A Case Report

Épanchement Péricardique Récurrente Associée à l’hypothyroïdie dans les Le Syndrome de Down: A Propos D’un Cas

M. U. Anah*, V. O. Ansa‡, A. U. Etiuma§, E. E. Udoh†, E. O. Ineji†, A. A. Asindi†

ABSTRACT
BACKGROUND: The complex of Down Syndrome-hypothyroidism-pericardial effusion is largely unreported in sub-Sahara.

OBJECTIVE: To present and highlight an unusual manifestation of hypothyroidism.

METHODS: A 16-year-old girl with confirmed Down Syndrome presented with complaints of generalised body swelling of eight months’ duration. Her work-up consisted of full clinical and laboratory evaluation including ECG and echocardiography.

RESULTS: The patient was diagnosed of Down’s Syndrome at birth but was lost to follow-up after at eight years of age. Body swelling was associated with clinical features of heart failure. Echocardiography showed massive pericardial effusion. Serum l-thyroxine was less than 0.5 µg/dl and TSH >40iu/l. The heart failure and menstrual irregularities responded to l-thyroxine therapy.

CONCLUSION: This appears to be the first report of the complex of Down syndrome, hypothyroidism and pericardial effusion in a Nigerian child. Thyroid function test is therefore recommended as a part of baseline investigation for Nigerian children with Down syndrome as is the practice. WAJM 2011; 30(3): 210–213.

Keywords: Hypothyroidism, Pericardial effusion, Down syndrome, L-thyroxine therapy, Case report.
INTRODUCTION
Thyroid disorders occur in patients with Down syndrome (DS) with hypothyroidism being more common than hyperthyroidism. This necessitated the American Academy of Paediatrics to recommend routine screening for thyroid function in children with DS but such a policy does not exist in Sub-Saharan Africa.

The occurrence of pericardial effusion (PE) in patients with DS secondary to hypothyroidism is common but apparently infrequently reported in Africa. We report a case of recurrent PE in a child with DS as a first sign of hypothyroidism, which resolved on thyroxine therapy.

CASE REPORT
History
A 16-year-old female with Down syndrome (DS) was admitted into the paediatric ward of University of Calabar Teaching Hospital (UCTH), Calabar, of Southern Nigeria on February 9, 2007 with complaints of generalized body swelling that started with progressive abdominal distension, involving the feet and face of eight months duration, cough of six months duration with difficulty in breathing, easy fatigability, orthopnoea, and paroxysmal nocturnal dyspnoea. Her menarche was five months before presentation but had ceased. She had received all routine immunizations at infancy.

The child was born in UCTH at term to a mother and father whose ages were 36 and 44 years respectively at the time of delivery. Features of DS were apparent at birth and she was being regularly seen on outpatient clinic before being lost to follow-up from the age of eight years.

Physical Examination
On physical examination, the weight was 34kg, height 125cm, occipito-frontal circumference 48cm. She had facial puffiness and pedal oedema. She was not hypothermic and was alert. There was no lymphadenopathy or finger clubbing. The radial pulse rate was difficult to palpate but she had a heart rate of 96 beats per minute. The blood pressure was 90/60mmHg. The jugular venous pressure was raised. The cardiac apical impulse was not visible and the apex beat was not felt. Heart sounds were muffled and distant. There was no heart murmur.

The liver was palpable eight cm below the right costal margin, firm, with a smooth surface and distinct border but non-tender. There was no demonstrable ascites.

Laboratory Evaluation
Laboratory tests revealed normal haemogram, liver function test, electrolytes and urea; haemoglobin genotype was AA (Table 1). The erythrocyte sedimentation rate was raised (57mm/hour, Westergren). HIV Screening was non-reactive and the Mantoux test was negative. A plain chest radiograph demonstrated cardiomegaly (Figure 1).

A transthoracic echocardiographic examination demonstrated massive pericardial effusion (PE) measuring 32mm in the posterior A-V groove with the heart swinging in the fluid. No diastolic collapse of the right ventricle and right atrium was noticed and no structural defect was demonstrable in the heart. The electrocardiogram (ECG) showed low voltages.

The patient was treated with frusemide and spironolactone. On the ninth day of admission, a pericardiocentesis was undertaken with 160 ml of straw-coloured fluid drained. The cytology of the fluid showed no malignant cells and the culture yielded no bacterial growth. Facilities for viral serology were not available in our centre. No biochemical analysis was done on the fluid. The patient consequently improved and was discharged home for follow-up. There was a gradual re-accumulation of the pericardial fluid on echocardiographic examinations done fortnightly. BCG vaccine administered for an accelerated reaction was negative. Thyroid function test (TFT) was requested but the parents could not readily pay for the test. She had to be readmitted because the PE had increased enormously three months after the first tap. She was found to be tachypnoeic with a respiratory rate of 34/min, cyanosed with swollen eyes, pulse rate was 64/min, BP 100/70 mm of Hg and the liver 10 cm below the costal margin, firm and tender. The jugular venous pressure was raised. The patient became lethargic but fully conscious. Echocardiography confirmed cardiac tamponade with diastolic collapse of the right ventricle. A second pericardiocentesis was therefore undertaken which yielded 625mls of straw-coloured fluid.

Table 1: Results of Haematological and Biochemical Investigations

<table>
<thead>
<tr>
<th></th>
<th>Normal Values</th>
<th>At Admission</th>
<th>3rd Month of Treatment</th>
<th>6th Month of Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haemoglobin</td>
<td>>12 g/dl</td>
<td>9.7</td>
<td>10.2</td>
<td>11.4</td>
</tr>
<tr>
<td>Leucocytes</td>
<td>5.9 X 10⁹</td>
<td>6.0</td>
<td>6.4</td>
<td>6.2</td>
</tr>
<tr>
<td>Lymphocytes</td>
<td>40%</td>
<td>51.0</td>
<td>57.0</td>
<td>55.0</td>
</tr>
<tr>
<td>Neutrophils</td>
<td>60%</td>
<td>45.0</td>
<td>38.0</td>
<td>42.0</td>
</tr>
<tr>
<td>Platelet</td>
<td>200-400</td>
<td>220.0</td>
<td>260.0</td>
<td>262.0</td>
</tr>
<tr>
<td>ESR</td>
<td>0-20mm/hr</td>
<td>57.0</td>
<td>30.0</td>
<td>20.0</td>
</tr>
<tr>
<td>Sodium</td>
<td>132-145mmol/L</td>
<td>139.0</td>
<td>140.0</td>
<td>140.0</td>
</tr>
<tr>
<td>Potassium</td>
<td>3.2-5.0mmol/L</td>
<td>4.3</td>
<td>4.1</td>
<td>4.4</td>
</tr>
<tr>
<td>Creatinine</td>
<td>88.6-177 µmol/L</td>
<td>121.0</td>
<td>146.0</td>
<td>143.0</td>
</tr>
<tr>
<td>Urea</td>
<td>2.5-6.7 mmol/L</td>
<td>2.3</td>
<td>2.8</td>
<td>2.9</td>
</tr>
<tr>
<td>Bicarbonate</td>
<td>22-28 mmol/L</td>
<td>24.0</td>
<td>24.0</td>
<td>24.0</td>
</tr>
<tr>
<td>Proteins (Total)</td>
<td>62-82 g/L</td>
<td>61.0</td>
<td>77.0</td>
<td>77.0</td>
</tr>
<tr>
<td>Albumin</td>
<td>36-52 g/L</td>
<td>42.0</td>
<td>49.0</td>
<td>50.0</td>
</tr>
<tr>
<td>Globulin</td>
<td>18-36 g/L</td>
<td>19.0</td>
<td>28.0</td>
<td>27.0</td>
</tr>
<tr>
<td>Tri-iodothyroxine</td>
<td>0.8-2.1 µg/dl</td>
<td><0.4</td>
<td>1.2</td>
<td>1.9</td>
</tr>
<tr>
<td>L-thyroxine</td>
<td>4-12 µg/dl</td>
<td><0.5</td>
<td>7.0</td>
<td>7.8</td>
</tr>
<tr>
<td>TSH</td>
<td>0.5-5.1 µu/L</td>
<td>>40</td>
<td>4.7</td>
<td>4.8</td>
</tr>
</tbody>
</table>

Note: The urea, electrolytes and creatinine were of normal values. Thyroid function tests were first done on second admission.
The result of the TFT showed a very low thyroxine (T4<0.5 µg/dl) and a very high thyroid stimulating hormone (TSH>40mU/l) levels confirming hypothyroidism. There was no facility to determine thyroid antibodies. She was commenced on levo-thyroxine 50µg twice daily for 3 months and this was reduced to once daily when the TFT returned to normal (Table 1). Improvements in symptoms, normalization of chest radiograph (Fig. 1), ECG, TFT and echo (Fig. 2) were observed at 3 months of therapy. The menstrual periods became regular and the patient did not re-accumulate fluid. She is still on a regular follow up.

DISCUSSION
Hormonal changes such as hypo/hyperthyroidism in association with DS are common but no clear cut explanation has been offered for this association. Hypothyroidism causes increased capillary permeability and subsequent leakage of proteins into the interstitial space resulting in pericardial effusion.

Down Syndrome is a fairly common condition in Nigeria but to the best of our knowledge, hypothyroidism with PE as a complication has not been reported. This might have made the consideration of infective cause, probably tuberculosis comparatively high and that of the triple complex of DS-Hypothyroidism-PE low in the list of differentials in this patient. Endomyocardial fibrosis was excluded since our patient had a structurally normal heart though Croti et al had reported inter-atrial communication with PE in Down Syndrome.

It is unlikely congenital hypothyroidism was the cause, because the signs would have presented earlier. In an observational study based on yearly follow-up of patients with DS for 25 years, Karlsson et al observed that acquired hypothyroidism was commoner after the age of eight years. The age of our patient being 16 years supports the possibility of an acquired type.

Hypothyroidism and DS tend to share the same clinical features hence both conditions can be confused. A history of menstrual irregularity was admitted but this was not linked to hypothyroidism since they could have other causes. Short stature, hypotonia and mental retardation are features common to both conditions.

Our patient had pitting pedal oedema with no clear cut features of myxedema. This was attributed to cardiac failure. Unexpectedly, the pulse rates and the blood pressure were normal but these have been reported by others. Bradycardia and low BP are expected in hypothyroid patients. The pericardial fluid was straw-coloured similar to that seen in tuberculosis as against the typical yellow and opalescent fluid of PE due to hypothyroidism called “Gold Paint” effusion. This is attributed to the fibrin, red blood cells, lymphocytes, proteins and cholesterol content of the fluid. We did not analyse the fluid.

Our patient had cardiac tamponade before the second pericardiocentesis, a complication known to be rare in this triple complex. Hypothyroidism usually causes slow accumulation of fluid in the pericardium thus allowing for the distensibility of the pericardium to cope adequately. This was not the case with this patient; there was rapid re-accumulation of fluid as the amount (625ml) drained was quite voluminous. Toorians and van Ekelen had observed a similar rapid re-accumulation of fluid within eight weeks following pericardiocentesis in their patient. No explanation has been advanced for this rapid re-accumulation of pericardial fluid. However, close monitoring and early commencement of thyroxine have been

Fig. 1: Chest X-rays of Patient. Massive Cardiac Shadow before Peri-cardiacentesis; Cardiac size before commencement of Thyroxine; reduced Cardiac size following three months of L-thyroxine.

Fig. 2: Echo demonstrations of Pericardial Effusion. Showing massive PE measuring 32mm but reducing after pericardiocentesis and thyroxine therapy.
shown to reduce this recurrence as was the case with our index patient who did not re-accumulate fluid after commencement of thyroxine.

There is no policy on the screening for thyroid disorders in patients with DS in Africans since hypothyroidism in DS is reported to be rare even among African Americans.12 The American Academy of Paediatrics policy on routine screening led to increased detection and treatment of hypothyroidism in children with DS. Our patient would have benefitted if there was a policy in place.

In conclusion, this case report is an eye opener to the issue that this triple complex of DS, hypothyroidism and PE may not be rare among Nigerian children. A close monitoring of all DS children for early signs of hypothyroidism and a policy on the routine screening for thyroid disorders in patients with DS are advocated.

REFERENCES