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Introduction
Although SSF contribute approximately half of global 
fish landings (FAO, 2015), few studies have directly 
compared SSF to IF (Chuenpagdee et al. 2006; Zeller 
et al. 2007). SSF are defined as “fishing households, 
using relatively small amounts of capital and energy, 
relatively small fishing vessels (if any), and making 
short fishing trips, close to shore” (Garcia, 2009). 
These fisheries can be commercial or subsistence, 
but provide fish mainly for local consumption (Gar-
cia, 2009). In comparison to IF, SSF have access to far 
less technological equipment, storage capacity, and 
engine power, but involve a higher number of peo-
ple and usually generate more yield per unit of fuel 

(Kolding et al., 2014). Compared to other coastal fish-
eries, large-pelagic fish are harvested in almost equal 
quantities by IF and SSF in the Indian Ocean (Anon-
ymous, 2009), and therefore approaches which con-
sider the two in unison are required. Large-pelagic 
fish are highly migratory with populations spanning 
over large areas (Kaplan et al., 2014; Ward et al., 1997). 
Accordingly, the fisheries which target large-pelag-
ics are under jurisdiction of regional fisheries man-
agement organisations (RFMOs), such as the Indian 
Ocean Tuna Commission (IOTC) for the Indian 
Ocean. While these organisations utilise fisheries data 
for the management of the IF, such as CPUE, and 
additional data such as from large tagging programs 
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(Fonteneau and Hallier, 2015), catch information from 
SSF is often lacking and not incorporated in stock 
assessments. For this reason, management advice may 
not always be adequate for the stock under consider-
ation (Costello et al., 2012; Cullis-Suzuki and Pauly, 
2010). The monitoring of SSF is complex due to the 
high number of small vessels involved, the usage of 
a variety of gears catching a large variety of species, 
and lastly, due to the decentralised landing sites along 
long coastal stretches (Anonymous, 2009; Salas et al., 
2007). Thus, fishery-dependent data for SSF such as 
catch and effort is either scarce or of low quality, for 
example, aggregated at a family level (Igulu and El 
Kharousy, 2013; Kolding et al., 2014; Salas et al., 2007). 
The use of length-frequency distributions (LFDs) in 
SSF are well established (Petersen, 1981), and provide 
a valuable and low-cost data source suitable for assess-
ment. They allow for the estimation of population 
parameters, such as growth and mortality rates, and 
reference levels for the state of the fishery (Beverton 
and Holt, 1957; Mildenberger et al., 2017a). Moreover, 
they allow for the inference of selectivity properties 
of the gear and fleet, such as selected length and age 
classes represented in the landings.

Tanzania is the largest country in East Africa with 
a coastline 850 km in length and an Exclusive Eco-
nomic Zone (EEZ) of over 240,000 km2 within the 
Western Indian Ocean (Fig. 1; Jiddawi and Ohman, 
2002). Tanzania’s fishing fleet is dominated by SSF, 
apart from three flagged long line vessels (Igulu and 
El Kharousy, 2015). In 2012, the SSF in Tanzania was 
comprised of 4259 dugout canoes, 6815 outrigger 
canoes, 3842 boats powered by outboard engines, 
and 313 boats powered by inboard engine (Igulu and 
El Kharousy, 2013). Tanzania’s SSF is concentrated 
mainly on reef areas within 6 nm from shore, while 
some boats exploit large-pelagic fish, like tuna, bill-
fish and sharks using surface driftnets and handlines 
(Igulu and El Kharousy, 2013). In 2014, landings for 
tuna and tuna-like species comprised around 3468 
tonnes (Igulu and El Kharousy, 2015). With regards 
to the IF, Tanzania sells licenses to foreign vessels for 
access to fish resources within its EEZ. The number 
of foreign vessels has increased in recent years, with 
licences increasing from 12 in the year 2002 ( Jid-
dawi and Ohman, 2002) to ~77 in the years 2013/2014 
(Liganga, 2014). No information is available about 
sport fishermen and recreational fishing in Tanzania 
(Igulu and El Kharousy, 2015). Zanzibar, consisting of 
the two islands of Pemba and Unguja (Fig. 1), contrib-
utes around 30% of Tanzania’s marine fish landings 

(FAO, 2016). While around two thirds of Zanzibar’s 
landings consist of near-shore resources, one third 
consists of large-pelagic fish caught by driftnet fish-
eries (FAO, 2016). Driftnets are passive nets deployed 
at the water surface or in the water column and used 
for targeting pelagic species (European Commission, 
1992; Caddell, 2010). While near-shore resources are 
thought to be overexploited ( Jiddawi and Öhman, 
2002; Mkenda and Folmer, 2001; Jacquet et al., 
2010; Colbert-Sangree, 2012), several authors have 
claimed that the offshore resources provide invest-
ment potential for fisheries expansion ( Jiddawi and 
Öhman, 2002; Feidi, 2005; FAO, 2007), resulting in 
research programmes to assess the potential estab-
lishment of a national IF to release pressure on near-
shore resources (Igulu and El Kharousy, 2015). Aside 
from official assessments for large-pelagic fish for 
the whole of the Indian Ocean, locally and regionally 
explicit studies investigating the exploitation status 
of stocks are rare or absent. However, such studies 
should be of particular importance when considering 
potential fleet expansions, and in national fisheries 
management.

This study describes the small scale driftnet fisheries in 
Zanzibar, as well as the length-composition of the five 
most abundant species, in terms of landings: Indo-Pa-
cific sailfish (IPS - Istiophorus platypterus, Shaw and Nod-
der, 1792; Swahili: Mbasi), Yellowfin tuna (YFT -Thunnus 
albacares, Bonnaterre, 1788; Swahili: Jodari), Common 
dolphinfish (CPH - Coryphaena hippurus, Linnaeus, 1758; 
Swahili: Panje), Skipjack tuna (SKJ - Katsuwonis pela-
mis, Linnaeus, 1758; Swahili: Jodari), and Kawakawa 
(KAW - Euthynnus affinis, Cantor, 1849; Swahili: Jodari).  
The LFDs of these species are analysed in regards to 
differences between SSF and IF, and stock status indica-
tors estimated. Results are discussed in the light of the 
application of this type of information and its implica-
tions for the management of driftnet fisheries in Zanzi-
bar. All collected data are also provided as open source. 

Methods
Sampling area and routine
Fisheries-dependent data for small-scale driftnet fish-
eries in Zanzibar were collected at the landing sites of 
Nungwi, Mkokotoni, and Fukuchani in the northern 
district of Unguja, Zanzibar (Fig. 1). These data were 
collected over seven to fourteen days each month, 
between October 2014 and March 2015, corresponding 
to the northeast monsoon season in the Western Indian 
Ocean. Unguja is the most important island for drift-
net fisheries in Zanzibar during the northeast monsoon 
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season, during which large-pelagic fish landings are 
highest (based on preliminary samplings and inter-
views with fishermen). Sampling effort was adjusted to 
the moon-dependent dynamics of fishing activities (no 
fishing effort for one week around full moon).

During sampling, fork length (FL: fish length from 
the front to the fork in the centre of the tail) of all fish 
landed by the driftnet fishermen was measured with a 
flexible tape, to the nearest 0.5 cm. In the case of sail-
fish, in addition to FL, the lower jaw fork length (LJFL) 
and the length from behind the eye to the fork (EFL) 

were measured (Cerdenares-Ladrón De Guevara et al.,  
2011), allowing the inference of LJFL for individu-
als where the rostrum and the lower jaw was broken, 
damaged or missing (FL = -2.07 + 0.75 EFL and LJFL =  
-2.39 + 0.88 EFL). Between 14 and 940 fish lengths 
of the SSF were measured each month (Table 1). FL 
LJFL, and EFL are available on GitHub (see supporting 
online information). Maturity states and gender were 
not determined due to time limitations at auctions.

Length measurements from the IF were availa-
ble for YFT and SKJ for the Tanzanian EEZ for the 

Table 1. Number of fish measured for the small-scale fisheries (SSF) and industrial fisheries (IF) by month.

Species Fisheries Oct  
2014

Nov 
2014

Dec 
2014

Jan 
2015

Feb 
2015

March 
2015 Total

YFT
SSF 118 437 940 413 324 126 2358

IF 132 204 2065 699 56 69205 72361

SKJ
SSF 151 354 523 110 135 82 1355

IF 329686 329686

IPS SSF 14 127 244 109 182 129 805

KAW SSF 42 369 347 284 276 165 1483

CPH SSF 20 151 467 121 365 433 1557

Figure 1. Map of the coastline and Exclusive Economic Zone (EEZ; hatched orange polygon) of Tanzania and close up of Unguja, the southern 

island of Zanzibar with the main sampling sites: Nungwi, Fukuchani, and Mkokotoni.
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period from April 2014 to September 2015, and 
were retrieved from the corresponding IOTC work-
ing parties (Table 1; see supporting online informa-
tion). IOTC compiles length-composition data of the 
catches collected by observers on board the fishing 
vessels, where length measurements are collected 
following two sampling strategies; stratified sampling 
or proportional sampling for multispecies fisheries, 
(IOTC, 2010). In both cases, 50 to 200 fish per haul 
are measured but the total number of measured fish 
is dependent on the size of fish, if catch consisted of 
one or multiple schools, and if a mode appears in 
the length frequency data. Observers record the FL 
for tuna and the LJFL for billfish to the nearest 1 cm 
using either large callipers (1.5 m), a measuring board, 
and/or flexible tape (IOTC, 2010). The IF length data 
covers the same period as the SSF data, but also pro-
vides data for the southeast monsoon season, and is 
therefore representative of a full meteorological year. 
The two main gears of the IF in Tanzania’s EEZ are 
long lines (under Tawianese and Japanese flags) and 
purse seines (under French and Spanish flags) (Deep-
sea Fishing Authority, pers. comm.). For IPS, KAW, 
and CPH, no length measurements from the IF were 
available, and our analysis was therefore focused on 
the SSF data only.

Data analysis
Length measurements were pooled over all gears into 
2 to 4 cm length classes and compiled into LFDs for 
each species. The LFDs were compared between spe-
cies and fisheries and used to construct length-con-
verted catch curves, for the purpose of estimating 
the instantaneous total mortality rate (Z) from the 
slope of the regression of the descending part of the 
curve (Edeser, 1908; Pauly, 1983). The construction 
of the catch curves based on LFDs requires informa-
tion about growth parameters to estimate the relative 
age of the individuals. Here, growth parameters (L∞ 
and K) of the von Bertlanffy growth equation (VBGE) 
(von Bertalanffy, 1934; 1938) were gathered from 
other studies for the catch curves estimates (Table 3). 
 The same growth parameters were used for data 
from the different fisheries. Growth parameters from 
nearby regions and the Indian Ocean were preferred, 
as well as parameters estimated with a single-stanza 
VBGE and age-based methods representative for 
both sexes. However, for SKJ and CPH, parameters 
derived by length-based methods were used (Pó et al.,  
1992; CMFRI, 2016) and for IPS values representa-
tive of the sex-specific growth curves for the male 
fish were used (Hoolihan, 2006). Since all species 

are highly migratory (Kaplan et al., 2014; Ward et al.,  
1997), the parameters from chosen studies and 
regions were deemed to be representative. 

Based on the growth parameters, the instantaneous 
natural mortality rate (M) can be approximated by 
means of the empirical formula of Then et al. (2015):

M = 4.118K0.73 L∞-0.33

where K and L∞ are the growth parameters of the 
VBGE. By subtraction of M from Z, an estimate of the 
instantaneous fishing mortality rate (F) can be approx-
imated and an indicator of the exploitation rate be 
estimated (E = F / Z).

All analyses were done in R (R Core Team, 2018) using 
the TropFishR package (Mildenberger et al., 2017b) and 
the following additional packages, gdata (Warnes et al., 
2017), SDMTools (VanDerWal et al., 2014), reshape2 
(Wickham, 2007), sp (Pebesma and Bivand, 2005; 
Bivand et al., 2013), adehabitatHR (Calenge, 2006), 
maps (Brownrigg, 2018), and rgdal (Bivand et al., 2018).

Results
The main fishing grounds of the driftnet fisheries in 
Zanzibar are located between the northern island of 
Pemba and the southern island of Unguja, as well as 
in the Zanzibar channel (between Unguja and Pemba 
and the mainland; Fig. 1). The maximum distance to 
the mainland shore and the islands was estimated 
by means of GPS trackers to be ~37 km. More than 
28 different species were caught by the driftnet fish-
ermen during the study period; however, the five 
selected species (YFT, SKJ, IPS, KAW, CPH) comprise 
88.6% of the catch of the driftnet fisheries in Zanzibar 
(Table 2).

Seven to 14 pieces of black, blue, or grey gillnet (100 
m x 15 m), either hand-made or industrially fabri-
cated, are used in the driftnet fisheries. These are 
bound together, reaching a total length of around  
1 km. Mesh sizes range from 3 to 6 inch (7.6 cm to 15.2 
cm), and nets are often combined indiscriminately. 
The gillnets are deployed at the surface reaching 
depths of up to 15 m. Some fishermen also used hand-
lines on the way to or from the fishing grounds, which 
influences the species- and length-composition of the 
landings. The fisheries are carried out exclusively at 
night, and results from interviews indicate that nets 
are deployed for around 7.7 ± 2 h per fishing trip.  
For about a week around full moon, no fishing takes 
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Table 2. Catch composition, total landings (kg) and percentage contribution to landings (%) for North A district over whole study period. The table 

excludes other species with a percentage contribution less than 0.04% (e.g. Carangidae spp and sharks). The shaded rows represent the five most 

abundant species in the landings of the small-scale driftnet fisheries, which were selected for further length-based analyses in the present study.

Species Landings Percentage

Indo-Pacific sailfish (Istiophorus platypterus) 57207 36.8

Yellowfin Tuna (Thunnus albacares) 34663 22.3

Common Dolphinfish (Coryphaena hippurus) 22427 14.4

Skipjack Tuna (Katsuwonus pelamis) 13124 8.4

Kawakawa (Euthyunnus affinis) 10411 6.7

Black marlin (Istiompax indica) 7937 5.1

Cobia (Rachycentron canadum) 1745 1.1

Longtail tuna (Thunnus tonggol) 1544 1

Wahoo (Acanthocybium solandri) 1340 0.9

Narrow-barred spanish mackerel (Scomberomorus commerson) 1326 0.9

Striped marlin (Kajikia audax) 1026 0.7

Blue marlin (Makaira nigricans) 791 0.5

Swordfish (Xiphias gladius) 673 0.4

Kingfish (Scomberomorus plurilineatus) 538 0.3

Frigate tuna (Auxis thazard) 535 0.3

Striped bonito (Sarda orientalis) 46 <0.05

Figure 2. Length-frequency distributions (LFDs) of SSF landings for all species (black bars): Yellowfin tuna (YFT), Skipjack tuna (SKJ), Indo-Pa-

cific sailfish (IPS), Kawakawa (KAW), and Common dolphinfish (CPH). Grey bars represent the LFDs of the IF landings for YFT and SKJ.
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place, and shortly before and after full moon fisher-
men deploy the net for a shorter time (1.5 to 3 h). 

While the length range of IF landings of YFT range 
from 25 to 199 cm, the SFF landed individuals between 
45 and 143 cm during the study period. The length 
range differences between both fisheries for SKJ were 
less, with a range from 21 to 77 cm for IF and 32 to 79 
cm for SFF. The length range for IPS, KAW, and CPH 
was from 118 to 200 cm, 34 to 80 cm, and 58 to 122 cm, 
respectively. The length composition of the landings 
for all species is displayed in Fig. 2.

While for SKJ, IPS, KAW, and CPH the LFDs of SFF 
shows a unimodal distribution with peaks around 

56, 160, 60, and 84 cm, respectively, the distribution 
for YFT indicates three peaks at 55, 78, and 92 cm.  
The monthly LFDs indicate potential cohorts more 
clearly for YFT (Fig. 5a), while for the remaining spe-
cies no multiple peaks and potential cohorts are visible 
(Fig. 5a and 5b). Comparing SSF and IF landings of YFT 
reveals that IF catch mainly smaller individuals of ~50 
cm, and large individuals ~130 cm. IF landings for SKJ 
exhibit two peaks at 32 and 46 cm, below that of the SSF.

Overall, the catch curves show a clear pattern with 
a good representation of the descending part of the 
catch curves by the regression lines (Fig. 3 and 4). The 
high adjusted R2 values (Table 3) reveal a good fit of 
the regression lines to the data. Estimates of the total 

Figure 3. Length-converted catch curves for Yellowfin tuna (YFT) and Skipjack tuna (SKJ) based on data from 

the SSF (triangles) and from the IF (circles). Filled triangles and circles represent the data used for the regression 

line for both fisheries, respectively.

Figure 4. Length-converted catch curves for Indo-Pacific sailfish (IPS), Kawakawa (KAW), and Common dolphinfish (CPH) based on data 

from the SSF. Filled triangles represent the data used for the regression line for SSF.
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mortality (slope of the regression line) have a wide 
range from 0.71 to 5.41, and differ between the five 
species sampled from the SSF. IPS demonstrated the 
lowest values, and SKJ the highest (Table 3). 

Catch curves of KAW and CPH span a similar length 
range and show a similar slope of the regression lines 
of 2.53 and 2.26, respectively. A very different and 
much lower slope of 0.71 was found for IPS (Fig. 4 
and Table 3). Overall, the descending part of the catch 
curves are well represented by the regression line with 
high adjusted R2 values of 0.96 to 0.99 for those three 
species (Table 3).

Natural mortality estimates range from 0.3 and 0.36 
for IPS and CPH, to 0.89 for KAW (Table 3). Fishing 
mortality is highest for YFT and lowest for IPS. For all 
species, the E values are above the reference level of 
0.5, indicating overfishing (Gulland, 1983). While for 
IPS, E is only slightly larger than the reference level 
(E=0.58) for SKJ and CPH, E is with ~0.8 much higher 
than the reference level.

The Z estimates from the SSF were significantly 
higher than for the IF, with values of 5.41 and 3.42 vs 
1.67 and 2.98 for YFT and SKJ, respectively. While the 
regression line of the catch curve for YFT starts at a 
similar relative age in both fisheries, the curve for IF 
is above the curve of SSF due to the higher number of 
samples. Furthermore, the slope is far steeper for the 
SSF than for the IF, but the exploited age range much 
shorter. As demonstrated in Fig. 3, a single regression 
line is a poor representation of the landings for the 
IF over the whole size range. Between relative ages 
of 0.6 to 1.3 the decline is very high, followed by an 
increase and second lower decline from ages 1.7 to 6. 
This is also reflected by a lower overall R2 value of the 

regression line of 0.86. For SKJ, the catch curves of IF 
and SSF show a similar pattern (slope of decline and 
length range of declining part of the curve), however, 
there are more samples from the IF and the result-
ing curve is shifted vertically (Fig. 3). Similar to the Z 
estimates, the F estimates of the SSF are larger than 
for the IF. E values for SKJ are 0.8 and 0.78, almost 
identical between SSF and IF, respectively. However, 
for YFT, E is much higher for SSF than for IF (Table 3).

Discussion
This study describes SSF data from driftnet fisheries 
in Zanzibar, which target tuna and tuna-like species. 
Length-composition data were collected from SSF, 
and acquired for IF, for vessels operating in Tanzania’s 
EEZ. These data were used to: (i) make a qualitative 
and quantitative comparison of the length compo-
sition of landings from both fisheries for the most 
abundant large-pelagic species; and (ii) for the estima-
tion of stock indicators. 

The length ranges of the landings highlight the selec-
tive nature of the gillnets used by the SSF, capturing 
only one cohort for all species. The exception to this 
was for YFT, where the monthly LFDs indicate three 
potential YFT cohorts, an observation which could 
not be determined from the yearly LFDs. SSF and 
IF operate in different parts of Tanzania’s EEZ, due 
to the capacity of the vessels and jurisdictive/politi-
cal boundaries (no distant water fleets are allowed in 
territorial waters). However, this study demonstrated 
that the two fisheries exploit the same resources of 
tuna and tuna-like species and the age ranges of these 
species overlap in the landings. Overall, IF catch a 
wider length range of fish, which can be attributed 
to the difference in gear type and fishery-dependent 
factors, as well as access of the IF to offshore fishing 

Table 3. Literature parameters of the von Bertalanffy growth equation used for the estimation of the catch curve. Z represents the slope of the 

catch curve, however this might also include migration and is thus not referring to total mortality only (see discussion). The adjusted R2 value is a 

goodness of fit statistic for the regression line of the catch curve analysis. The two values for Z, R2, M, F, and E represent the estimates based on the 

data from the SSF and IF, respectively. *The set of growth parameters for the male individuals of common dolphinfish of the sex-specific growth 

analysis were used (Hoolihan, 2016).

Species L∞ K t0 Reference Location Z R2 M F E

YFT 165 0.878 -0.49 Nurdin et al. (2016) Indian Ocean 5.41/1.67 0.9/0.86 0.57 4.84/1.1 0.89/0.66

SKJ 80 0.601 - Pó et al. (1992) Mozambique 3.42/2.98 0.92/0.99 0.67 2.75/2.31 0.8/0.78

IPS* 191 0.29 -4.31 Hoolihan (2006) Arabic gulf 0.71 0.99 0.3 0.41 0.58

KAW 79 0.89 -0.08 CMFRI (2012) India 2.53 0.98 0.89 1.64 0.65

CPH 146 0.34 - CMFRI (2016) India 2.26 0.96 0.36 1.9 0.84
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grounds. Although the youngest YFT cohort might be 
the same in SSF and IF landings, the IF landings were 
observed to contain a much higher number of smaller 
individuals. For SKJ, IF landings demonstrated a sec-
ond, younger cohort, which was not represented in 
SSF landings. Although the (length-converted) catch 
curve analysis is an often used assessment tool to 
derive estimates of the instantaneous total mortal-
ity rate and exploitation rates in data-limited envi-
ronments, the findings in this study suggest that the 
slope of the regression line of the catch curve analy-
sis does not just reflect the sum of natural and fishing 
mortality rates. This rate might also be influenced by 
migration processes (emigration and immigration to 
fishing grounds), as well as gear and fishery-depend-
ent aspects, such as gear selectivity. This method can 
thus not be used to directly infer information about 
the instantaneous total, or fishing mortality rates, of 
the stocks directly, but it allows for the comparison 
of the slopes between different fisheries/fleets, and 
the estimation of exploitation rates. As the nominator 
F and denominator Z are affected by migration pro-
cesses to the same extent, this bias cancels out when 
calculating their ratio (E). Furthermore, under the 
assumption that natural mortality and migration do 
not differ spatially within the EEZ of Tanzania, the 
only other factor affecting the slope of the regression 
line is fishing mortality, apart from gear selectivity 
effects. Based on this reasoning, it may be assumed 
that the fishing mortality for skipjack tuna is compa-
rable between the two fisheries, while it differs greatly 
between fisheries for yellowfin tuna. From the devi-
ations in the descending part of the catch curve for 
YFT and IF (filled circles in Fig. 3) it may be inferred 
that F is relatively high for individuals younger than 
a relative age of 1.3, and much lower for individuals 
older than a relative age of 1.7. This trend in the catch 
curve can either be related to the different fleets (and 
thus gears) in the IF data (purse seiners vs. long-liners), 
or due to different mortality and migration regimes 
for juveniles and sub-adults. Tuna and tuna-like spe-
cies have been shown to form size-dependent (mixed) 
schools (Broadhead and Orange, 1960), which dis-
play specific migratory behaviour (Hu et al., 2018). 
The catchability of SSF is much lower than of IF, as 
it uses a passive, highly selective gear, only accessing 
the upper 15 m of the water column (size dependent 
schooling in different depths), while the IF uses active 
gears (purse seines) and passive gears (long lines), 
bird radar, helicopters and Fish Aggregation Devices 
(FADs; Majkowski, 2007; Tidd et al., 2017). This allows 
IF to sustain relatively high landings even when stock 

numbers are declining (Gulland, 1956; Tidd et al., 
2016). The SSF are limited in geographic range due to 
the size of their vessels, with many vessels operating 
without an engine and dependent on the wind.

The results show a high exploitation rate above refer-
ence levels, indicating overfishing in terms of fishing 
mortality for all species. No conclusion can be drawn 
regarding the stock status in terms of biomass. How-
ever, the estimated overfishing status corroborates 
official IOTC assessment results for YFT and IPS. 
IOTC classifies these species as overfished regard-
ing fishing mortality (IPS), and fishing mortality and 
biomass (YFT; IOTC, 2017). The higher exploitation 
rate for YFT might reflect the fact that YFT is over-
fished in terms of F and biomass, while IPS only in 
terms of F, according to the IOTC. The smaller tuna 
species, SKJ and KAW are not classified as overfished 
according to the IOTC, but show high exploitation 
rates in this study. It is suggested that this may be due 
to the sub-population structures (Fonteneau, 2014) 
and local depletion of these stocks. While the offi-
cial IOTC assessments consider data from the whole 
Indian Ocean for these species, only data from Tanza-
nia’s EEZ were considered in this study, and both data 
sources (SSF and IF) indicate high exploitation rates of 
0.78 and 0.8, respectively. There are no official stock 
status estimates for CPH in the Indian Ocean or the 
region (Maguire et al., 2006; IOTC, 2017). Although 
Benjamin and Kurup (2012) estimated a low exploita-
tion rate for CPH between 2008-2009 in India, the 
findings from this study indicate that the exploitation 
rate of CPH in Tanzania might exceed biologically 
safe limits. The contrasting results between studies 
are likely explained by temporal or spatial differences 
in study period and location. Length-at-first-maturity 
(L

50) values of the studied species, SKJ: 41-43 cm, YFT: 
100 cm, KAW: 38-50 cm, (IOTC, 2017), IPS: 157 cm EFL 
(Hernandez and Ramirez, 1998), and CPH: 47-49 cm 
(Rajesh et al., 2016), show that 99% of the SSF length 
samples are smaller than L50 for YFT and 37% smaller 
for IPS, while the percentage for remaining species is 
close to 0%. This indicates that a large proportion of 
the tuna catches in Tanzania are juveniles (with 90% 
for IF YFT landings), which might reflect overfishing 
(Froese et al., 2008; Myers and Mertz, 1998), the spa-
tio-temporal occurrence of different length classes in 
the region, the gear selectivity, and a combination of 
these factors. Tanzania’s EEZ forms an important sec-
tion of the migration route of tuna (Hallier and Fon-
teneau, 2015), but is also part of the highly produc-
tive western Indian Ocean region (Bakun et al., 1998; 
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Qasim, 1977) and therefore represents suitable habitat 
for the residence of juvenile tuna (Hu et al., 2018).

Although the growth parameters used for the catch 
curve analysis were taken from regional studies, they 
allow for the comparison of the two fisheries (SSF 
and IF) as the same parameters were used. However, 
it should be noted that the growth of YFT could dif-
fer significantly between sexes (Shih et al., 2014) and 
be better described by a gender-based two-stanza von 
Bertalanffy growth function (Dortel et al., 2013). Fur-
thermore, the results for SSF are based on data from 
one season only, and the variation in length-compo-
sition of the landings between seasons cannot deter-
mine. As with all fishery-dependent length-frequency 
data, results may be subject to biases due to recruit-
ment variability, gear selectivity, and un-representa-
tive length measurements for the whole population 
(Punt et al., 2001; Cope and Punt, 2009).

The management of straddling stocks has often been 
described as unsuccessful (Cullis-Suzuki and Pauly, 
2010), although positive examples have also been 
acknowledged (Pons et al., 2017). While spatial meas-
ures are prone to fail for highly-migratory species 
(Kaplan, 2013), input and output control measures 
might be more suitable. In any case, this study has 
demonstrated that IFs and SSFs targeting tuna and 
tuna-like species are interrelated, and must be man-
aged in unison, a conclusion that was also shared by 
Leroy et al. (2016). Another challenge for management 
is the fact that two of the most abundant species in 
the SSF landings (KAW and CPH) are by-catch species 
in the IF (purse seiners (Ardill et al., 2011), long liners 
(Huang and Liu, 2010), and any fishery associated with 
FADs (Dagorn et al., 2013) and have an important mar-
ket in Zanzibar, being sold to hotels and restaurants 
(Thyresson et al., 2013). Accordingly, these species are 
important for the driftnet fisheries in Zanzibar, and 
are caught as by-catch by industrial. By-catch ratios 
greatly vary between areas and type of fisheries, but 
discard ratios for those fisheries can be as high as 60% 
(Dagorn et al., 2013). The impact of sports and recre-
ational fishermen should also be considered in the 
management of straddling stocks, particularly in light 
of growing tourism in Tanzania (MNRT, 2012).

Lastly, another crucial aspect of sustainable manage-
ment concerns the monitoring of fishing activities 
and data collection, as this information is required 
for stock assessments and thus the definition of har-
vest control rules. The data collection on SSF must 

be improved and included in the official assessments 
by RFMOs. With regard to the monitoring strategies 
and procedures in Zanzibar, the following suggestions 
might improve the quality and value of fisheries-de-
pendent data: (i) catch data should be collected at spe-
cies level, as the stock status of different species can 
be contrasting (e.g. YFT and SKJ; IOTC, 2017). Experi-
ence and interviews with local observers show that the 
problem is not the lack of knowledge of species iden-
tification of the observers, but the fact that this type 
of information is not required by the official agencies, 
or is lost in the administrative process. The quality of 
catch data can also be improved by monitoring the 
work of beach recorders; (ii) Effort data should be 
collected by beach recorders more frequently than 
the national survey (e.g. at a monthly level); (iii) Data 
representing the catch and effort of recreational fish-
ing are needed and should be implemented by an 
obligatory observer monitoring procedure for com-
panies renting boats and organising trips for recre-
ational fishing; (iv) The collection of a subsample 
of length composition data should be considered.  
This type of data allows the inference of informa-
tion about gear selectivity and exploited size ranges 
of SSF, and might be used directly in length-based 
stock assessment models such as SS3 (Methot and  
Wetzel, 2013), and used for official assessments such 
as for YFT and SKJ (IOTC, 2017). In particular, for 
by-catch species of the IF (KAW and CPH), LFDs 
from SSF are valuable and even allow inferences to be 
made regarding stock status, where no data from IF 
are available. For example, newly developed methods 
(e.g. Schwamborn et al., 2018) are being used to derive 
reference levels to quantify uncertainty in catch data 
(Herrón et al., 2018), and could be applied to species 
such as CPH. As this study shows, length measure-

ments are easy and cost-efficient to collect, even with-
out the necessity of owning or damaging sampled fish; 
and (v) lastly, the use of a mobile application, such as 
ABALOBI (http://abalobi.info) poses great potential 
for simplifying and standardising data collection.
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Appendix

Figure 5b. Monthly length-frequency distributions (LFDs) of SSF landings for 

Indo-Pacific sailfish (IPS), Kawakawa (KAW), and Common dolphinfish (CPH) with von 

Bertalanffy growth curves.

Figure 5a. Monthly length-frequency distributions (LFDs) of SSF and IF landings 

combined for Yellowfin tuna (YFT) and Skipjack tuna (SKJ) with von Bertalanffy 

growth curves. Dark grey bars represent the LFDs of the SSF while light grey bars 

represent the IF landings.
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Online supporting material
The length-composition data from IF was retrieved 
from the respective IOTC working groups (i) Ner-
itic tunas (http://www.iotc.org/meetings/7th-work-
ing-party-neritic-tunas-wpnt07, accessed: 21/10/2017 
1:30pm), (ii) Tropical tunas (http://www.iotc.org/
meetings/19th-working-party-tropical-tunas-wptt19, 
accessed 21/10/2017 1:30pm), and (iii) Billfish (http://
www.iotc.org/meetings/15th-working-party-bill-
fish-wpb15, accessed: 21/10/2017 1:30pm). All collected 
length measurements for the five species: Yellowfin 
tuna, Skipjack tuna, Indo-Pacific sailfish, Kawakawa, 
and Common dolphinfish are available on GitHub at 
https://github.com/tokami/Jodari.




