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Abstract—The distribution and abundance of the sponge Spheciospongia 
vagabunda (Ridley, 1884) was investigated in a shallow lagoon (Albion) of 
Mauritius (Western Indian Ocean). Sponge abundance and environmental 
parameters were assessed. Sponges in Albion lagoon were mostly distributed in 
the central part of the lagoon some distance from wave action. Two distinctive 
sponge patches were found, the largest patch being 15350 m2 in area. Unlike most 
Porifera, S. vagabunda was mostly anchored in sand and not on hard substratum. A 
t-test revealed a significant difference in sponge size between sponge assemblages 
(t = 3.01; p < 0.05). One-way ANOVA indicated that environmental parameters did 
not influence sponge abundance within the lagoon (p <0.05). This study provides 
a baseline for future monitoring of these benthic animals in the Albion lagoon.
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INTRODUCTION

The Phylum Porifera is the oldest metazoan 
group found in our oceans (Müller, 1995). 
They have highly effective chemical defences 
to discourage predators, contributing to their 
evolutionary success (Finks, 1970; Randall 

& Hartman, 1968). Sponges are widely 
represented in freshwater (Cocchiglia et al., 
2013) as well as in most marine ecosystems 
(Worheide et al., 2012). 

Spheciospongia vagabunda (Ridley, 
1884) is an Indo-Pacific sponge (Family 
Clionaidae) found in coastal lagoons (Levi, 
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1998; Sutcliffe et al., 2010). Sponges of 
the genus Spheciospongia have been most 
documented in Singapore (Cheng et al., 
2008; Lim et al., 2012). Spheciospongia 
vagabunda is very well adapted to shallow 
water environments Cheng et al., 2008) and 
has the ability to survive in the intertidal zone 
(Lim et al., 2012).

Sponges are of ecological and 
biopharmaceutical importance. Polychaetes, 
molluscs and crustaceans have been found 
associated with Spheciospongia spp. (Pearse, 
1950; Westinga & Hoetjes, 1981) and bioactive 
compounds such as glycolipids (Costantino 
et al., 2008) and sterols (Arreguin-Espinosa 
et al. 1999) have been extracted from 
Spheciospongia vesparium (Lamarck, 1815). 
Two new O-glycosylated angucyclines were 
recently isolated from S. vagabunda from the 
Red Sea (Abdelmohsen et al., 2014). 

The distribution of sponges usually 
depends on a number of physical and biological 
parameters (Knapp & Bell, 2010) such as 
depth (Nunez Flores et al., 2010), turbidity 
(Zea, 1994), salinity (Roberts et al., 2006), 
water flow (Bell & Barnes, 2003), nutrient 
concentration (Wilkinson & Cheshire, 1989), 
substratum type (Bell & Barnes, 2000a; Powell 
et al., 2010) and predation (Waddell & Pawlik, 
2000). The abundance and diversity of most 
sponge species increase with depth (Sorokin 
& Currie, 2009). For example, Knapp & Bell 
(2010) have reported the influence of depth 
on sponge assemblages in lagoons in Palmyra 
Atoll. It is known that marine sponges avoid 
turbid waters since particulate matter in 
the water column often clogs their oscula, 
hindering respiration and feeding (Roberts et 
al., 2006). The influence of salinity and pH 
on sponges is less understood than depth and 
turbidity, and seems to be species-dependent. 
Hitherto, no studies have reported the 
effects of salinity or pH on Spheciospongia 
spp. but some studies have focused on the 
influence of the aforementioned parameters 
on Cliona celata Grant, 1826 (Family: 
Clionidae) (Emson, 1966; Miller et al., 2010; 
Duckworth & Peterson, 2012). Miller et al. 
(2010) reported that C. celata can withstand 
high salinity changes of up to 42 PSU but, in 

contrast, low pH values negatively affected it 
(Emson, 1966; Duckworth & Peterson, 2012). 

Compared to other tropical ecosystems, 
such as those in the Caribbean (Pawlik, 
2011) and Indonesia (Bell & Smith, 2004), 
few studies (e.g. Barnes & Bell, 2002) have 
focused on the distribution and abundance 
of sponges in the Mascarene region. Recent 
studies on Mauritian sponges have focused 
mainly on their biological activity in terms of 
marine natural products (Marie et al., 2013). 
This study constitutes the first investigation of 
S. vagabunda (Ridley, 1884) in the lagoon of 
Albion. The distribution of S. vagabunda was 
thus mapped in Albion and their abundance, 
size and preferred substrata were investigated. 
The influence of environmental parameters 
(water depth, turbidity, salinity and pH) on its 
abundance was also taken into consideration.

MATERIALS and METHODS

Study site
Albion lagoon is located at 20o12’29.11”S; 
57o24’32.47”E on the west coast of Mauritius 
(Fig. 1). Its shoreline is 2 km long and is 
located between two small rocky points. The 
river ‘Belle Eau’ enters it in the south and 
introduces freshwater to its southern reaches. 
The Albion lagoon has fringing reefs with 
two passages and lie approximately 400-
500 m offshore. Water flows southwards 
in the lagoon, irrespective of the tides. The 
water depth at low tide varies from 0.3 m 
in the northern part of the lagoon to 2.5 m 
towards the southern passage. Sand, seagrass 
(Syringodium filiforme) and coral rubble are 
the main constituents of the lagoon floor, 
followed by a few Acropora and Porites 
patches near the reef flat.

Survey methods
The study was carried out in May-October 
2012. A preliminary survey was conducted by 
boat to identify areas of high Spheciospongia 
vagabunda abundance in the lagoon, followed 
by additional surveys by snorkel diving where 
S. vagabunda abundance was highest. A 
handheld GPS (Garmin 72) was used to record 
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coordinates along the borders of each sponge 
assemblage (patch). Sponge abundance was 
assessed in each sponge patch in randomly 
placed 1 x 1 m quadrats (n = 30). Three sponge 
samples were collected, one being lodged at 
the Institut Mediterraneen de Biodiversite et 
d’Ecology Marine et Continentale (Marseille, 
France) for taxonomic confirmation. The 
sponge habitat (sand, rock, coral rubble, live 
coral, seagrass and algae) was determined in 
randomly placed 30 x 30 cm (0.09 m2) quadrats 
(n = 15) in the vicinity of the sponges. Sponge 
sizes were recorded (n = 30) in each assemblage 
with a measuring tape to the nearest centimetre. 
The longest horizontal axis (top view) of S. 

vagabunda was used as a measure of sponge 
size. Water depth was measured at 5 m intervals 
in the middle of the lagoon, irrespective of 
the presence/absence of S. vagabunda. Water 
samples (n = 20) were collected in 200 ml 
plastic bottles. Samples were stored in a 
cooler box at -20oC for laboratory analysis. 
Turbidity, salinity and pH were measured in the 
laboratory. Salinity was measured by using a 
Captive Purity Refractometer (Model: CP2111, 
Ade Advanced Optics) and a pH-meter 
(Oakton, Eutech Instruments) was used to 
measure pH. The turbidity of the water samples 
was measured with a Hach 2100 Turbidimeter 
(Hach Company).
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Figure 1. Map of Spheciospongia vagabunda assemblages in Albion lagoon, Mauritius. 



Data analysis
A spatial distribution map was drawn using 
Google Earth software (Version 7.0) showing 
the different assemblages of S. vagabunda 
within the lagoon. The approximate area of 
each sponge patch was assessed using the 
Google Maps Area Calculator Tool (Version 
6.0; www.Draftlogic.com). Statistical analyses 
were performed with Minitab software 
(Version 14). A Kolmogorov-Smirnov test 
was applied to sponge abundance and size 
data to test for normality prior to parametric 
tests. Independent sample T-tests were 
performed to define statistical differences 
between sponge abundance and sponge 
size (Ho = means are equal) in the sponge 
patches. One-way ANOVA was conducted 
to determine the influence of environmental 
parameters on sponge abundance.

RESULTS

The study sites
Spheciospongia vagabunda in Albion were 
confined to two assemblages distributed in 
the northern section of the lagoon as shown 
in Figure 1. No S. vagabunda were observed 
elsewhere in the lagoon. The two sponge 
patches occurred at slightly different depths 
and were referred to as Patch 1 and Patch 2. 

Patch 1 was situated in the central part of 
the lagoon (20o12’34.64” S, 57o24’10.17” E) 
and was approximately 205 m long and 108 

m wide, whereas Patch 2 was located in the 
northern section of the lagoon (20o12’27.48” 
S, 57o24’13.78” E) and was approximately 90 
m long and wide.

The abundance of S. vagabunda within 
both assemblages was not uniform (Table 
1). In situ observations clearly indicated that 
Patch 2 had the lower abundance and the 
difference between the two patches proved 
significant (t = 2.39, p = 0.022). While the 
mean sponge abundance in Patch 1 was 
3.3 ± 0.46 sponges.m-2, that in Patch 2 was 
1.8 ± 0.42 sponges.m-2. Measurement of 
individual sponges in the two assemblages 
indicated that they differed significantly (t = 
3.01, p = 0.004), those in Patch 1 being larger 
(mean=15.53 ± 1.5 cm) than those in Patch 2 
(mean=10.26 ± 0.9 cm).

Observations indicated that 46.6% and 
40.0% of the S. vagabunda were anchored in 
sand in Patches 1 and 2 respectively (Figure 
2). This was followed by dead coral (37.3% 
in Patch 1 and 26.6% in Patch 2). Some S. 
vagabunda colonies were also observed 
adjacent to the seagrass Syringodium filiforme 
(14% in Patch 1; 33.3% in Patch 2 with a few 
next to the alga, Turbinaria sp.

One-way ANOVA indicated that none of 
the physical or chemical parameters (depth, 
salinity, turbidity, pH) that were measured 
(Table 2) influenced S. vagabunda abundance 
within the Albion lagoon.
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Patch 

Patch 1 

Patch 2

GPS location 

20o12’34.64” S, 
57o24’10.17” E

20o12’27.48” S, 
57o24’13.78” E

Approximate 
patch area (m2)

15350 

5875

Mean abundance 
(sponges/m2)

3.3 ± 0.46 

1.8 ± 0.42

Mean sponge size  
(cm)

15.53 ± 1.5 

10.26 ± 0.9

Table 1.Locations of Spheciospongia vagabunda assemblages in Albion lagoon, Mauritius, with their 
approximate area, sponge abundance and size (±SE).
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DISCUSSION

Aggregation of sponges in assemblages or 
patches has been reported in Indonesia (Bell & 
Smith, 2004), Singapore (de Voogd & Cleary, 
2009) and Mauritius (Appadoo et al., 2011) and 
is common among Spheciospongia spp. The 
latter have been recorded in Mexico (Erdman 
& Blake, 1987) and Singapore (de Voogd & 
Cleary, 2009). Aggregation in sponges is often 
attributed to low turbulence at such locations 
which enables recruits to settle amongst 
conspecifics (Bell and Barnes, 2000b).

Spheciospongia vagabunda was most 
abundant in shallower water in the middle 
of the lagoon. The shoreline and reef flats in 
Mauritian lagoons are subjected to high wave 
action which appears detrimental to benthic 
communities, including sponges (Monteiro & 
Muricy, 2004). We suggest that S. vagabunda 
preferred this habitat as it was unaffected by 
wave action. Similar observations were also 
reported for the sponge Neopetrosia exigua 
(Kirkpatrik, 1900) in another Mauritian 
lagoon with a profile similar to that of Albion 
(Appadoo et al., 2011).
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Figure 2.  Habitat type in Spheciospongia vagabunda assemblages in Albion lagoon, Mauritius.

Patch

Patch 1

Patch 2

Depth (m)

1.18 ± 0.12

0.70 ± 0.10

pH

8.32 ± 0.01

8.43 ± 0.01

Salinity (PSU)

36.25 ± 0.25

35.50 ± 0.29

Turbidity (NTU)

0.73 ± 0.15

0.60 ± 0.15

Table 2. Mean physical and chemical parameters (±SE) recorded within each Spheciospongia vagabunda 
assemblage in Albion lagoon, Mauritius.



The abundance of S. vagabunda was 
higher in Patch 1 than Patch 2. The average 
depth in the former (1.18 m) seemed to 
provide habitat more conducive for the growth 
of this sponge compared to the latter (0.70 m). 
S. vagabunda has previously been recorded in 
a depth range of only 1-2 m (Barruca et al., 
2007) and this may explain the significant 
difference in sponge size between the Albion 
patches. Moreover, the physical effects of 
wave action were reduced at the depth of 
Patch 1 (pers. obs), allowing the sponges in 
this assemblage to grow larger. 

Despite being an uncommon substratum 
for sponges, many S. vagabunda colonies 
were found attached to sand, an observation 
common to both assemblages. This seems to 
be a common characteristic in this species as it 
has been previously described as a burrowing 
sponge (Barruca et al., 2007). Moreover, 
the low turbulence in Albion would have 
favoured growth on the soft substratum and S. 
vagabunda has been reported to incorporate 
sand and coral rubble in its base, enhancing its 
burrowing ability while acting as an anchoring 
mechanism (Levi, 1998). The second most 
common habitat for S. vagabunda in Albion 
was dead coral which was common in Patch 1 
(Fig. 2); coral rubble is a good anchoring base 
for many sponge species (Duckworth & Wolff, 
2011). This provided a suitable settlement 
substratum for many juvenile sponges in 
Patch 1 and may be another factor that 
contributed to its larger sponges. In addition, 
sponges and algae are known competitors for 
space (Preciado & Maldonado, 2005). While 
Patch 1, in particular, had little seagrass 
(Syringodium filiforme), providing less 
competition for the sponges, very few sponges 
were observed near the alga Turbinaria sp. in 
either aggregation.

Sedimentation has been reported to 
influence the distribution of temperate 
sponges but, in contrast, less information is 
available on the influence of sedimentation 
on tropical sponges (Bell & Smith, 2004). 
Generally, sedimentation and its associated 
turbidity are known to have a negative effect 

on sponge abundance (Powell et al., 2014) but 
had no significant influence on S. vagabunda 
abundance in Albion lagoon. Some sponge 
species thrive in turbid environments (Bell 
& Smith, 2004; Powell et al., 2014) and 
variable morphology in osculum length in 
S. vagabunda (Levi, 1998) may enable it to 
grow in turbid conditions. Elevated oscula 
may enable it to maintain a constant water 
supply and minimise particle deposition 
within its orifices (Bell et al., 2002). Similar 
observations have been reported for other 
clionaid sponges (Bell et al., 2002), some of 
which have fewer oscula, which increases 
the exhalent water flow, inhibiting particle 
settlement (Bell et al., 2002).

Clionaidae have previously been reported 
to be tolerant of a wide range of salinities 
(Miller et al., 2010) suggesting that S. 
vagabunda may cope with salinity changes 
in Albion lagoon. In contrast, a low water pH 
(<7.8) has been reported to negatively affect 
clionaid sponges (Emson, 1966; Duckworth 
& Peterson, 2012). However, the pH levels 
recorded in Albion were >8 (Table 2) and 
variations in pH were inconsequential in the 
S. vagabunda assemblages. Sponges of this 
species have recently been recorded in a 
sewage outfall in Australia (Padovan et al., 
2012), indicating that this species may be 
adapted to adverse environmental conditions. 
However, the results of the present study must 
be viewed with caution as the full seasonal 
cycle was not covered, and seasonal variation 
in the environmental parameters we measured 
may be higher.
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