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Abstract

Batch adsorption-desorption equilibrium techniques were used to investigate the adsorption capacity and influence
of salinity on partitioning of the insecticide chlorpyrifos between water and soil or water and sediments from the
Rufiji Delta. The data were fitted to different adsorption-desorption models and the hysteresis index was calcu-
lated using the ratio between the Freundlich exponents for desorption and adsorption, and secondly, the difference
in area under the normalized adsorption and desorption isotherms using the maximum adsorbed and solution
concentrations. The data showed non-linear adsorption and that chlorpyrifos was strongly adsorbed to soil and
sediments from the Rufiji Delta. The linearized adsorption coefficient (K,) and Freundlich adsorption coefficient
(K)) correlated significantly with organic carbon content. Chlorpyrifos adsorption as well as hysteresis calculated by
both methods decreased with salinity (i.e. the sediment adsorbs increasing amounts of chlorpyrifos with decreasing
salinity). This indicates that settling of freshwater sediments is among the major removal pathways of the chemical
from the water column, but increased turbulence during high tides may resuspend settled sediment simultaneously
increasing salinity and re-dissolve chlorpyrifos. However, discharge of fresh water, particularly during heavy rains,
increases the trapping efficiency of the sediments. The theoretical approach developed showed that the Langmuir
model describes the desorption data better than the Freundlich model, and that a better index of hysteresis is one
that considers areas under the adsorption and desorption isotherms, provided the desorption isotherm is described
by the normalized Langmuir isotherm and the adsorption isotherm by the normalized Freundlich isotherm.

Keywords: Hysteresis, Langmuir isotherm, Freundlich isotherm, Salinity, High tide,

Introduction

The Rufiji Delta supports the largest estuarine man-
grove forest on the eastern seaboard of the African
continent (UNEP, 2001). At 1,022 km?, it hosts a rich
biodiversity of both environmental and economic
significance. The Rufiji Delta is considered a wet-
land of international importance under the ‘Ramsar
Convention on Wetlands’ due to a unique biodiver-
sity (Nasirwa et al., 2001). Economically, the delta is
a very productive ecosystem supporting important
fisheries and agricultural activities. The area accounts
for 80% of all prawn catches in Tanzania (Mgana and

Mahongo, 1997; Scheren et al., 2016) while agricultural
activities are dominated by rice farming. Rice farm-
ing within the delta is described in the vernacular lan-
guage as ‘mangrove rice farming’.

Crabs foraging on the rice seedlings are considered a
major problem by farmers engaged in mangrove rice
farming. The use of pesticides and rice husks against
the crabs is a common practice in rice fields within
the mangrove forest of the Rufiji Delta (Standlinger ez
al., 2011). Many organophosphorous pesticides (OPPs)
with high acute toxicity have been found in fairly high
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concentrations in water, soils and sediments from
the delta water during the farming season (Mwevura,
2007), thus posing a threat to the aquatic ecosystem
in the delta.

At low tide, the pesticides are spread, often together
with rice husks as bait, in piles in the fields. The rising
tide inundates the fields spreading the pesticides widely
in the fields, but when the tide falls pesticides recede
into the water of the delta. In spite of the obvious risks
to the environment, the fate of pesticides in the Rufiji
Delta, or similar environments in the tropics, has not
been well investigated. A thorough understanding of
the processes and the effects of environmental condi-
tions is necessary for the prediction of pesticides move-
ment and fate in the delta. Pesticide adsorption-deso-
rption plays a major role in the environmental fate of
pesticides. These processes have a major effect on the
physical accessibility of the pollutants to microorgan-
isms and affect a variety of other fate processes such as
volatilization, bioavailability, photolysis, leaching and
hydrolysis (Schwarzenbach ez al., 2003).

The partitioning of an organic compound between
water and particles is affected by a number of fac-
tors such as absorbent properties and the nature
of the adsorbate, and the environmental variables.
Adsorbent properties of soil or sediment that may
considerably affect the adsorption of a given pesti-
cide include organic matter and clay content, cation
exchange capacity (CEC), pH, hydrous oxide content
and metal ions (Schwarzenbach et al., 2003; Lu and
Pignatello, 2004). Compound-specific physico-chem-
ical properties of importance include water solubility,
hydrophobicity, polarity, and acid-base properties
(Schwarzenbach et al., 2003; Boethiling and Mackay,
2000). Properties of the aqueous phase, such as pH,
and temperature (Hulscher and Cornelissen, 1996;
Rani and Sud, 2015) are also important.

Apart from the factors that affect pesticide sorption
in all environments, the salinity variations in a delta
environment adds to the complexity. The salinity will
vary both spatially, with lower salinity in the inner
parts of the delta, and temporally, with tidal action. To
understand the behavior of a pesticide within a delta
it is therefore important to investigate the adsorp-
tion-desorption behavior and the partitioning of pes-
ticides at different salinities.

Chlorpyrifos (O,0-diethyl-O-(3,5,6-trichloro-2-pyrid-
inyl) phosphorothioate, CAS RN 2921-88-2) was found
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in high frequency and relatively high concentrations
in the Rufiji Delta (Mwevura, 2007). It is an OPP with
broad-spectrum insecticidal activity against a number
of pests. Various formulations have been developed to
maximize stability and contact with pests while min-
imizing human exposure. Four formulations, Durs-
ban, Gladiator, Terraguard, and Pyrinex 48 EC02, have
been registered in Tanzania, of which Dursban formu-
lations are the most common. According to its regis-
tration status, chlorpyrifos is used against a wide range
of insect pests including chewing and sucking insects
and subterranean termites in coffee, rice and beans. It
is also registered for control of sugarcane grubs as well
as for use in public health programmes against mos-
quitoes (TPRI, 2020). Based on its low water solubil-
ity (1.4 mg/L) and high hydrophobicity (log K, =5.27)
chlorpyrifos partitions strongly to aquatic sediments
and macrophytes where it can pose dangers to benthic
organisms (Tomlin, 2006).

It is difficult to address the complexities of changing
salinities found in the intertidal environment using
the traditional methods of calculating adsorption
coefficients and description of desorption isotherms.
Development of the theoretical models to address the
situation was therefore necessary. The present study
elucidated the adsorption-desorption behavior of
chlorpyrifos in soils and sediments and the influence
of salinity variations on these processes. While eval-
uating the results, complexities were found that were
not well described by traditional methods of calculat-
ing adsorption coefficients and description of desorp-
tion isotherms. The new approaches described in this
paper should be useful in other contexts such as the
estimation of sorbed pesticides in rice farms affected
by coastal flooding.

Methodology

Sampling and sample handling

Soil and sediment samples were collected from two
sites within rice farms (Ruaruke and Matosa) in the
Rufiji Delta (Fig.l). Ruaruke is a relatively new culti-
vated area with rice farms established in 2002. The
farms are located along the northern banks of the
Kikunya River channel and are surrounded by dense
mangrove stands. Farmers prefer to clear mangroves
to create areas for new farms because of higher fer-
tility and the absence of weeds. Matosa rice farms are
among the oldest farms in the delta, established in the
1970s. They are located along the northern banks of
the Simba Uranga River channel and are character-
ized by the presence of dense weeds.
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Soil samples were collected on the farms while sed-
iment samples were collected from riverbanks adja-
cent to the farms. Samples were collected by scooping
the top layer (0-20 cm) using a stainless cylindrical
spoon and then wrapped in aluminum foil. Soil and
sediment samples were analyzed for physico-chem-
ical parameters including pH, particle size, total car-
bon and organic carbon (OC) (Table 1; FAO, 2006).

The samples were air-dried at room temperature
(<25°C), carefully ground in a mortar and sieved
through a 2 mm sieve. The prepared samples were
then stored in sealed glass containers until the adsorp-
tion-desorption experiments were conducted.
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bration time. These experiments showed that a sorb-
ent:solution ratio of 1:5 was ideal and equilibrium was
established within 18 hrs of shaking. To make timing
of the experiments easier, each batch of samples was
shaken for 24 hrs.

Pesticide adsorption on soil from Ruaruke and Matosa,
and sediments from Ruaruke were determined using
the OECD standard batch equilibrium technique
(OECD, 2000). The sorbent (2 g) was placed in a 25
ml Teflon tube with Teflon-lined screw cap and condi-
tioned with the background solution (10 ml) by shak-
ing overnight. The background solution was made up
of CaCl, in deionized water (0.001 moles/]). *C-labe-

Rufiji River

Rufiji Delta

TANZANIA

Figure 1. Map showing the location of study area and sampling sites (red dots).

Experimental procedure

Uniformly labeled “C-chlorpyrifos [pyridine-2,6-*C]
(purity 99%) from American Radiolabeled Chemicals,
(St. Louise, MO, USA) was used. Calcium chloride
(CaCl,) and sodium chloride (NaCl) used were of ana-
lytical grade (Merck, Spanga, Sweden), while the water
used was from a MilliQ purification system with an
additional filtration through activated carbon.

Preliminary experiments were conducted to deter-
mine the optimum sorbent:solution ratio and equili-

led chlorpyrifos was spiked to the conditioned mix-
ture at four initial concentrations (0.056, 0.112, 0.168,
0.224 mg/l) in duplicate. These initial concentrations
were achieved by spiking 12.5, 25, 37.5 and 50 ml of
112 mg/ml “C-labeled chlorpyrifos. The mixture was
shaken for 24 hrs on a shaking table to equilibrate
and then centrifuged at 3,500 rpm for 30 minutes.
An aliquot (1 ml) of the supernatant was transferred
to a scintillation vial with OptisafeHisafe 2 (Wallac,
Turku, Finland) scintillation cocktail (5 ml). Radioac-
tivity was quantified by liquid scintillation counting
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(LKB Wallac 1217 Rackbeta). Internal standards from
Wallac (C-14 Wallac product No. 1210-122) were used
to correct for sample quenching. Blanks (no chlorpy-
rifos added) were run to correct for background radi-
oactivity. The blank readings and conversion of radi-
oactivity readings into concentrations of pesticide are
presented in supplementary Table S1.

Adsorption - Desorption experiment using
Ruaruke sediment

The air-dried sediments (2 g) were conditioned with
10 ml of low salinity background solution (0.001
moles/1CaCl, in deionised water) in the 25 ml Teflon
centrifuge tubes by shaking overnight. Adsorption
was initiated by spiking 10, 20, 30, 40 and 57 ml of
112 mg/ml “C-labeled chlorpyrifos into the condi-
tioned sediment:solution mixture to give five initial
concentrations of 0.045, 0.09, 0.135, 0.180 and 0.255
mg/l, respectively. Four replicates were used for each
initial concentration. The mixtures were shaken for
24 hrs and centrifuged at 3,500 rpm for 30 minutes.
An aliquot (1 ml) of the supernatant was processed
for scintillation counter analysis as described in the
adsorption experiment. The remaining supernatant
was carefully decanted off immediately after remov-
ing the aliquot for the adsorption data.

The desorption experiments were conducted by suc-
cessive dissolution techniques of the adsorbed mate-
rial by adding fresh background solution (10 ml) free
from pesticide. Each desorption cycle was conducted
as described above. The adsorption-desorption pro-
cedure was repeated using background solutions of
0.001 moles/l CaCl, in water of 36 %, salinity to gener-
ate high salinity adsorption/desorption data.

Data analysis and interpretation
All adsorption data were fitted to the linear model (Eq. 1):

S=K,C 1)

and to the log-transformed form of the Freundlich
equation (Eq. 2):

log S =log K, + NlogC 2)

Where S is the sorbed concentration (mg/kg), C is
the aqueous phase concentration (mg/l), K, (I’kg).K,
(I¥mg'V/kg) and N are constants (Schwarzenbach et al.,
2003). The Freundlich isotherms were plotted

(log S against log C), and K, and N were obtained from
the slope and intercept of the isotherms. The desorp-
tion data were fitted to the Langmuir isotherm (Eq. 3):
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S ukC

= max 3
5 1+kC ®)
Where S_, (mg/kg) is the maximum adsorption

potential and k (I/mg) is the affinity coefficient.

Since K, -values for the Freundlich isotherm are con-
centration dependent, several approaches were taken
to linearize the isotherms and obtain K, values that
are not concentration dependent.

Assuming that the linear isotherm and the nonlinear
isotherm have equal amounts of solute adsorbed at a
given concentration Cmax., K, is the linearized sorp-
tion coefficient (Eq. 5)

C'max C'max
K,Cde=| " K,C"dc )
_ ZK_/.CmaXN_] (5)
o N+1

Finding an average K, from a nonlinear isotherm at
C,...» K, is the linearized sorption coefficient (Eq. 6).

C max

, KNC
Ky, =

[ ac

0

dC=K,Cmax""  (6)

Using the K, = NK-value at C=1 (mg/]) from the rela-
tionship:

S = K, CViK py =5 = VK Co™! %

D3
Linearized sorption coefficients (K, K,and K,;) from
the three approaches and K, from the linear isotherm
(Eq. 1) were then normalized to the organic carbon con-
tent of the corresponding sorbents to give K., Ko
K ocand K. . that were used to compare between low

and high saline soil and sediment samples.

The desorption data were fitted to the linear form of the
Langmuir equation (Eq. 3) and the parameters S___and
k were calculated from the linear plot of C/S against C
(Schwarzenbach, et al., 2003). Similarly, the desorption
data were also fitted to the Freundlich isotherm (Eq. 2).

Hysteresis indices (H) were calculated by two differ-
ent methods. The first was to take the ratio between
the Freundlich exponents for desorption and adsorp-
tion (H = N/NJ). If H = 1 there is no hysteresis, while
a decreasing H (H < 1) indicates increased difficulty
of the sorbed pesticide to desorb from the matrix,
which is called positive hysteresis. Conversely,
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Table 1. Physical and chemical properties of the tested soils and sediment.
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pH Sand Silt Clay TotalC oC

(1 mM Ca?%) % % % % %

Ruaruke Soil (RSO) 7.0 24.3 23.6 52.1 2.05 1.96
Ruaruke Sediments (RSE) 7.2 28.5 25.2 46.3 1.32 1.24
Matosa Soil (MSO) 6.8 20.3 29.3 50.4 1.84 1.79

an increasing H (H > 1) is called negative hysteresis,
which indicates that a sorbed substance is readily des-
orbed to solution (Huang and Weber, 1997; Chefetza
et al., 2004). In the method described here, however,
this is carried out for each desorption loop where
there is no single index of hysteresis for a given set of
experimental data.

In the second method, the adsorption and desorption
data were normalized to the maximum adsorption
point at equilibrium and fitted to the Langmuir or
Freundlich equations for desorption and to the Fre-
undlich equation for adsorption. The magnitude of
the hysteresis was obtained by taking the area differ-
ence under the Langmuir or Freundlich fitted deso-
rption curve and expressing it as a percentage of the
area under the normalized adsorption Freundlich
isotherm (Brown, 1994). The normalization technique
coalesced the desorption loops into one and thus sim-
plified the comparison of the two salinity conditions.
This leads to O < H < 100. When there is no hysteresis
H = 0. The larger the value of H, the more hysteresis
there is in the system.

1.6
<© RSO-Data

S _ o8 RSO-Model

% 12| § =52.53C @ MSO-Data

g — -MSO-Model

@ A RSE-Data
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Figure 2. Chlorpyrifos adsorption isotherms for Ruaruke soil (RSO),
Matosa soil (MSO), and Ruaruke sediment (RSE). ‘Data’ refers to the
actual measurements, and ‘model’ to the isotherm calculated from the
respective set of data.

Results and Discussion

Adsorption of chlorpyrifos

Soil and sediment properties from the two sites are
given in Table 1. All samples were dominated by clay
content which contributed between 46.3 and 52.1 % of
the soil. The organic carbon and total carbon content
ranged from 1.24 - 1.96 % and 1.32 to 2.05 %, respec-
tively. The highest percentages of clay and organic
carbon contents were measured in Ruaruke soil (RSO)
followed by Matosa soil (MSO). Ruaruke sediment
(RSE) gave the lowest percentages of clay and organic
carbon content.

The results of chlorpyrifos adsorption experiments
are summarized in Table 2. Nonlinear isotherms were
obtained for all adsorbents indicating that chlorpyri-
fos has a preferential adsorption to soils and sediment
initially, and adsorption decreases as more pesticide
is adsorbed (Fig. 2). The adsorption data were better
described with the Freundlich equation with R? values
between 0.983 and 0.996 compared to R? values of the
linear isotherms which were between 0.957 and 0.981.
In a case like this the linear isotherm model should
not be used to interpret the data since the slopes of
the chlorpyrifos Freundlich isotherms () were less
than 1. N values which indicate the dependence of
adsorption on concentration were 0.78, 0.88 and 0.70
for RSO, MSO and RSE, respectively.

Effects of organic carbon and clay contents

on adsorption

The linearized K, values from the Freundlich iso-
therms indicated that RSO had higher adsorption
capacity for chlorpyrifos than MSO while RSE had
lower adsorption capacity than MSO. The linearized
K, values increased in the order RSE < MSO < RSO
(Table 2). The adsorption parameters (normalized K,
and K) increased with increasing OC and clay con-
tents (Table 1 and 2) indicating that the OC content
was not the only factor responsible for the adsorption.
Jeong et al. (2008) reported that the nature of the OC
may influence adsorption. Dissolved OC particularly
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affects the adsorption capacity of sediment in wetland
areas and in turn the bioavailability of contaminants
(Huang and Lee, 2001; Goedkoop and Peterson, 2003;
Widenfalk, 2005). The trend of the linearized K, val-
ues reflects the OC content of the respective sorbent
(Tables 1 and 2). However, the carbon normalized
adsorption coefficients (K., Ky o0 Kpooer and Kpyz0)
had different values (Table 2). In particular K. val-
ues were much larger than the other three. This is a
result of using the wrong model of a linear isotherm.
The other three approaches of linearized K were cal-
culated at C = 1 pg/ml. In most investigations K. is
calculated for nonlinear isotherms using K, which is
equivalent to using Eq. 6 at C_, = 1. The K, value is
numerically equal to K, obtained with Eq. 6. There-
fore Eq. 6 K, values are preferred. Interestingly, the
trend in all calculated K. values was RSE < MSO <
RSO. These observations suggest that a linear iso-
therm model should not be used to calculate K, if
the isotherms are nonlinear, and that the acceptable

Table 2. Adsorption and desorption parameters of soil and sediment.
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linearized K, model is one that calculates the aver-
age K, at the equilibrium solution concentration
(C) of interest. K. values determined in this study
(722-2680) are within the lower range (1250-12600)
reported in the literature (Tomlin, 2006).

As mentioned above, the adsorption coefficients also
correlated with the clay contents (R? = 0.9968 for K ,).
In most investigations OC has been the more impor-
tant factor for the adsorption of pesticides, while the
clay content contributes significantly in soils with low
OC content (Green and Karickhoff, 1990). The OC
rich soil and sediment from the Rufiji Delta stand out
to some extent in that the clay content contributes
to the adsorption of chlorpyrifos. Thus, not only the
quantity of the OC, but the quality and composition
of the OC as well as the mineral component of the soil
or sediment are of importance (Jeong et al., 2008; Kile
et al.,1999; Mitra et al., 2003).

Adsorption
KD Kf N KDOC KDIOC KDQOC KD3OC
L/kg (Lmg'™M)/kg L/kg L/kg L/kg L/kg
RSO? 169.74 52.53 0.78 8660 3011 2680 2090
MSO 53.95 32.14 0.88 3014 1910 1796 1580
RSE 27.86 8.59 0.70 2247 849 722 485
RSEL 37.86 26.93 0.91 3053 2274 2172 1976
RSEH 53.09 19.50 0.76 4281 1787 1578 1196
Desorption
Non-normalized: Freundlich Non-normalized: Langmuir
de N, H S s K
RSEL 0.37-1.81 0.11-0.09 0.12-0.08 0.21-0.99  3236-1125
RSEH 0.47-1.27 0.13-0.06 0.17-0.08 0.22-1.05 9099-1901
Normalized: Freundlich Normalized: Langmuir
K, N, H S K’ H
RSEL 1 0.08 0.09 1 2703 73%
RSEH 1 0.06 0.08 1 3910 59%

2RSO = Ruaruke soil; MSO = Matosa Soil; RSE = Ruaruke Sediment; RSEL = Ruaruke sediment, low salinity conditions; RSEH = Ruaruke sediment,

high salinity conditions.
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Figure 3. Non-normalized isotherms for chlorpyrifos adsorption-desorption in Ruaruke sediment. A=Low salinity, adsorption-Freundlich and des-
orption-Freundlich isotherms; B=High salinity, adsorption-Freundlich and desorption-Freundlich isotherms. AD refers to the adsorption phase
and DL to the respective desorption loop. ‘Data’ refers to the actual measurements and ‘model’ to isotherms subsequently calculated from the data.

The strong adsorption of chlorpyrifos in both soils
and sediment suggests that adsorption plays an
important role in the overall fate of chlorpyrifos in
the Rufiji Delta. Similarly, suspended sediment can
absorb substantial amounts of chlorpyrifos in a wet-
land (Moore et al., 2002) and more than 50% of the
measured chlorpyrifos in aquatic bodies is associated
with sediments.

Desorption and hysteresis

During adsorption the low salinity sediments (RSEL)
adsorbed more chlorpyrifos than the high salinity
sediments (RSEH) and both isotherms were nonlin-
ear. The K, values calculated using Eq. 6 were 2172
and 1573 for RSEL and RSEH, respectively (Table 2).
Under both low and high salinity conditions, the des-
orption data fit the Freundlich isotherm (Fig. 3). The
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desorption coefficient (K,) of the desorption loops
increased as the initial equilibrium solution concen-
tration increased, but the N, values decreased (Fig. 3).
Based on the Freundlich model for both adsorption
and desorption isotherms, the hysteresis index aver-
age for all five loops was close to H = 0.1 for both RSEL
and RSEH. Based on the method of calculating H that
uses the N, /N, ratio, there was no difference in hys-
teresis between low salinity (H = 0.12 - 0.08) and high
salinity (H = 0.17 - 0.08) sediment treatments.

The adsorption data were described by the Freun-
dlich isotherm and the desorption data by the Lang-
muir isotherm (Fig. 4). Since desorption was initiated
from the maximum equilibrium concentration of a
given desorption loop, it is apparent that the Lang-
muir model is more appropriate than the Freundlich
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Figure 4. Non-normalized isotherms for chlorpyrifos adsorption-desorption in Ruaruke sediment. A=Low salinity, adsorption-Freundlich and
desorption-Langmuir isotherms; B=High salinity, adsorption-Freundlich and desorption-Langmuir isotherms. AD refers to the adsorption phase
and DL to the respective desorption loop. ‘Data’ refers to the actual measurements and ‘model’ to isotherms subsequently calculated from the data.
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Figure 5. Normalized isotherms for Ruaruke sediment. A=Low salinity,
adsorption-Freundlich and desorption-Freundlich isotherms; B=High
salinity, adsorption-Freundlich and desorption-Freundlich isotherms.

model. It appears that the Langmuir model describes
the desorption data better than the Freundlich model
(Fig. 8 and 4). For both low and high salinity sediment
treatments the S increases as the initial concentra-
tion of the desorption loops increases. However, the
affinity coefficient (k) decreases with increase in initial
concentration for desorption (Fig. 4 and Table 2).

The adsorption and desorption solution and adsorbed
concentrations were normalized with the respective
maximum concentration. The normalized data were
then fitted to the Freundlich model (Fig. 5). For both
low and high salinity sediment treatments, the desorp-
tion loops are described by one isotherm which has the
desorption coefficient (K *fd) equaltoland N *D value that
is close to the average of N, values in Fig. 8. The nor-
malized adsorption isotherm also has the adsorption
coefficient (K *f) equal to 1 and the N *S value is the same
as N, for the non-normalized Freundlich isotherm (Fig.
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3 and 5). Using data for the normalized Freundlich iso-
therms the hysteresis index H = N', / N', is close 0.1.
This implies that the normalization scheme averages
the hysteresis indices for all five loops.

The hysteresis index was also calculated based on
the areas under the normalized adsorption and des-
orption isotherms. The hysteresis index was 77 % for
low salinity (RSEL) and 66 % for high salinity (RSEH).
From the H values it is evident that the low salinity
sediments had more hysteresis than the high salinity
sediments. What is attractive about the normalization
scheme and using the areas under the adsorption and
desorption isotherms to calculate the hysteresis index
is that both adsorption parameters (K, and Ny and
desorption parameters (K, and Np) are incorporated
into the normalized isotherms.

The normalization scheme was also carried out by
using the Langmuir isotherm for desorption and the
Freundlich isotherm for adsorption (Fig. 6). All five
desorption isotherms coalesced into one desorption
loop which had §°, =1 for both RSEL and RSEH
(Table 2). The calculated hysteresis index using areas
under the adsorption and desorption normalized iso-
therms was 78 % for low salinity and 59 % for high salin-
ity sediment treatments. It is believed that the differ-
ence in the calculated H indices using the normalized
Freundlich and the Langmuir desorption isotherms is
because the Freundlich model is not appropriate for
desorption data. This can be seen in Fig. 5 in which
the Freundlich isotherms abruptly go to S~ =0 at
normalized sorption concentration (S%) of about 0.7.
This abrupt approach to C* = 0 over- estimates the
area under the normalized desorption Freundlich iso-
therms which leads to an increase in the calculated H
since the area under the normalized adsorption iso-
therm remains the same when the Freundlich or the
Langmuir model is used. However, regardless of the
model used to describe the normalized desorption
isotherms the low salinity sediment had more hyster-
esis than the high salinity sediment. Based on these
hysteresis data the normalized Langmuir isotherm is
recommended for describing desorption isotherms
and for calculating the hysteresis index.

Hysteresis is one of several manifestations of non-
ideal adsorption behavior that challenge the assump-
tions associated with the application of adsorption
models to the interaction of hydrophobic organic
chemicals with adsorbent (Huang et al., 1998). The
adsorption-desorption behavior of chlorpyrifos at
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Figure 6. Normalized isotherms for Ruaruke sediment. A=Low salinity,
adsorption-Freundlich and desorption-Langmuir isotherms; B=High
salinity, adsorption-Freundlich and desorption-Langmuir isotherms.

both high and low salinity exhibited hysteresis indi-
cating that the adsorption interactions are not truly
reversible (Fig. 3 and 4). The amount of chlorpyri-
fos desorbed from the sediments was less than the
amount adsorbed. This phenomenon may be caused
by several factors including changes in solution com-
position and irreversible binding of chlorpyrifos to
the sediments. Not attaining equilibrium during the
desorption process could also contribute to hysteresis
as the rate of desorption is slow (Mersie and Seybold,
1996; Amankwah, 2008; Kleineidam et al., 2004) and
it has been shown that both hysteresis and non-lin-
ear adsorption are enhanced by cross-linking with
aluminum ions (Al?**) in the sorbent material (Lu and
Pignatello, 2004). The difference between the adsorp-
tion and desorption processes is expressed in the
hysteresis index values (H) summarized in Table 2.
On average, the H decreased with increasing salinity,
indicating that sediments in fresh water are better at

1.2
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sequestering chlorpyrifos than sediments in a saline
water environment.

It is clear that the methods used to calculate sorption
coeflicients are very critical when discussing adsorp-
tion and desorption data. If the isotherm is nonlinear,
using the sorption coefficient from the linear isotherm
model can yield erroneous conclusions. For example,
in Table 2, the K, value for the high salinity sediment
is larger than that for the low salinity sediment. How-
ever, using the linearized K, the low salinity sediment
adsorbed chlorpyrifos more strongly than the high
salinity sediment. This leads to the over-estimation
of K. when the linear isotherm model is used (Table
2). Similarly, using the Freundlich isotherm model
for desorption showed that there was no difference in
hysteresis between RSEL and RSEH if the hysteresis
index is calculated based on N values for adsorption
and desorption. Therefore, the index H = N, /N, might
not be appropriate because this method does not
include the adsorption and desorption coefficients. A
better index of hysteresis is one that considers areas
under the normalized adsorption and desorption iso-
therms, provided the desorption isotherm is described
by the normalized Langmuir isotherm. This method
of calculating H incorporates all adsorption (K,and N)
and desorption (S__, and k) parameters. Based on the
normalized Langmuir desorption isotherm and the
Freundlich normalized adsorption isotherm, the low
salinity sediments exhibited more hysteresis than the
high salinity sediment (Table 2).

Concluding remarks

The results from this study show that chlorpyrifos
was strongly adsorbed in sediments and soils from the
Rufiji Delta and therefore adsorption and settling of
sediments are among the major removal pathways of
the chemical from the water column. The adsorption
process was found to be nonlinear, and, contrary to
what was expected, the organic carbon content was not
the only adsorbent parameter that influenced chlorpy-
rifos adsorption, suggesting that other adsorbent com-
ponents such as clay content were also responsible
for adsorption of chlorpyrifos. When calculating K.
values a correct model for describing adsorption iso-
therms must be used. If the isotherm is nonlinear then
the linear isotherm model should not be used. How-
ever, for a nonlinear isotherm a justifiable linearization
method is one that calculates the average K, within
the range of solution concentration (0 to C). The
value of C has been taken to be C = 1pg/ml by many
researchers. This leads to using K, in Eq. 7 to calculate
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K,.. Adsorption-desorption hysteresis was observed
in sediments under both low and high salinity con-
ditions. The extent of chlorpyrifos adsorption on the
sorbents tested, as well as hysteresis calculated in dif-
ferent methods, decreased with salinity, implying that
under freshwater conditions, sediments play a more
important role in trapping chlorpyrifos than in saline
water sediments. The finding that chlorpyrifos adsorbs
more at low than high salinity is puzzling. A salting out
effect that lowers the solubility of the compound with
higher salt concentration would have been plausible
(Means, 1995). The explanation may lie in competi-
tion for adsorptive sites between chlorpyrifos and ions
at higher cation exchange capacity (CEC). Additional
studies are needed to confirm these findings.
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Calculations
Concentration of Chlorpyrifos in analysed supernantant (Cw, pg/ml)
was calculated using the following formula:

Cw = Net radioactivity reading of supernatant X Conc. of original solution

radioactivity reading of original solution

_ (AB)X Co
Ro

Cw

Original Mass of chlorpyrifos (Mo) = Co x volume of Solution (V)

Mo =CoxV

Mass of chlorpyrifos in the supernatant (Mw) = Cw x volume of Solution (V)
Mw =CwxV

Mass of chlorpyrifos in the adsorbed in soil/sediment (Ms) = Mo - Mw

Concentration of chlorpyrifos (Cs , pg/g = mg/kg) = Mass of chlorpyrifos in soil/sediment (Ms)

Mass of soil/sediment

Ms
Cs (pg/g = mg/kg) = —
ms
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