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Introduction
The Tigertooth croaker, Otolithes ruber (Bloch & Sch-
neider, 1801), is a demersal fish species belonging 
to the family Sciaenidae and is widely distributed 
throughout the Indian Ocean along the east coast 
of Africa and the west Pacific ocean (Brash and Fen-
nessy, 2005; Froese and Pauly, 2019). They inhabit 
warmer (26 °C – 29 °C) marine and brackish waters 
and are found over sandy and muddy substrates and 
river mouths at depths of 10 – 40 m (Eskandari et al., 
2012; Farkhondeh et al., 2018). Previous studies have 
reported on some aspects of the biology of O.ruber, 
reporting a maximum and common length of 90 
cm and 40 cm (TL), respectively (Froese and Pauly, 
2019; Sousa and Dias, 1981). Length at first maturity of  
O. ruber was estimated to range from about 22 cm to  

40 cm (TL) (Fennessy, 2000). Studies by Eskandari  
et al. (2012), from the Northwest Persian Gulf in the 
south of Iran, reported a size at maturity range of 
between 30 to 40 cm (TL). In both India and South 
Africa, the species has been reported to mature at a 
comparatively smaller size, ranging between 22-24 cm 
(Brash and Fennessy, 2005). Mature females have been 
found to occur throughout the year, suggesting pro-
longed and continuous spawning activity (Santhoshku-
mar et al., 2017; Velip and Rivonker, 2018). O. ruber are 
mainly carnivores with adults feeding on fishes, prawns 
and other invertebrates (Froese and Pauly, 2019). 

In most of the southwest Indian ocean countries, for 
example, South Africa, Mozambique and Tanzania, 
O.ruber is caught as by-catch from Panaeid prawn 
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trawlers (Fennessy, 2000; Schultz, 1992). In addition, 
the fish is also targeted by recreational hook and 
line fishers in South Africa and by gillnet and beach 
seine artisanal fishers in Mozambique and Tanzania 
(Olbers and Fennessy, 2007). Similarly, in Kenya, O. 
ruber is mainly caught as by-catch on prawn trawl-
ers (Munga et al., 2014), and by artisanal fishers using 
gillnets, prawn seines and handlines (Mwatha, 2002; 
Omukoto et al., 2017).

It is well known that O. ruber is caught in large num-
bers, but since it is rarely studied, very little is known 
about the status of the species. This raises the ques-
tion of whether the stock is being overexploited or 
being sustainably fished. Studies by Olbers and Fen-
nessy (2007) have shown that though the species 
is not a principal target for most fisheries, the vast 
quantities of small individuals discarded due to its 
low economic value makes it particularly vulnerable 
to overexploitation. Similar observations have been 
found off Malindi-Ungwana Bay in Kenya where 
juveniles of O. ruber, Johnius sp. (both Sciaenidae), and 
Pomadasys sp. made up to 25 % of the by-catch by mass 
(Munga et al., 2014). This implies that the local arti-
sanal fisheries, which rely on the resource as a source 
of livelihood, are impacted. 

Information on the status of exploited fish stocks is 
vital for making fisheries management decisions  
(Melnychuk et al., 2017). Traditionally, such informa-
tion is derived from stock assessment models, which 
are often data-intensive and complex, rendering 
them unsuitable for data-limited fisheries (Prince and 
Hordyk, 2019; Wang et al., 2020). Even in the pres-
ence of a routine data collection system, often there 
is a lack of long time-series data, and often, the data is 
aggregated, limiting the use of stock assessment mod-
els (Chrysafi and Kuparinen, 2015). Over the past dec-
ade, a number of data-limited assessment methods 
(DLMs) have been developed to assess data-limited 
stock status (Dowling et al., 2019). Given that for most 
data-limited fisheries length-frequency data from 
commercial catches tend to be the primary data type 
available, most of the DLMs are length-based, which 
has made it possible to assess the population parame-
ters of exploited fish stocks in tropical waters (Chong 
et al., 2019; Rudd and Thorson, 2017).

The present study is the first attempt to assess the stock 
status of O.ruber, a by-catch species from the prawn 
trawl fishery in Malindi-Ungwana Bay. Most studies 
have predominantly focused on the assessment of 

target and commercially important species, but the 
assessment of by-catch species is mostly ignored, and 
as a result, very little is known about their status (Cook 
and Heath, 2018). In this study, we explore the use of 
the most widely used non-parametric length based 
approach, the Electronic Length Frequency Analy-
sis (ELEFAN) (Pauly, 1987; Pauly and David, 1981), to 
estimate growth and mortality parameters of O. ruber 
to provide management advice for their sustainable 
exploitation in the fishery. 

Materials and methods
Study area
The prawn trawling fishery in Kenya is carried out 
in Malindi-Ungwana Bay, between latitudes 3°30’S 
and 2°30’S and longitudes 40°00’N and 41°00’N (Fig. 
1). The area is considered one of the most produc-
tive fishing grounds along the coast due to its wide 
continental shelf (extending between 15 and 60 km 
offshore) relative to other parts of the Kenyan coast-
line. In addition, the bay is influenced by the inflow 
of the rivers Tana and Sabaki, which carry sediments 
resulting in a vast stretch of sandy beaches and dunes 
made up of terrigenous sediments. The bay is shal-
low with a mean depth of 12 m during high spring 
tide at 1.5 nm and 18.0 m at 6.0 nm offshore, respec-
tively.  The depth increases rapidly to 100 m after 
7 nm and generally decreases northwards. Due to 
its bathymetry, environmental characteristics and 
topography, Malindi-Ungwana Bay has the highest 
concentrations of shallow water prawns on the Ken-
yan coast with several semi-industrial prawns trawl-
ing in the area.

The bay is influenced by two dominant offshore cur-
rent regimes: the Northeast Monsoon (NEM) and 
the Southeast Monsoon (SEM). During the SEM, 
which occurs between April and October, the cur-
rent circulation is dominated by the northward flow 
of the East African Coastal Current (EACC). During 
this season, the bay also receives the most substan-
tial river discharge from the rivers Tana and Sab-
aki (Kitheka et al., 2005). During the NEM, between 
November and March, the northward-flowing EACC 
meets the southward flowing Somali Current to 
form the Equatorial Counter Current, which flows 
away from the coast of   the Indian Ocean (Jacobs 
et al., 2020). During the NEM, the ocean waters in 
nearshore areas have higher salinities than dur-
ing the SEM due to low precipitation and reduced 
river discharge compared to the SEM period. Prawn 
fishing and production are higher during the SEM. 
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Sampling 
Length data for O. ruber was collected by trained sci-
entific observers on-board 3 shallow water (5 – 40 m) 
prawn trawlers during the trawling season of April - 
October for 2016, 2017 and 2018. Data collection fol-

lowed documented trip instructions and designated 
sampling protocols adopted from the Southwest 
Indian Ocean Fisheries Project (SWIOFP) Observer 
Program Data Collection Guide, 2012. Specifically, 
the trip instructions included: Capturing vessel and 
trip information, recording of the gear characteristics, 
collecting and recording the catch and fishing effort 

information which entails start and end time of haul, 
positions, depth, target catch, by-catch, discards, catch 
composition, mitigation measures and environmental 
interactions (TEDs, PETs, large by-catch, e.g. sharks 
and fate of these species). The sampling protocols used 

for catch composition determination was as follows: 
First, large-sized fish samples were stored before being 
processed and the catch divided virtually into random 
sample portions of  30% to a maximum of 20 kg from 
the catch (1 portion). Samples were then sorted to spe-
cies/family level, total weight and numbers for each 
species/family observed in the sample was recorded, 

Figure 1 

Figure 1. Map of Kenya (inset) and the Kenyan coastline showing the location of Malindi and Ungwana 

Bays and the Sabaki and Tana rivers.
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and individual total length was measured to the nearest 
mm using a standard measuring board. 

This data collection was part of the annual observer 
deployment programme that commenced in 2016 
to contribute to fisheries management of panaeid 
prawns and associated by-catch.

Data Analysis
Length frequency catch data (LFCD) of O.ruber from 
2016 to 2018 was pooled and converted to quarterly 
catches with the assumption that the samples were 
representative of the total catch of the month (Abobi 
et al., 2019).  The ShinyTropFish (version 0.9.1) based 
on the TropFishR package (version 1.7.0; Milden-
berger et al., 2017) was used to assess the status of 
the species by estimating the growth and mortality 
parameters from modal progression and catch curve 
analysis using the ELEFAN_GA function (Taylor and 
Mildenberger, 2017). 

To generate a confidence interval around the esti-
mated growth parameters, the updated version of the 
TropFishR with bootstrap functionality was used to fit 
the growth curve to the length-frequency catch data 
(LFCD) (Pauly, 1987; Pauly and David, 1981; Schwam-
born et al., 2019).  

Estimation of Growth Parameters
The Von Bertalanffy’s growth parameters (VBGP) 
(von Bertalanffy, 1938), that is, asymptotic length 
(L∞) and growth constant (K), were estimated using 
the length-frequency catch data (LFCD) in TropFish. 
This was done by applying the seasonalised von Ber-
talanffy’s growth function (VBGF) to the length-fre-
quency catch data (LFCD) (Somers, 1988).

An updated version of the Electronic Length fre-
quency Analysis (ELEFAN) (Pauly, 1987; Pauly and 
David, 1981; Schwamborn et al., 2019) was used to fit 
the growth curve to the length-frequency catch data 
(LFCD). For optimum search and improvement in the 
accuracy of the growth parameters L∞   and K esti-
mation, the LFCD was binned according to the maxi-
mum body length observed for the fish species (Wang 
et al., 2020).

Optimum bin size (OBS) = 0.23 * Lmax 0.6

An initial seed value of L∞ was estimated based on the 
mean of the 1 % of the  largest observed individual in the 
sample (Lmax) following the formula by Pauly (1984):

where L∞ = Lmax /0.95

The growth performance index (Ф’) (Pauly, 1984), was  
used to compare growth parameters. 

The estimated potential longevity tmax of O.ruber was 
computed from the formula (Pauly, 1980; Taylor, 1958):

tmax = 3/K

Mortality Parameters
The instantaneous total mortality rate (Z) was com-
puted from the LFCD based on the linearized 
length-converted catch curve (LCC) (Pauly, 1983).

Given the importance yet difficulty in reliably esti-
mating the natural mortality (M) ( Jørgensen and Holt, 
2013), an updated version of the Pauly (1980) growth-
based method was applied (Then et al., 2015):

𝑀𝑀 = 4.118𝐾𝐾0.73𝐿𝐿∞−0.33

This approach is preferred over other empirical formula used to estimate natural mortality (M) 

given that it resulted in better prediction power from meta-analyses of more than 200 fish species 

of different life histories (Then et al., 2014). The rates of fishing mortality (F) and exploitation 

rates (E) were calculated based on the relationship:  

𝐹𝐹 = 𝐹𝐹 𝐹𝑀𝑀 and

𝐸𝐸 = 𝐹𝐹
𝑍𝑍

This approach is preferred over other empirical for-
mula used to estimate natural mortality (M) given that 
it resulted in better prediction power from meta-anal-
yses of more than 200 fish species of different life his-
tories (Then et al., 2014). The rates of fishing mortality 
(F) and exploitation rates (E) were calculated based on 
the relationship: 

F = Z – M and 

𝑀𝑀 = 4.118𝐾𝐾0.73𝐿𝐿∞−0.33

This approach is preferred over other empirical formula used to estimate natural mortality (M) 

given that it resulted in better prediction power from meta-analyses of more than 200 fish species 

of different life histories (Then et al., 2014). The rates of fishing mortality (F) and exploitation 

rates (E) were calculated based on the relationship:  

𝐹𝐹 = 𝐹𝐹 𝐹𝑀𝑀 and

𝐸𝐸 = 𝐹𝐹
𝑍𝑍

where Z is the total mortality, F the fishing mortality, 
and M is the natural mortality.

Probability of capture 
The probability of capture was estimated based 
on the ascending left arm of the length-converted 
catch curve (Pauly and Munro, 1984). Primarily, the 
method entails the backward extrapolation of the 
right, descending left arm of the catch curve in each 
length class. The probability of capture is obtained 
by dividing, for each length-class, the numbers 
caught (N) by the numbers available (N/P), resulting 
in a curve from which the length at first capture Lc 
can be estimated (Pauly, 1987). 

Yield per recruit
The length-based yield per recruit model (YPR) by 
Thompson and Bell (1934) was used to evaluate the 
exploitation levels of O.ruber, which would result in 
optimum yield. With the growth parameters as the 
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input, the reference levels Fmax (the fishing mortality, 
which produces the highest yield per recruit), F0.5 (the 
fishing mortality that results in a 50 % reduction of the 
biomass compared to the unexploited population), 
and F0.1 (the fishing mortality that corresponds to 10 % 
of the slope of the yield per recruit curve at the origin) 
were estimated. The impacts of varying fishing mor-
tality and selectivity (Lc/ L∞ ) were assessed using the 
yield isopleths diagramme.

Results
Size distributions of the stock 
The length frequency distribution of the 1742 individ-
uals of O. ruber revealed a unimodal distribution and 
was negatively skewed (Fig. 2). The total length (TL) 
ranged between 5 and 38.4 cm, with a mean size of 
23.1 cm (Fig. 2). The majority of the O.ruber individu-
als caught (53.1 %) had a TL larger than the mean size. 
The mean size of the individuals caught was generally 
lower in 2016 (22.04 ± 7.6 cm) and 2017 (22.9 ± 5.5 cm) 
compared to 2018 (24.4 ± 4.9 cm; Table 1).

The results of the Kruskal-Wallis rank-sum test 
revealed that there was a significant difference between 
the mean length across the years (chi-squared = 10.123,  

df = 2, p-value = 0.006337). A pairwise compari-
sons using the Wilcoxon rank-sum test showed that 
the mean length in 2018 was significantly different  
(p < 0.05) from the year 2016 and 2017 (Table 2).

Estimation of growth parameters 
The length frequency (LFQ) data spans 3 years (2016, 
2017, 2018) and comprises of 1742 length measure-
ments, which are aggregated over 9 sampling times 
(Fig. 3). The figure shows the raw LFQ data (Fig. 3a) and 
after restructuring with a moving average of 5 (Fig. 3b).

The analysis of the pooled length-frequency data of 
the O.ruber gave an initial L∞ value of 39.2 cm esti-
mated from the mean of the 1 % largest fish in the sam-
ple (Table 3). Using L∞ = 39.2 cm as a seed value and 
an MA of 5, the ELEFAN_GA routine in TropFishR 
yielded L∞ estimates of 41.7 cm and a K of 0.70 yr-1 
(Fig. 3c). The bootstrapped ELEFAN routine in Trop-
FishR yielded L∞ estimates of 41. 7 cm, (CI=33.1- 44.6 
cm) and a K of  0.79 yr-1 (CI = 0.23-0.89). 

The value of mode of the distribution (maximum 
density result after 500 resamples = 0.79) was  slightly 
higher than the GA estimate (Appendix, Figure A). 

Figure 2. Length frequencies of O. ruber collected from commercial prawn trawlers as by-catch 

samples from Malindi-Ungwana Bay, 2016-2018.

Table 1. Summary statistics of the size distribution of the Otolithes ruber in the commercial prawn by-catch sample.

Year N Min (cm) Max (cm) Mean size (cm) 
± SD

2016 526 5.0 38.4 22.0 ± 7.6

2017 630 10.0 34.0 22.9 ± 5.5

2018 586 9.0 36.0 24.4 ± 4.9
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Figure 3. 

Figure 3. Raw (a)  restructured (b) length frequency data of O. ruber from Malindi-Ungwana Bay, 2016-

2018; (c) restructured length-frequency distribution with superimposed growth curves of O. ruber obtained 

through the ELEFAN_GA function (with the settings MA = 5, Linf = 41.7, K = 0.79, C = 0.43). 

Table 2. Pairwise comparisons of the mean length between the years in Otolithes ruber using Wilcoxon rank-sum test.

2016 2017

2017 0.435

2018 0.013 0.013
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The growth performance index (Ф’) and the longevity 
(tmax) estimated for O.ruber was 3.087 and 4.28 years, 
respectively. 

Mortality and selectivity
The instantaneous total mortality (Z) of O.ruber 
derived from the computed VBGP values was 3.23 
(Fig. 4), with natural mortality of 0.931 estimated by 
the Then et al. (2015) approach. The estimated instan-
taneous rate of fishing mortality (F) was 2.30 per year, 
with an exploitation ratio of 0.71 (Table 4) which sug-
gests that the O.ruber stock in Malindi-Ungwana Bay 
could be overexploited (E > 0.5).  Applying the boot-
strap routine resulted in a comparatively lower Z 

estimate of 1.02 for the maximum density value but 
with a wide confidence interval (Z = 0.57-3.69). With 
this procedure, the estimated range of the exploita-
tion rate also varied widely (E = 0.28-0.70) (Appendix, 
Table A). With the above values, the backward projec-
tion of the descending arm of the catch curve resulted 
in a mean size at first capture (Lc) of 23.8 cm, assum-
ing a trawl-like gear selectivity (Fig. 5).  

Recruitment and yield per recruit 
Given the growth parameters, the LFQ data can be 
extrapolated backwards onto the time axis to indi-
cate the relative recruitment pattern (Fig. 6). The pat-
tern exhibited by the size distribution of the O.ruber 

Table 3. Comparison of growth parameters of Otolithes ruber in this study with those from other studies. 

Study Methods L∞ (cm)  K
(year-1 Ф’ Reference

FishLife Aggregated 43.9 0.38 2.86 (Thorson et al., 2017)

This study Length- based 41.7 0.70 3.087

KwaZulu-Natal,  

South Africa
Age-based 41.9 0.31 2.74 (Brash and Fennessy, 2007)

KwaZulu-Natal,  

South Africa
Length-based 51.1 0.6 3.19 (Fennessy, 2000)

Kuwait Length- based 59.0 0.39 3.13 (Almatar, 1993)

Sofala Bank,  

Mozambique
Length- based 42.9 0.14 2.42 Gislason (1985)

San Miguel Bay, 

Philippines 
Length- based

29.5 
0.455

2.60 Navaluna (1982) 

Figure 4

Figure 4. Length converted catch curve showing total mortality (Z) of O.ruber in the prawn trawl fishery.
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indicated two unequal recruitment pulses with the 
major peak occurring during the eighth month (Fig. 6).

The estimation of the biological references are pre-
sented in Table 5 and Fig. 7. The optimal exploitation 
and fishing rate Emax (0.542) and Fmax (2.32) values were 
well below the actual values of the current exploitation 
of 0.7 and fishing mortality of 2.3 year-1, respectively 

and is an indication that the species appears to be 
overexploited. 

The yield and biomass per recruit isopleth dia-
grammes are represented in Figs. 8 and 9, respec-
tively. The solid black lines are the isopleths indicating 
different areas of the same yield and biomass, with the 
dotted lines indicating the current fishing mortality 

Table 4. Computed mortality, exploitation rates and the selectivity of Otolithes ruber. 

Z M F E L50 L75

3.23 0.931 2.302 0.71 23.8 cm 25.3 cm

Figure 5

Figure 5. Probability of capture of O.ruber as estimated from the backward extrapolation of the descending 

arm of the catch curve. The dotted line indicates the relative age corresponding to the size at first capture 

(L50 = 23.8 cm).

Figure 6

Figure 6. Recruitment pattern of O. ruber of the Malind-Ungwana Bay estimated from the restruc-

tured length–frequency data onto an arbitrary 1-year timescale. The species exhibits two peaks of 

unequal magnitude.
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Table 5. The estimated biological reference levels from the length-based yield per recruit model (Thompson and Bell, 1934). 

F01 Fmax F05 E01 Emax E05

1.102 3.306 0.918 0.542 0.78 0.497

Figure 7
Figure 7. Relative yield per recruit curve for O.ruber indicating the yield and biomass per recruit for a 

range of fishing mortality values, respectively. The dashed lines show the reference levels F0.1, F0.5, 

Fmax and the current fishing mortality based on the catch curve analysis.

Figure 8
Figure 8. Isopleth diagrammes of the relative yield per recruit as a function of relative 

size at first capture (Lc/Linf) and fishing mortality for O. ruber. The solid black lines are 

the isopleths indicating different areas of the same yield, while the dashed line indicates 

the current fishing mortality and selectivity based on the catch curve analysis.



158 WIO Journal of Marine Science  19 (2 ) 2020 149-165  |  F. Mzingirwa et al.

and selectivity based on the catch curve analysis. The 
ratio between the Lc and the L∞  represents different 
scenarios typical to changes in mesh size. At the fish-
ing effort and selectivity found in this study, O.ruber 
stocks are mostly exploited at a smaller size and at a 
much higher fishing effort. The Lc/L∞ ratio for the  
fishery was estimated at Lc/L∞ = 0.57. 

Discussion
O. ruber commonly occurs as by-catch in prawn trawl 
fisheries in the western Indian Ocean region and 
many tropical fisheries of the world (Fennessy, 2000; 
Munga et al., 2014; Olbers and Fennessy, 2007). on 
the  east African coast, the contribution of O. ruber 
to the overall by-catch landed is substantial (Munga 
et al., 2014). Nevertheless, their commercial impor-
tance is low compared to other demersal species 
of comparable size. Studies from the region sug-
gest that industrial fleets discard a high proportion 
of O. ruber, the majority being juveniles, (< 20 cm) 
(Mwatha, 2002; Olbers and Fennessy, 2007). More-
over,  relatively  little is known regarding their sta-
tus, and that of other by-catch species, which com-
promises the management and sustainability of 
these fisheries. One of the primary goals of fisheries 
management is to conserve sufficient reproductive 
potential in stock to allow sustainable exploitation, 
which requires knowledge of the species’ life history 
(Komoroske and Lewison, 2015). However, the chal-
lenge of inadequate data (type, amount and quality) 

limits the proper assessment and management of 
these fisheries (Dowling et al., 2008).

This study is the first attempt on the Kenyan coast to 
assess the status of O. ruber, from Malindi-Ungwana 
Bay, making use of the length-frequency data from 
catch obtained from non-selective prawn trawl fishing 
nets. Validation of stock status from length-at-age data 
provides a more precise and unbiased estimate com-
pared to length-frequency analysis, which strongly 
affects sample bias. The application of both methods 
offers the most robust results (Pauly, 1987). Never-
theless, given the cost implications of sampling and 
the difficulty in the ageing of tropical fish from oto-
liths, the length-based approaches have become more 
popular for tropical data-limited fisheries, where 
length-frequency data is easily collected.
 
In the absence of time series data on catch or catch-
at-age data, the non-parametric ELEFAN routine in 
TropFishR (Mildenberger et al., 2017) was used to esti-
mate the growth parameters of O. ruber based on 1742 
length measurements over the period from February 
15, 2016, to November 15, 2018. The sample size (n 
= >1500) and the period over which the sample was 
collected (> 6 consecutive months) met the require-
ments for the appropriate sample size for assessing 
length data for growth studies (Hoenig et al., 1987; 
Pauly, 1987). Besides, the graphical representation of 
both the raw and restructured length-frequency data 

Figure 9. The biomass per recruit isopleth graph as a function of the fishing mortality 

and the relative size at first capture (L50). The black solid lines are the isopleths indicat-

ing different areas of the same biomass, and the dashed line indicates the current fishing 

mortality and selectivity based on the catch curve analysis.

Figure 9
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revealed clearly defined modal groups with shifts in 
the modal length over time, a criterion for assessing 
the suitability of length-frequency data for the esti-
mation of growth parameters (Wolff, 1989). 
 
The size distribution of the caught individuals from 
this study demonstrates that O. ruber is being caught at 
relatively larger sizes with more than 53.1 % larger than 
the mean size at maturity (23.8 cm). Other studies on 
O. ruber have reported the length at first maturity (L50) 
as 22.6 cm   (Froese and Pauly, 2019) and ranging from 
22.1 cm  in the Arabian Gulf (Lee and Al-Baz, 1989) 
and between 22-24 cm and 23.8 cm in India and South 
Africa, respectively (Brash and Fennessy, 2005). Thus, 
using an approximate value of 23 cm as the length at 
maturity, which compares to the length at first capture 
obtained in this study (Lc = 23.8 cm), it is clear that the 
current exploitation of O. ruber with regards to size is 
slightly above the size at first capture and size at matu-
rity, but falls short of the optimum target (% mature fish 
in catch = 100%) (Froese, 2004). According to  Munga 
et al. (2014), the average sizes of the individuals caught 
in trawl by-catches was significantly smaller than in 
artisanal catches. Nevertheless, both fisheries operate 
within the same area but with the artisanal fleets oper-
ating less than 3 nm from shore. The difference in sizes 
of individuals caught is attributed to the selectivity of 
the trawl nets, which retain much smaller individuals 
than those regularly caught by artisanal fishing gears 
due to the smaller mesh size  (mesh size of trawl gear; 
45-70 mm). The maximum reported size of O.ruber in 
this study (Lmax 38.4 cm) is much smaller than indi-
viduals observed in the northern waters of the Persian 
Gulf, which reported much higher estimates (Lmax = 
67.57 cm; Eskandari et al., 2012). 

Table 3 compares the growth parameters obtained in 
this study with those obtained from other studies. The 
results indicate that the values of L∞  compare well 
with estimates from Mozambique and South Africa, 
although not with the estimates of K, which is more 
than double that obtained in these studies (Brash and 
Fennessy, 2007; Gislason, 1985).  The potential longev-
ity of O. ruber was estimated at 4.3 years, which indicates 
that the species is short-lived. In contrast, the estimated 
longevity of the species varied widely from other stud-
ies (Brash and Fennessy, 2005), which indicated that  
O. ruber and most species of family Sciaenidae are gener-
ally slow-growing and long-lived (mean K = 0.32 ± 0.05). 

Munro and Pauly (1983) proposed the phi prime (φ) 
as a suitable indicator for interspecific comparison of 

growth performance of different species of fish stocks 
given that the index is more or less constant for a fam-
ily or similar taxa. The estimated phi prime with cur-
rent estimates of K and L∞  is 3.08, which compares 
well with the estimates from Kuwait (φ = 3.19) and 
South Africa (φ = 3.13) and is within the range of esti-
mates reported in the FishBase (φ = 2.41-3.39) (Froese 
and Pauly, 2019). The differences in the φ index can 
be attributed to the differences in the estimation of 
growth parameters related to the bias in the size dis-
tribution of the specimens analyzed here due to the 
absence of juveniles and larger individuals (Lmax = 90 
cm), which may have been missed.

Based on estimated growth parameters, two depend-
ent stock status indicators were estimated employing 
the length-converted catch curve and the length-
based yield per recruit model. The estimated natural 
mortality (M) was 0.931 year-1 leading to fishing mor-
tality of 2.302 year-1 and an exploitation rate (F/Z) of 
0.71 for the fully exploited part of the stock, indicat-
ing that O. ruber in the Malindi-Ungwana Bay stock 
is experiencing excessive fishing pressure (E > 0.5). 
However, the confidence interval estimated from the 
bootstrapping routine of the TropFishR gives a wide 
range of estimates for both the growth parameters 
and the exploitation rate (E = 0.28-0.70). The wide 
range of confidence interval around the exploitation 
rate may be due to the biased sample from the com-
mercial trawl fishery. According to Beare et al. (2005), 
data from commercial sources are likely to be biased 
due to levels of misreporting and discarding and lack 
spatial detail, which can result in biased estimates of 
growth parameters. The estimate of fishing mortal-
ity in the current study(F = 2.3) based on the catch 
curve is larger than the reference level ( = 1.1) based 
on the yield per recruit analysis, further strengthen-
ing the evidence of overexploitation ( = 2.09).  Sim-
ilar results have been reported in Mozambique and 
the Philippines, where O. ruber has been overfished by 
the prawn trawlers (Brash and Fennessy 2005). Also, 
the estimated Z/K ratio (Z/K = 4.6) is high, further 
highlighting that the population of  O. ruber is mortal-
ity-dominated (Z/K>2) and is experiencing excessive 
fishing pressure (Etim et al., 1999).

Pauly and Soriano (1986) proposed an extension to the 
length structured yield per recruit model applied to 
tropical fisheries for species associated with high M/K 
values and E> 0.5. Based on the  Lc/ L∞ ratio (a proxy 
for mesh size) and fishing effort, four quadrants are 
proposed, each with distinct properties. Under the 
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current fishing scenario, the estimate of Lc/ L∞ of 0.57 
and an exploitation rate (E) of 0.71 falls within quad-
rant D (Pauly and Soriano, 1986). The implication 
is that small fish are caught at a higher fishing effort 
requiring a reduction in effort and an increase in mesh 
size as a management intervention. The recruitment 
pattern of the O. ruber conforms to the general pattern 
exhibited by most tropical fish species, which have 
double recruitment pulses (Pauly, 1982). The recruit-
ment pattern was estimated by the backward extrap-
olation of the LFQ data onto the time axis to indicate 
the relative recruitment pattern (Fig. 7). However, the 
pattern can not be interpreted in absolute terms as 
information about the length at age 0 is lacking and 
cannot be estimated from length frequency data alone 
(Pauly, 1987). Nevertheless, based on the length-fre-
quency data used (Appendix, Table B), the observed 
peak for smaller sized individuals is between the fifth 
and seventh months, with the possibility that the 
young join the adults as recruits in the eighth month. 
The bimodal peak observed for O. ruber in this study 
is consistent with the results reported for the species 
in the northwest Arabian Gulf (Mohamed et al., 2002). 
Thus, a better understanding of the recruitment pat-
tern of the O.ruber is critical in formulating better 
management practices such as in the determination 
of the seasonal closure for prawn trawling, which is 
currently from November to March annually (Munga 
et al., 2016). However, to infer an informed manage-
ment recommendation, there is a need to augment 
the current studies with biological, catch and effort 
data and biomass estimates to capture the variability 
and changes in population structure. Comparison of 
biomass and catch-based methods will give a true pic-
ture of the fishery, as some studies have reported sig-
nificantly different results when the two methods were 
employed (Branch et al., 2011). 

Management implications
O. ruber constitutes the highest by-catch species in 
the commercial prawn trawl fishery in Malindi- Ung-
wana Bay in Kenya, and is also common among arti-
sanal landings. Previous studies have documented 
resource-use conflict between the artisanal fishers and 
the trawlers arising from resource-use overlap, which 
resulted in the trawling ban in 2006 (Munga et al., 
2012). Among the critical issues highlighted included 
the infringement of the trawlers into the artisanal 
fishers fishing zones and the incidental capture and 
discarding of the fisher’s target species, of which O. 
ruber is a crucial component. Thus, the Prawn Fish-
eries Management Plan (PFMP-2010) was instituted 

to guide fisheries management decision and reduce 
conflict with artisanal fishers (Thoya et al., 2019).  
The management plan is due for a review, but the lack 
of routine monitoring and appropriate data makes it 
challenging to assess the effectiveness of the manage-
ment plan. This study highlights the importance of 
describing and assessing by-catch in specific fisheries 
to determine whether there are problems in the fish-
ery (Kennelly, 1995; Munga et al., 2012). 

This study has assessed the stocks of O.ruber, a com-
mon by-catch species in the Malindi-Ungwana Bay 
prawn fishery, and has found that the stocks are being 
over-exploited (based on a data-limited situation). 
This calls for stringent measures for the manage-
ment of the Malindi-Ungwana Bay fishery. However, 
for practical management recommendations, there is 
a need for further studies on other by-catch species, 
and complement these with independent surveys. 
The current sample is biased towards specific sizes, 
which might be an artefact of the spatial preference by 
the commercial prawn trawl. It is suggested that data 
from the artisanal fishery is included in future assess-
ments to capture the whole fishery for a better estima-
tion of the stocks. Further attempts should be made 
towards the collection of biological data to provide 
improved estimates of the reference points, which can 
be used to complement the current study and thereby 
contribute to more informed decision making. These 
efforts should be complemented by the ongoing sea-
sonal closure and gear adjustments to reduce by-catch 
and juvenile capture.

Conclusions
Given the fact that O. ruber is the highest by-catch spe-
cies in catches of the commercial prawn trawlers in 
Malindi-Ungwana Bay, it can be expected that their 
stocks could be at risk. This study has proven that 
the stocks of O.ruber are being overexploited. Further 
studies are, however, required across all gears and 
methods, for comparison. It is strongly recommended 
that stocks of O.ruber need proper management to 
ensure sustainable exploitation and to avoid collapse.
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Appendices

Table A. Pooled length frequency of Otolithes ruber from 2016 to 2018 (constant interval of 2 cm).

2016 2017 2018

ML Jun Jul Aug Sep Oct May Jun Jul Aug Sep Oct May Jun Jul Sep Oct

5 1

7

9 1 1 1 3

11 15 28 3 5 5 1 1 3

13 27 15 29 5 25 4 1

15 20 10 2 32 7 24 1 2 10 2

17 24 15 2 24 4 27 3 5 18 5

19 11 26 10 16 10 15 1 11 2 4 1 19 6 2

21 7 21 13 15 2 16 27 10 23 13 6 7 36 24 4 16

23 6 11 8 10 1 18 39 11 34 21 19 9 27 27 13 19

25 2 9 6 5 3 12 20 6 27 24 26 20 21 32 20 26

27 4 2 5 5 3 4 15 1 28 24 14 19 8 21 38 22

29 11 2 1 2 2 2 8 2 7 10   13 1 6 25 14

31 11 4 1 3 3 2 4   5 4 2 5   7 12 4

33 6       3   2   1 3 1     3 5 1

35 1           1   1   1     2 1  

37     1   1                 3    

39     1   1                      

Table B. Growth parameter estimates resulting from the bootstrapping routine of the TropFishR indicating the confidence interval.

Species Parameter Mod Lower Upper

Otolithes ruber L∞ 41.7 33.1 44.6

K 0.79 0.23 0.89

tanchor 0.43 0.12 0.87

C 0.54 0.19 0.88

ts 0.68 0.17 0.86

Ф 3.14 2.39 3.25
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Appendix. Figure A Appendix, Figure A. Scatter histogram of bootstrapped ELFFAN for O. ruber using TropFishR. The points represent 

the individual combinations of L
∞
 and K estimates, while the contours represent the density of the combinations.

Appendix. Figure B Appendix, Figure B. The bootstrapped linearized length-converted catch curve based on pooled length frequency catch data for 

O. ruber.




