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Anthropogenic stressors from onshore and offshore activities can act as driving factors of disease for a wide range of 

marine organisms. Green turtles (Chelonia mydas) are prominently afflicted with a tumour-causing disease known as 

fibropapillomatosis (FP) caused by the chelonid alphaherpesvirus ChHV5. Previous studies indicate that pathways of 

FP transmission may be genetic (vertical transmission) or linked to causal factors in a turtle’s environment (horizon-

tal transmission). In this paper patterns of FP prevalence were examined in 10,896 records of green turtles caught 

or found stranded around Watamu Bay, Kenya, between 2003 – 2020. Findings were focused on locational and sea-

sonal factors that may potentially influence infection. The findings show that FP prevalence varies significantly on 

an annual basis. Location significantly influenced infection prevalence, with prevalence higher in open ocean sites 

than sites located within the creek. Infection prevalence was highest at sites around the creek mouth and north of the 

creek mouth, with both regions exhibiting disparate annual patterns of infection. This paper is the first to examine 

long-term trends of FP prevalence in-depth in this region and has implications for the health of turtles and marine 

biota found along the Kenyan coast, and potentially within the wider Western Indian Ocean region. The findings 

emphasize the need to distinguish the infection pathways of causative agents via: i) further examination of the links 

between infection and environmental and/or biont community factors; and ii) the collection of data pertinent to the 

genetic diversity of green turtles and associated ChHV5 viral strains occurring in the Western Indian Ocean.
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Introduction
The marine biome is one of the largest and most 
influential on earth; it plays a significant role in global 
socio-economic health and also provides a range of 
ecosystem services (Costanza, 1999). However, expo-
sure to anthropogenic stressors has led to the decline 
of ecosystem services, and caused phenomena such as 
dead zones and altered food web dynamics (Ravaglioli 
et al., 2019). Anthropogenic stressors also facilitate the 
exposure of marine biota to compromised ecosystem 
function, predation and infections (Diaz and Rosen-
berg, 2008). Unsustainable practices such as overfish-
ing and habitat destruction can eventually threaten 
food security and unbalance coastal ecosystems 
(McClanahan and Muthiga, 1988). Coastal ecosystems 

especially highlight how food security and peo-
ple’s livelihoods are closely tied to ecological health.  
In these environments, marine biota have proven to 
be sound predictors of both ecosystem resilience and 
human health (Colin et al., 2015). 

Sea turtles are long-lived and can cover vast expanses 
of ocean during different stages of their lives (Schof-
ield et al., 2010; Rees et al., 2012). This exposure posi-
tions them as key indicators of ocean health and 
resilience (Aguirre and Lutz, 2004); however, the 
alternative consequence is that sea turtles are also 
exposed to a wide range of anthropogenic stress-
ors. Turtles are often caught as by-catch, injured or 
killed during the course of fishing activities (Hazel 
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and Gyuris, 2006; Wallace et al., 2013). Additionally, 
various studies show that the ingestion of plastics and 
other debris discarded in the ocean can significantly 
impact turtle fecundity (Barnes et al., 2009; Schuyler 
et al., 2014). Currently all sea turtle species are listed 
on the red list created by the International Union 
for the Conservation of Nature (IUCN), in categories 
ranging from ‘vulnerable’ to ‘critically endangered’.  
The green turtle (Chelonia mydas) is listed as endan-
gered as a result of the continual degradation of their 
nesting and foraging habitats, as well as incidental 
mortalities from fishing activities (Seminoff, 2004). 

In more recent years, increasing attention has been 
focused towards the impact of anthropogenic stressors 
on turtle health (Rees et al., 2016). Fibropapillomato-
sis (FP), a virulent form of neoplasia, is an additional 
threat prevailing against the global green turtle popu-
lation. Although reports on FP extend back to the late 
1930s (Smith and Coates, 1938), it remains underre-
ported in various regions of the ocean (Rao et al., 2020). 
Currently, there are active investigations concerning: 
(i) the causal pathways leading to an outbreak; (ii) the 
dominant transmission pathways, i.e. hereditary (ver-
tical) or environmental (horizontal); and (iii) whether 
pathways vary geographically or in different turtle 
populations (Greenblatt et al., 2005). Although FP has 
been recorded in all turtle species (Herbst, 1994; Foley 
et al., 2005), it is predominantly prevalent in green tur-
tles. The causative agent is thought to be the chelonid 
alphaherpesvirus 5 (ChHV5) belonging to the family 
Herpesviridae (Herbst et al., 1995; Jones et al., 2016).  
A typical FP infection mostly manifests cutaneously in 
the form of masses or tumours anywhere on a turtle’s 
skin, carapace or plastron. Masses can also occur in the 
ophthalmic tissue, as well as in the viscera (Schlum-
berger and Lucké, 1948). Tumour masses can interfere 
with turtle movements, compromise their feeding 
ability and increase their vulnerability to hazards, such 
as bycatch incidents and predators (Flint et al., 2015). 

Data from various regions helps to establish an 
understanding of FP distribution patterns and prev-
alence globally ( Jones et al., 2016). Research on FP has 
focused on three main priorities: i) spatio-temporal 
patterns highlighting prevalence and global distribu-
tion; ii) the mechanics of vertical transmission (Duffy 
et al. 2018); and to a lesser extent iii) the horizontal 
transmission (dos Santos et al. 2010), although the 
evidence for this pathway is increasing ( Jones et al., 
2020). The results of these studies have indicated that 
juvenile green turtles appear to be most vulnerable to 

FP, likely as a result of the significant time they spend 
in neritic environments, which are heavily impacted 
by anthropogenic activities and degradation (Ene et 
al., 2005; Foley et al., 2005). Turtles foraging in these 
habitats are subsequently more vulnerable to pol-
lutants present in the water or incorporated in their 
algal-based diet (Komoroske et al., 2011; Camacho et 
al., 2014). Van Houtan et al. (2010) found a strong link 
between nutrient-rich waters and incidences of FP 
in juvenile turtles in Hawaii. The authors postulated 
that invasive macroalgae in nutrient-rich waters had 
higher levels of arginine (processed from anthropo-
genic nitrogen), which has been implicated in pro-
moting the proliferation of viruses in the Herpesvir-
idae family. Turtles ingesting these algae may be at 
higher risk of FP; furthermore, the observed elevated 
FP prevalence is a potential indicator of the habitat 
quality. Van Houtan et al. (2010) also reported great 
spatial and temporal variability in infection rates, fur-
ther signalling that infection is triggered by local envi-
ronmental factors. Similar research (Keller et al., 2014) 
reported high concentrations of both man-made and 
organic pollutants in stranded turtles afflicted with FP. 
Although there was no evidence that these pollutants 
triggered FP, results indicated that a bio-accumulation 
of pollutants could be contributing to the progression 
of the disease. Further evidence for horizontal trans-
mission pathways comes from a study by Greenblatt 
et al. (2004). Their study demonstrated high levels of 
FPTHV (a suspected causative virus for FP) in leeches 
and barnacles removed from stranded and free-rang-
ing turtles. This raises the possibility that such organ-
isms may be vector candidates furthering horizontal 
pathways of viral transmission.
 
The South Western Indian Ocean basin (which 
includes the Kenyan coast) is a biodiversity hotspot 
and is a foraging and nesting ground for a variety of 
megafauna including sea turtles (Obura et al., 2019). 
Fishing activities are the predominant income gener-
ator for coastal communities in this region, with tur-
tles typically constituting part of the fishing catch or 
by-catch (Temple et al., 2017). The resilience of marine 
species in this region is further challenged by the neg-
ative impacts stemming from ocean-based industries 
( Jouffray et al., 2020), onshore activities (the decima-
tion of mangrove stands, influx of untreated effluent 
from agriculture and tourism) and the impacts of 
climate change (Obura, 2004; Kirui et al., 2013; Aller 
et al., 2019). Based on the increasing evidence link-
ing environmental and community dynamics to FP 
infection, being able to identify the specific dynamics 
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influencing infection patterns will provide a starting 
point for establishing causative factors and the scale at 
which they operate. 

In this paper, trends of fibropapillomatosis infection 
observed in a green turtle population occurring in 
Watamu Bay, Kenya are presented. The focus was spe-
cifically on the effects of location and seasonal factors 
on infection patterns. 

Methods
Study area
Watamu is a coastal town occurring in the Malindi 
district of Kenya, located 88  km north of Mombasa 
and 25  km south of Malindi. Watamu Marine Park 
and Mida Creek are located in the area, and feature 
among the marine protected areas of Kenya (Tuda and 
Omar, 2012; Fig. 1). Both ecosystems are a part of the 
Malindi/Watamu Marine Reserve. Watamu Marine 
Park is one of Kenya’s oldest marine protected areas 
(Muthiga, 2009). It forms a conservation area of open 
ocean approximately 32 km2 in size that is patrolled 

and monitored by Kenya Wildlife Services (KWS).  
The Mida Creek extends inland for approximately 9 
km and covers an area of 31.2 km2. The creek is bor-
dered by mangrove forests on either side covering 
more than 2000 hectares of land (Kairo et al., 2002). 
The climate in Watamu Bay adheres to established 
regional patterns (McClanahan, 1988) influenced 
by North Eastern monsoon tradewinds (October to 
March) and South Eastern winds (March to October).

Watamu Bay provides nesting sites for several turtle 
species including green turtles, and breeding females 
return to the beaches to lay their eggs.

Data collected by Local Ocean Conservation (LOC), 
a locally founded marine conservation organization 
(https://localocean.co/) founded in 1997 was used 
in this study. LOC operates one of the oldest turtle 
rehabilitation centres in Africa. It is based in Wat-
amu, Kenya, and runs under the flagship programme 
of Watamu Turtle Watch. One of the organization’s 
core mandates is to monitor and mitigate activities 

Figure 1. Map of the Watamu area, indicating key marine parks and reserves and capture sites (produced by Local Ocean Conservation). 
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threatening local turtle nesting sites and populations. 
LOC routinely receives turtles brought in as by-catch 
or found stranded in locations around Watamu and 
other locations along the Kenyan coast. 

Data collection
Infection diagnostics
Turtles with visible tumours (on the eyes, body or 
shell) that were caught in by-catch or found stranded, 
were brought into the LOC rehabilitation clinic for 
assessment by a veterinarian. FP tumours typically 
exhibit a distinct morphology (colour, texture and 
location) and can manifest on a turtle’s skin, carapace, 
plastron; also on the eye and ocular region (Herbst, 
1994). In cases of suspected infection, samples of the 
tumour(s) were sent to a laboratory for histological 
analysis. Upon a positive diagnosis of FP, the veter-
inarian proceeded to cauterize the tumour(s) if pos-
sible. Turtles were released after the veterinarian 
cleared them for release. 

Turtle by-catch and stranding data
Standard metric measurements are taken for all cap-
tured turtles caught in bycatch and/or found stranded 
around Watamu Bay. Metric measurements include 
carapace length and width, weight and turtle ID (tag 
number). A juvenile turtle was defined as any turtle 
caught between the curved carapace length (CCL) 
of 20 - 80 cm, whereas an adult was defined as any 
turtle with a CCL exceeding 80 cm, as per Kubis et al. 
(2009). New captures are tagged with a titanium metal 
tag using standard tagging protocols (Limpus, 1992; 
Heidemeyer et al., 2018). Each tag has a unique identi-
fier number, which can be used to identify turtle indi-
viduals upon recapture. For turtles with existing tags, 
only the tag number and metric measurements were 
recorded. All tag numbers are recorded, after which 
turtles are released back into the Watamu Marine 
National Park. Although LOC occasionally received 
turtles from other locations along the Kenyan coast, all 
FP infection records used in this study were restricted 
to green turtles recorded around Watamu Bay. 

Data analysis
Data sorting
Incidents of FP recorded in green turtles from 2003 
to 2020 were compiled. This timespan constituted 
the period of the most reliable data records com-
piled from the LOC bycatch and rehabilitation pro-
grammes. As all FP infections in this time period 
occurred only in green turtles, other turtle species 
were excluded from infection analysis. Turtles were 

counted by cross-checking individual entries in the 
database using tag numbers (for individual counts), 
date captured and location (for seasonal and loca-
tional counts). In addition to tag number, each turtle 
was also assigned a unique turtle ID to keep track of 
their appearance in the database independent of tag 
replacements. Unique turtle IDs, date and size were 
used to sort recaptures, whereby turtles with a recur-
ring ID were counted as a recapture whereas turtles 
that were not tagged or assigned an ID prior were 
assumed to be unique. 

Recaptures were sorted and calculated by year, sea-
son and site. Recapture data was taken into account 
in order to: i) standardize annual and monthly turtle 
counts (and avoid pseudo replication); and ii) as an 
indirect indicator of preferred foraging sites around 
Watamu Bay, to further determine the influence of 
location (and environmental aspects that turtles are 
exposed to) on FP prevalence. 

Prevalence 
Infection prevalence was defined as the sum of turtles 
infected with FP divided by the total number of turtles 
captured per unit time or location. Captured refers to 
turtles recorded as bycatch, stranded, or admitted to 
the rehabilitation centre. Annual and seasonal infec-
tion prevalence were calculated for all capture sites 
with FP infections. Locational infection prevalence was 
calculated for capture sites with locational data only. 

Location
Location data was obtained from records provided by 
LOC and organized using allotted capture blocks as 
shown in Fig. 1. Turtles with no capture site data and 
capture sites with no cases of infection were omitted 
from locational analysis. 

Sites were allocated into two sets representing broad 
and finer scale influences: i) broad scale - sites occur-
ring within Mida creek (“creek sites”) and sites onshore 
to the open ocean (“ocean sites”); ii) finer scale – ocean 
sites north of the creek mouth (“Nocean”; blocks 
18 - 22; n = 11); ocean sites south of the creek mouth 
(“Socean”; block 17; n = 4); sites around the mouth 
of Mida Creek (“CMS”; blocks 8 - 10, including the 
marine park; n = 6) and sites within Mida creek (“ICS”; 
blocks 2 - 7, 11 and 13; n = 11).

QGIS software (Hannover version 3.16) was used to 
map monthly FP prevalence within Watamu Bay sites. 
Onshore site coordinates were used for turtles found 
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beached or stranded on onshore sites (n = 5), since in 
these cases, it was difficult to pinpoint the actual forag-
ing location of stranded turtles. GPS coordinates of FP 
cases were imported and mapped onto a google earth 
satellite layer (96 DPI resolution) in QGIS at a scale of 
1: 100,000 km. A heatmap was generated using a ker-
nel density algorithm (quartic renderer), with a radius 
of 1 km representing the approximate range of occur-
rence for each incident, and using FP monthly preva-
lence as a weighting measure. 

Seasonal and epibiont data
Season has been shown to significantly affect marine 
environmental variables, such as pollutants and nutri-
ent levels and tidal cycles (Espino and Medina, 1993; 
Li et al., 2016). Seasonal factors were accounted for in 
this study to determine the influence of associated 
environmental variables on FP prevalence. 

Seasonal data was organized using localized sea-
sons described in Richmond (2011), as Kaskazi 
(December to March), Kusi (April to mid-Septem-
ber), and Matalai (mid-September to November). 
The presence of epibionts was accounted for based 
on evidence indicating that certain species may act 
as candidate vectors that transmit causative agents 
for FP (Greenblatt et al., 2004). The presence of 
epibionts (leeches and barnacles) was accounted for 
using presence/absence records, both for infected 
and non-infected green turtles. 

Statistical analysis
Statistical analysis was conducted using Python 
(v3.7) with pingouin (v0.3.8) statistical package and 
R (v. 6.3.2). 

The extent of variation in infection prevalence was 
determined using Fisher’s exact test and ANOVA. 
Mantel tests (using the vegan 2.5-7 package in R) were 
used to assess whether there was a spatial correlation 
between recapture rates and infection prevalence 
(Oksanen et al., 2020). Matrices for annual infection 
prevalence and recapture rates were created across all 
Watamu sites. Matrices were standardized for com-
parability (by subtracting the mean and dividing by 
the standard deviation), and an arbitrary constant of 1 
added to avoid negative values (for computation using 
the Bray-Curtis dissimilarity matrix). 

Potential effects of seasonality on FP prevalence were 
tested for using chi-square tests. Logistic regres-
sion (using leech and barnacle counts as predictor 

variables) was used to assess the potential influence of 
the presence of epibionts (leeches and barnacles) on 
infection prevalence. 

An independent t-test was used to determine the 
extent of variation in infection prevalence between 
creek and ocean sites, and Freedman’s test was used 
to determine the extent of variation in infection prev-
alence between capture sites. A similar approach was 
applied for seasonal analysis, where an independent 
t-test was used to determine variation in infection 
prevalence between monsoon seasons, whereas an 
ANOVA was used to determine variations between 
local oceanic seasons. 

Results
Annual prevalence
Between 2003 - 2020, 10,869 unique green turtles 
were brought into the rehabilitation programme or 
captured as by-catch from 88 sites within Watamu 
Bay, with a mean of 605 (SD + 161) turtles captured 
annually. A further 103 turtles were captured and/
or brought in from sites outside of Watamu (n = 10). 
Juvenile turtles were the most prominently caught age 
group (n = 10,694), followed by adults (n = 130) and 
post-hatchlings (n = 45).

A total of 236 turtles (2.4 %) from 40 sites in Watamu 
Bay exhibited visible FP tumours; of this number, 108 
cases (44 %) subsequently died during this time period. 
Watamu Bay cases showed an annual mean prevalence 
of 2.9 % during the 2003 - 2020 period. FP prevalence 
displayed significant annual variation (F1,15 = 8.38;  
p = 0.01), with the number of cases peaking during 
2013 (n = 53) and 2019 (n = 52) respectively (Fig. 2). 

Although recapture rates across sites did not vary 
notably, there was a significant discrepancy between 
ocean and creek sites (x2 = 446.6; p < 0.01) which 
had recapture rates of 0.6 % and 4 % respectively.  
High recapture rates were particularly evident at 
three sites within the creek, which had recapture 
rates greater than 10 %. FP prevalence and recapture 
rates displayed a weak negative association (r = -0.3; 
p > 0.05), where FP prevalence decreased with higher 
recapture rates. 

Location influence
A total of 194 incidents of FP were recorded around 
Watamu Bay. Cases of FP were recorded in 19 blocks 
and at 39 specific capture sites. Overall, FP infection 
across sites recorded a monthly mean of 24 %. 
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Site location significantly affected FP infection prev-
alence; at a broad scale, ocean sites located offshore 
or in open ocean displayed a higher infection preva-
lence per site than sites located within the creek (F1,196 
= 12.29; p < 0.01; Table 1). Block size did not affect  
FP incidents or prevalence. 

At a finer local scale, variation in infection prevalence 
became more significantly pronounced within local-
ised regions of Watamu Bay (F3, 194 = 34.76; p < 0.01;  
Fig. 3b). Sites located around the creek mouth displayed 
the highest average prevalence, whereas sites located 
within the creek had the lowest average prevalence 
(Fig. 4). Sites around the creek mouth and ocean sites 
south of the creek also exhibited similar fluctuations in 
annual prevalence, with infections peaking during the 

same years. Although FP infections were first observed 
in the creek, with the first case recorded in 2003, sites 
within the creek recorded the lowest mean annual 
prevalence throughout the period of study. Annual 
infection prevalence patterns in ocean sites north of the 
creek varied in a pattern that was contrasting to those 
observed in the other regions of Watamu Bay (Fig. 4).

Seasonal and environmental data
FP prevalence showed seasonal variance, with prev-
alence lowest during the Matalai season, whereas 
Kaskazi and Kusi seasons showed comparable mean 
prevalence (Table 2). FP prevalence (x2 = 17.7; p = 0.47) 
and recapture rates (x2 = 24; p = 0.35) also displayed 
similar variance with season, although these were 
not significant.

Table 1. Turtles infected with FP across sites in Watamu (N = 131; SD = standard deviation). Turtles without capture site data are excluded (n = 8). 

Turtles caught are figures adjusted to account for recaptures.

Site 
Location

Total no. 
sites

No. of 
sites with 
infections

Mean Block 
Size (km)

Turtles 
Infected

Turtles 
Caught

Mean FP 
Prevalence

Creek 34 19
4.44 

(SD + 2.78) 

131

(SD + 8.5)

8386

(SD + 690.6)

0.08 

(SD + 0.22)

Ocean 48 22
5.31

(SD + 2.93)

124 

(SD + 13)

3067 

(SD + 245.6)

0.12 

(SD + 0.15)

Figure 2. Mean annual prevalence of FP across sites within Watamu Bay (2003 - 2020). Numbers above bars 

indicate the total number of turtles caught (from by-catch and rehabilitation combined); error bars represent 

annual (monthly) standard deviation.
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Logistic regression indicated that barnacle presence 
increased with a reducing frequency of FP cases while 
the presence of leeches was correlated with a higher 
chance of FP (Table 3).

Discussion
Previous studies have shown that FP infections trends 
can vary temporally ( Jones et al., 2016). The finding in 
the current study are consistent with that variation, as 
patterns of FP infection prevalence showed prominent 
annual variation during the period of 2003 - 2020 (Fig. 
2). Annual infection patterns indicated the occurrence 
of two significant outbreaks of FP infection in the Wat-
amu green turtle population, with FP cases peaking 
during the years of 2013 and 2019 in particular. This 
suggests that there may have been specific events or 

significant disruptions within the marine habitat dur-
ing those years or in the year(s) prior, which triggered 
an uptick in infection prevalence. Our findings showed 
that juvenile turtles were the age group most com-
monly caught around Watamu Bay, and were also the 
age group most afflicted with FP tumours. As juvenile 
green turtles remain mostly in neritic habitats during 
this life stage (Makowski et al., 2006), it is likely that 
they were the group most exposed to changes in their 
environment in these years. Annual peaks in infection, 
especially in sites located around the creek mouth and 
southern ocean (Fig. 4) may be indicative of a time lag, 
whereby a period of time lapses between the cause of 
infection or event triggering infection, and the visible 
manifestation of infection. An in-depth experimental 
study by Herbst (1995) demonstrated the presence of a 

Figure 3. 

Figure 3. Mean monthly prevalence in Watamu Bay sites at: a) broad scale (creek or 

ocean); and b) fine scale (CMS = creek mouth; ICS = inner creek; Nocean = northern 

ocean; Socean = southern ocean). 
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Figure 4.  

Figure 4. A heatmap depicting monthly incidents of FP infection in sites in and around Watamu Bay (n = 40). Infection 

intensity is weighted by monthly prevalence; shaded areas depict 95 % confidence intervals derived from annual prevalence 

in each location. Graphs i - iv show annual variation of infection prevalence in: i) locations around the creek mouth (mean 

0.22 + 0.27); ii) locations within the creek (mean = 0.02 + 0.016); iii) locations south of the marine park (mean = 0.03 + 0.02); 

and iv) locations north of the marine park (mean = 0.12 + 0.14).
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lag period between infection and the development of 
visible tumours ranging between 15 - 43 weeks. How-
ever, little remains known about the course of the 
disease from field studies, such as this one; especially 
since influential factors are multiple, including the 
health and age of the turtle, surrounding environmen-
tal factors, and the load or type of the infectious agent 
(Herbst et al., 1994; Greenblatt et al., 2005). The time 
periods between prominent annual peaks in infection 
were not consistent, suggesting that the causal agents 
of infection are diverse and subsequently triggered by 
various causal factors. Therefore, peaks in infection 
may also be attributable to various forms or stages of 
the infection manifesting (Kang et al., 2008). 

The other notable outcome of this study was the 
strong influence of location on FP prevalence in and 
around Watamu Bay. Additionally, the pattern of 
annual infection observed across sites in the northern 
region of Watamu Bay was in contrast to infection pat-
terns observed around the creek mouth and southern 
ocean regions (Fig. 4). It is possible that infections in 
the northern ocean may have another underlying fac-
tor, such as a different causal agent, or different event. 
A recent report from Jones et al. (2020), demonstrated 
the diversity of viral strains causing FP occurring at six 
sites along the Australian coast. Previous studies have 
found that location plays a significant role on infec-
tion - even within the same region, due to the diver-
sity of viral variants that may occur in the same region 
(Ene et al., 2005). Although the locations of observed 

FP tumours observed were not a focal point for this 
study, a closer examination of tumour forms observed 
on turtles in the region, as well as genetic sampling of 
the viral strains will help determine whether the peaks 
in infection are attributable to more than one causa-
tive viral strain. 

Alternatively, specific onshore events occurring during 
the course of the years with peak infections may help 
explain the increases in FP incidents, and also the prom-
inent fluctuations in infection observed at the creek 
mouth and in surrounding southern ocean locations 
(Fig. 4). It is likely that the marine habitats at these loca-
tions were specifically impacted or exposed to environ-
mental triggers. In Watamu, creek sites are bordered by 
villages, residential areas, fishing docks and moorings 
on both sides. Subsequently, onshore discharge from 
activities such as agriculture and untreated sewage may 
be washed towards the creek mouth and open ocean 
and affect neritic habitats in these areas. Mida creek is 
bordered on either side by extensive mangrove forests, 
which help with the regulation of ecosystem function 
and maintenance of water quality (Owuor et al., 2019; 
Owuor et al., 2017). The dense mangrove habitat bor-
dering the creek may help to explain why FP infection 
prevalence was consistently lower at sites in the inner 
creek sites throughout the period of this study. 

Although Mida creek (which recorded the lowest 
overall FP infection prevalence) is affected by tidal 
ebbs and flows, its ecosystem functions can be viewed 

Table 2. Infection prevalence across seasons in positive sites with FP cases in the period between 2003 - 2020 (n = 10,896; SD = standard deviation). 

Season Season Length Turtles  
Infected

Turtles  
Caught

FP Prevalence 
Range

Mean FP  
Prevalence

Kaskazi Nov - Mar
121 

(SD + 8.6)

4400 

(SD + 72.9)
0.00 - 0.10 0.02 (SD + 0.03)

Kusi Apr - Aug
99

(SD + 6.2)

 3219 

(SD + 47.2)
0.00 - 0.12 0.03 (SD + 0.03)

Matalai Sep - Oct
36 

(SD + 3.1)

 1814 

(SD + 35.1)
0.00 - 0.14 0.02 (SD + 0.04)

Table 3. Logistic regression model showing the influence of turtle epibionts and algal presence (on shell or body) on FP infection prevalence.

Names coefficient Standard error p

Intercept -3.6 0.07 -

Barnacles -0.78 0.16 < 0.001

Leech 1.5 0.75 0.046
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as distinct to those occurring in the ocean. For exam-
ple, activities such as the overharvesting of mangroves 
and pollution have been noted as prominent threats, 
which potentially also impact the quality of neritic 
habitats frequented by turtles within the creek (Ala-
mayehu et al., 2014).

It was predicted that a high recapture rate would be 
an indicator of preferred foraging sites; and that sub-
sequently, habitats with a higher recapture rate would 
be more commonly frequented by turtles as found by 
Diez and van Dam (2002). More turtles were caught 
in capture sites within Watamu creek than in the open 
ocean (Table 1), with creek sites also reflecting a much 
higher recapture rate than ocean sites (p < 0.01). For-
aging trends for green turtles indicate that the species 
show a preference for seagrass and near-shore habitats 
(Burgett et al., 2018; Stokes et al., 2019). The findings 
presented here suggest a higher abundance of pre-
ferred foraging habitats in the creek than in the open 
ocean. However, this finding is confounded by the fact 
that sites with higher recapture rates in the creek are 
also frequently visited by fishermen due to their high 
biodiversity and abundance of marketable species 
(LOC, personal communication). Recapture is also a 
measure that carries some potential bias due to reali-
ties such as turtles losing their tags over the course of 
their lives (Heidemeyer et al., 2018) or a lack of availa-
ble tags. Tag loss is further influenced by tag location, 
tag type or species tagged (Limpus, 1992; Eckhert et 
al., 1999). Possible links between FP prevalence and 
habitat quality indicators (e.g. water quality, nutrient 
load) is a promising area for deeper consideration,  
as this study lacked the data to investigate this. 

The findings from this study indicated that season was 
not influential to FP prevalence, with little to no effect 
on oceanic seasons on FP prevalence (Table 2.) This is 
similar to the findings of Hirama and Ehrhart (2007), 
which found that seasonality was weakly associated 
with FP prevalence. However, as factors pertaining to 
possible lag periods in infection were not accounted for 
in this study, there is further opportunity to explore the 
effects of seasonality in more detail. Overall, findings 
here indicate that factors more intimately related to 
green turtle life history traits, such as foraging behav-
iour, diet and/or turtle community composition, are 
more likely to act as indirect driving factors for FP. 

The incidence of epibionts in this study was varied; the 
first pattern indicated that barnacle incidence reduces 
with increased FP prevalence. Barnacle abundance on 

turtles has been linked with reduced body condition 
index (Nájera-Hillman et al., 2012), which contrasts 
with the findings in this study. Turtles not infected 
with FP were more likely to have barnacles, which 
indicates a minimal association of barnacle presence 
with FP prevalence (Table 3). However, this study did 
find that the presence of leeches increased concur-
rently with FP prevalence. Prior recent studies have 
also reported similar findings, where patterns of FP 
prevalence and the abundance of specific leech species 
were correlated (Lockley et al., 2020); supporting the 
potentiality of leeches to act as FP vectors. Observed 
links between leech infestation and FP prevalence in 
this study can be further investigated to determine 
whether: i) leeches, or specific leech species, act as 
vectors for FP causative pathogens in the Western 
Indian Ocean region; and ii) whether leech infesta-
tions may increase a turtle’s susceptibility to FP infec-
tion. Further investigations may also determine the 
range of potential leech vectors, given that the home 
range of green turtles can vary significantly on an 
individual scale (Seminoff et al., 2006; Schofield et al.,  
2015). Therefore, determining the foraging ranges of 
the Watamu turtle population will be key in helping 
identify potential environmental factors that turtles 
are exposed to and which may be driving infection.

Conclusion
The multiple issues facing marine life are widely 
acknowledged in the sustainable development goals 
(SDG 14) listed by the United Nations Development 
Program (UNDP, 2015). There exists an important 
opportunity to develop knowledge and understand-
ing of turtle populations along the Kenyan coast on 
multiple levels, with a view to understanding their role 
as indicators of marine health, and as a priority for 
their conservation. Besides a lone documented case 
of FP in the Western Indian Ocean turtle population 
(Leroux et al., 2010), information pertaining to this 
disease in this region remains anecdotal. Particularly 
along the East African coast, information is needed 
concerning the diversity and type of infectious agents 
of FP, as well as causal environmental driving factors. 
This study is the first attempt at an investigation of FP 
infection patterns in this region. Sites considered in 
this study were restricted to those within Watamu Bay. 
However, the emerging associations between location 
and FP prevalence in this study are highly indicative 
of the potential influence of environmental factors 
in the progression of FP, and supports arguments for 
horizontal transmission of FP. This outcome provides 
a foundation for further studies examining other 
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sites along the coast to: i) compare whether potential 
causative conditions are similar; and ii) to determine 
whether other unique factors are also contributing 
towards incidences of FP. Subsequently, the findings 
from this study are also subject to variations in onshore 
human activities and threats. Watamu is a popu-
lar tourist destination along the Kenyan coast, and a 
majority of the residents derive their income from 
the tourism industry. It will be important to investi-
gate whether there are any direct or lag impacts from 
annual population fluxes in residency; factors such as 
hotel residency rates, new constructions and marine 
traffic (boat excursions, snorkelling and fishing), can 
all adversely affect neritic habitats in and around Wat-
amu, especially those located directly offshore. There-
fore, factors for further consideration may be related 
to habitat quality; its influence on turtle ranges and 
habitat usage; and the level of exposure of various 
turtle populations to triggers of FP infection. Finally, 
there is also a need to consider and assess the genetic 
diversity of turtles along the Kenyan coast as: i) this 
plays a key role in resilience; and ii) may provide clues 
to the life-stage at which ChHV5 is transmitted. Such 
research transcends FP, as characterising the genetic 
diversity of turtles in Kenya has broader implications 
for green turtle management as a whole. 
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