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ABSTRACT 
Accurate path loss modeling and prediction will provide realistic information on 

the level of signal attenuation in a service area and contribute positively to better 

performance of cellular radio network. This will also support the tight fitting of 

cell fringe areas that are likely to be impacted negatively by interference around 

the cell edge/contour.  A better predictive path loss model that will facilitate 

superb cellular network planning process will be of a great support to cellular 

radio network planners, stakeholders and end users. In this work we used a 

hybrid wavelet and Long Short Term Memory model for adaptive modeling and 

prediction of signal path loss in urban microcellular radio network. A measured 

signal data was obtained and routed through a wave let-based decomposition 

process with two decomposition levels. The decomposed measured signal data 

was converted into path loss values and then utilized as input data to Long Short 

Term Memory model where relevant extracted information were captured and 

trained for robust predictive adaptive learning and prediction. The degree of 

prediction accuracy using the proposed model over other prediction techniques 

were statistically quantified using four different first order statistical 

metricsSignal Pathloss model can accurately estimate pathloss which in turn are 

useful for maximizing of network quality and coverage area of base stations, 

frequency assignments, proper determination of electric field strength, 

interference analysis, handover optimization, power level adjustment, radio link 

budget design and analysis. 

INTRODUCTION 

One fundamental aim of Radio Frequency (RF) coverage planning is to resourcefully utilize the 

allotted frequency band. As a result, RF coverage planning and prediction tools are of immense 

significance as they assist radio network planners and designers to examine different system 

network configurations before and after deployment. The precision attained by the signal 

coverage prediction tool is also largely connected to the prediction accuracy of the radio 

propagation path loss model applied (Joseph and Konyeha, 2013; Isabonaet al., 2013). Classic 

statistical models such as the Least Square Regression (LSR) model and Least Absolute 

Deviation (LAD) model were used for path loss prediction (Drozdora and Akpasha, 2017). 

However, such models have limited capability in capturing non-linear and non-stationery signal 

dataset. Thus, the use of standard neural network and Deep Neural Network (DNN) methods 

such as Long Short Term Memory (LSTM) and Multilayer Perception (MLP) network is 

exploited in the last couple of years. In signal power coverage prediction using DNN learning 

model is presented for dense urban environment, (Ozyegen, et al, 2020). A practical prediction 

of shadowing factor and path loss exponent from satellite images at 900 MHz has been studied 

using Deep neural learning approach, (Hasan et al., 2019). 

In detailed reviews of different works which provide various path loss prediction techniques 

using different machine learning based methods are also shown, (Uceellari, et al., 2016 and 

Cerriet al., 2004). The standard neural network and DNN suffer major draw backs such as: 
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• Perform very poorly in noisy signal data sets. 

• Lack abilities in handling incoherence signal data sets 

• Perform poorly in predicting large and highly stochastic non linear data sets (Peng and 

Zhu, 2007; Wang, 2003; Isabona, and Srivastava, 2016; Isabona, 2020). 

We proposed and practically applied combined wavelet and intelligent deep learning predictive 

modeling tools, which possess the capacity to adaptively learn and predict the relevant radio 

environment propagation features and path loss values through intensive training and learning. 

 

MATERIALS AND METHOD 

SIGNAL DATA COLLECTION AND PATH LOSS COMPUTATION METHOD 
A field drive test based experimental set up was employed for the live signal data collection in 

this research work. The drive testing consists of carrying out a wide range Reference Signal 

Receive Power (RSRP) and service quality parameters measurement at the receiver terminal 

within the assessed Base station (eNodeB) of the coverage area. 
 
The field drive test system tools used for this work are as listed:Global Positioning System 

(GPS), Two LTE Mobile phones, Dell Lab top, Data card, Power Inverter, Scanner, Direct Test 

Cables and Extension board, Map Info software andTelephone Mobile Software (TEMS). 
 
All the tools were integrated together (Figure1). The map info software was specifically used 

for putting drive test location maps in view and creating route data (Figure 2). Aided by the 

field drive test system tools, live signal data were acquired around four Long Term Evolution 

(LTE) eNode B antenna sites, all which operates at 10 MHz band width across Uyo City, Akwa 

Ibom State, Nigeria.The path loss data was computed from the measured RSRP mathematically 

by (Joseph and Konyaha, 2013; Mallat, 1989). 

 PLmea (dB)  -  E IRP -  RSRP mea        - (1) 

The E IRP can be calculated as: 

 E IRP = PTX    +   GTX-  CLTX     - (2) 

Where GTX is the transmit antenna gain, PTX the transmitted power, and CLTX denotes 

transmission cable/connection loss, all in dB. 
 
Table 1 shows some of the Key Bs antenna site parameters acquired during the field drive test. 

 

 

 

 

 

 

Figure 1:  A sketch of TEMS Drive Test Configuration 
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Figure 2: Snap shot of the drive test routes of the acquired RSRP data in eNodeB Site 1 

 

Table 1: Transmission Antenna Engineering features of the eNodeB antenna Sites  

 eNodeB 1  eNodeB2 eNodeB  3  eNode B 4  

Transmission Frequency (MHz) 1,900 1,900 1800 1800 

Transmission power (dBm) 43 43 43 43 

Antenna heights (m) 30 28 26 32 

Antenna gains (dB) 17.5 17.5 17.5 17.5 

Cable /connection losses (dB) 0.5 0.5 0.5 0.5 

Feeder loss (dB) 3 3 3 3 
  
Multi-resolution Digital Wavelet Transform 
A Wavelet Transform (WT) is a time-frequency decomposition transform which provides a 

useful means of analyzing spatial and temporal data in both time and frequency domain. 

Specifically, Multi-resolution Digital Wavelet Transform (MDWT) is considered in this 

research to provide superior support for multi-spatial scale non-stationary path loss modeling 

and analysis. The classical continuous wavelet transform is defined as (Ojuh and Isabona, 2018; 

Mallat, 1989). 

dt
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ttxW 
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where: )(tψ = mother wavelet function 

τ =translator factor 

µ =scale factor (which is the inverse of f0) 

µ

1 = signal energy normalization factor 

In terms of DWT setting, the parameters τ  and µ take on discrete values. The coefficients of 

x(t) in equation (3) can be expressed as: 

( ) ∑
∞

∞−

−=∗= ][][][][ knkxkxkW ψψ
       

(4) 

Where k is the translation parameter, and n is an integer. 

This work explores multi-resolution DWT decomposition and reconstruction methodology for 

the enhancement of measured LTE signals under noisy conditions. The proposed methodology 

is based on Mallat transform algorithm (Mallat, 1989). For DWT, the Mallat algorithm involves 

processing the reference signals using conjugate quadrature filters to produce signal wavelet 

approximation and detailed coefficients. Figure 3 shows the various steps employed to 

implement the proposed methodology. The measured noisy signal is the reference signal data. 

For a signal sample of length L, the DWT consistof log2L steps.  The first stage entails the 

convolving of the signal sample simultaneously with both low-pass filter and high-pass filter to 

provide a number of approximation coefficients and detail coefficients correspondingly. The 

filter output of low-pass filter and the high-pass filter can be expressed as (Mallat, 1989). 
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After that, part of the signal samples was removed via a process termed down sampling. The 

signal decomposition was repeated over several levels to further upturn the frequency 

resolution. Figure 3 illustrates 3 decomposition levels and all the filters possesses a function for 

sub-sampling of the signal by 2.  

)(ng and )(nh  are dependent on each other by: 

( ) )(.1]1[ nhnLg
n

−=−−         
(7) 

where L is the length of the filter. 

Next step was the reconstruction of the signal expressed as: 

( ) ( )]2[].[]2[].[][)( knhkWkngkxnWnx
owlhighk

+−++−= ∑
∞

−∞=
  (8) 

The reconstruction was implemented using Inverse Discrete Wavelet Transform 

(IDWT).Whereas decomposition consist of convolution followed by dint of down sampling, 

reconstruction involves up sampling followed by means of convolution. Up sampling defines 

the signal lengthening process by injecting zeros amid the signal data points. 
 
While carrying out the reconstruction, both the detail coefficients, cD and approximation 

coefficients, cAn were first up sampled. While the detail coefficients were convolved using a 

high pass filter, the approximation coefficients are convolved using the low-pass filter. Both 

sets of convolved data were then combined to obtain the next level of approximation 

coefficients, cA,-1 

 

 

                                                                                                       L3 coefficients 

                                                                  L2 coefficients  

x[n] 

                                            L1 coefficients 

Figure 3: A Filter bank illustration of different level Decomposition with DWT 
 
LSTM Architecture 
Long Short Term Memory network, which is generally termed “LSTMs”, is an exceptional type of 

recurrent neural network. It possesses the capacity to learn both long and short term memories. The 

LSTM was first devised by Hochreiter and Schmidhuber (1997)  to solve complex long-term 

dependency and vanishing gradient problems. Thus, the LSTM has the capacity to learn 

sequence order dependency prediction and classification problems. 
 
The LSTM architecture has three main parts. They are the forget gate, the input gate and the 

output gate (Figure 4).  The forget gate is responsible for removing less important information 

or eliminating irrelevant information from the LSTM cell state through a multiplication by a 

filter. While the input gate is in charge of accepting and adding information to the cell state, 

output gate is responsible for outputting processed information from the cell state. 

An input data sequence ( ) ,...,, 321 Txxxxx = can be mapped to the output data sequence 

( ) ,...,, 321 Tyyyyh = at t=1 to T iteratively in an LSTM network computing the unit 

activations using: 

2 
g[n] 

g[n] 
2 

2 h[n] 

g[n] 2 2 
h[n] 

2 h[n] 
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ixW represent the input weight matrix from the input gate, 

diagonal weight matrices. W

expresses the element wise product for the vectors. 

vectors, forget gate, input gate and the output gate, respectively. 

sigmoid function and the activation function for the network output. 

activation function for cell output and cell input, respectively.

 

 

 

 

 
The Adaptive Hybrid Wavelet
In this work, as illustrated in figure 5, a hybrid model which combines adaptive multi

resolution wavelet transform and LSTM neural network was designed to predict the path loss in 

Uyo metropolis, Akwa Ibom Sate, Nigeria. The wavelet transform met

preprocess and decompose input path loss data, while LSTM neural network model is designed 

to adaptively learn and predict path loss data pattern 

wavelet-LSTM network training parameters. The

model has been compared to the conventional neural network models. Fig 5 depicts the 

architecture of the proposed adaptive Hybrid prediction model i.e. the wavelet transform and 

LSTM neural network model. The model

data computation, LSTM training and testing of path loss values and for updating 

hyperparameter for optimized path loss prediction. The overall resultant hybrid model is given 

by: 
 

( ) ),(,, θ distRSRPPLWPLy ww +=

Where ),( distRSRPPL w is the computed path loss values using wavelet preprocess measured 

RSRP values. [( (, RSRPPLxh wtt

neural network based LSTM training. 

updating hyper optimization parameters.

Evaluation measurement and comparison of predicted path loss using Adaptive Hybrid 

model and conventional model
The four basic first order statistical indic

the Adaptive Hybrid model include: Root Mean Squared Error (RMSE), Standard Deviation 

(STD), Mean Absolute Percentage Error (MAPE) and Mean Absolute Error (MAE).Both MAE 

and RMSE expresses the mean error 

tal: Adaptive Hybrid Model for Prediction of Electromagnetic Signal 

Path Loss in LongTerm Evolution Radio Microcellular Network 

World Journal of Applied Science and Technology, Vol. 13 No. 1 (2021). 1 - 9 

) 1 tt bc +−       

) 1 ftfc bcW +−      

) 11 ctcmtcm bcWmW +++ −−     

) 1 otoc bcW +−      

      

      
represent the input weight matrix from the input gate, ocW , icW  and fcW are the connecting 

W denotes the weight matrix, b represent the bias vectors, 

expresses the element wise product for the vectors. c , f , i and o denote the cell activation 

vectors, forget gate, input gate and the output gate, respectively. l andϕ denote the logistic 

activation function for the network output. h and

activation function for cell output and cell input, respectively. 

 

Figure 4: LSTM architecture 

The Adaptive Hybrid Wavelet-LSTM Deep Neural Network Model  
In this work, as illustrated in figure 5, a hybrid model which combines adaptive multi

resolution wavelet transform and LSTM neural network was designed to predict the path loss in 

Uyo metropolis, Akwa Ibom Sate, Nigeria. The wavelet transform method being employed to 

preprocess and decompose input path loss data, while LSTM neural network model is designed 

to adaptively learn and predict path loss data pattern (Figure 4). Shown in Table 2 is the hybrid 

LSTM network training parameters. The predicted outcome of the proposed hybrid 

model has been compared to the conventional neural network models. Fig 5 depicts the 

architecture of the proposed adaptive Hybrid prediction model i.e. the wavelet transform and 

LSTM neural network model. The model is used for advance field data processing, path loss 

data computation, LSTM training and testing of path loss values and for updating 

hyperparameter for optimized path loss prediction. The overall resultant hybrid model is given 

[ ]( ) ,,),(, θWdistRSRPPLxh wtt+     

is the computed path loss values using wavelet preprocess measured 

] )ϕ,,), WdistRSRPw
is adaptively predicted path loss output using deep 

neural network based LSTM training. W is the LSTM weight modelling marix, and 

parameters. 

Evaluation measurement and comparison of predicted path loss using Adaptive Hybrid 

model and conventional model 
The four basic first order statistical indicators engaged to examine the prediction accuracy of 

the Adaptive Hybrid model include: Root Mean Squared Error (RMSE), Standard Deviation 

(STD), Mean Absolute Percentage Error (MAPE) and Mean Absolute Error (MAE).Both MAE 

and RMSE expresses the mean error magnitude between the actual observation and prediction. 

f Electromagnetic Signal  
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model has been compared to the conventional neural network models. Fig 5 depicts the 

architecture of the proposed adaptive Hybrid prediction model i.e. the wavelet transform and 

is used for advance field data processing, path loss 

data computation, LSTM training and testing of path loss values and for updating 

hyperparameter for optimized path loss prediction. The overall resultant hybrid model is given 
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is the computed path loss values using wavelet preprocess measured 

is adaptively predicted path loss output using deep 

LSTM weight modelling marix, and θ  is 

Evaluation measurement and comparison of predicted path loss using Adaptive Hybrid 

ators engaged to examine the prediction accuracy of 

the Adaptive Hybrid model include: Root Mean Squared Error (RMSE), Standard Deviation 

(STD), Mean Absolute Percentage Error (MAPE) and Mean Absolute Error (MAE).Both MAE 

magnitude between the actual observation and prediction. 



Peter etal: Adaptive Hybrid Model for Prediction of Electromagnetic Signal  

Path Loss in LongTerm Evolution Radio Microcellular Network 

World Journal of Applied Science and Technology, Vol. 13 No. 1 (2021). 1 - 9  6 

The STD articulates the measure of dispersion between actual observation and prediction. 

MAPE expresses the Mean Percentage Error between the actual observation and prediction.The 

indicators are defined in Eq. (16) to Eq. (19) as follows: 
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the actual network value, Kk ,...,2,1= are values the signal path loss sample  

 
Table 2:  Key Hybrid Wavelet-LSTM Deep Neural Network Training Parameters 

Path loss Data Training Parameters for 
Sites 1 and 2 

Path loss Data Training parameters for 
Sites 3 and 4 

Num Hidden Units = 300 
MaxEpochs:300 

GradientThreshold:1 

Initial Learn Rate: 0.005 
Learn Rate Schedule: piecewise 

LearnRateDropPeriod:400 
LearnRateDropFactor:0.2 

Training Options: 

adam (adaptive moment estimation) 

Num Hidden Units = 200 
MaxEpochs:200 

Gradient Threshold:1 

Initial Learn Rate: 0.005 
Learn Rate Schedule: piecewise 

LearnRateDropPeriod:300 
LearnRateDropFactor:0.2 

Training Options: 

adam (adaptive  moment estimation) 

 

RESULTS AND DISCUSSION 
The graphical results and the computed prediction error statistical values using the proposed 
hybrid wavelet-LSTM path loss prediction model and the conventional approach was 

accomplished using 2018a version of MATLAB software platform. Figures 6-13 shows the 
graphical prediction results using both the LSTM convectional and Hybrid LSTM approach. 

Specifically, while figures 6 to 9 displays the predicted path loss values at each measurement 
made using the conventional LSTM approach without updates, Figures 10 to 13 provide the 
path loss prediction using the hybrid wavelet-LSTM predictive path loss modeling approach 

with updates. Tables 2 and 3 show computed prediction performance results in terms of MAE, 
MAPE, RMSE and STD using the conventional approach and proposed hybrid wavelet-LSTM 

path loss prediction. While the attained MAE, MAPE, RMSE and STD predictive performance 
values range from 2.79 to 4.50, 2.05 to 3.26,4.19 to 6.32 and 3.89 to 5.79 dB, respectively, 

using the proposed Wavelet-LSTM model for the four eNodeB sites, indicating a better 
performance predictions; the prediction MAE, MAPE, RMSE and STD values made by 
conventional LSTM modeling approach range from7.53 to 15.77, 5.46 to 10.92, 9.99 to 19.77 

and 9.68 to 18.86 dB.Tables3 and 4 also shows that the Wavelet-LSTM model attained the best 
prediction performances in locations 1-4 with MAPE, STD, and RMSE values compared to the 

ones made by ordinary LSTM neural network model.  
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Figure 6: Conventional LSTM Path 

loss Prediction for  eNodeB Site 1, 

(without updates) 

Figure 8: Conventional LSTM Path 

loss Prediction for eNodeB  Site 3, 

(without updates) 

Figure 10: Proposed Hybrid Wavelet

LSTM Path loss Prediction for  

eNodeB, Site 1 (with updates)
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Figure 6: Conventional LSTM Path 

loss Prediction for  eNodeB Site 1, 

Figure 7: Conventional LTST Path 

loss Prediction for eNodeB Site 2, 

(without updates) 

Figure 8: Conventional LSTM Path 

loss Prediction for eNodeB  Site 3, 
Figure 9: Conventional LSTM Path 

loss Prediction for eNodeB  Site 4, 

(without updates) 

Figure 10: Proposed Hybrid Wavelet-

LSTM Path loss Prediction for  

pdates) 

Figure 11: Proposed Hybrid Wavelet

LSTM Path loss Prediction for  

eNodeB  Site 2, (with updates)
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Figure 7: Conventional LTST Path 

loss Prediction for eNodeB Site 2, 

: Conventional LSTM Path 

loss Prediction for eNodeB  Site 4, 

Figure 11: Proposed Hybrid Wavelet-

LSTM Path loss Prediction for  

eNodeB  Site 2, (with updates) 
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Table 3: Statistical error values attained using Convectional LSTM Path loss Prediction Approach

Performance 

Measure 

MAE  

MAPE  

RMSE  

STD  
 
Table 4: Statistical error values attained using Hybrid wavelet

Performance 

Measure 

eNodeB

MAE 

MAPE 

RMSE 

STD 

 

Accurate predictive analysis and modelling 

planning process, presented in this work remained one key practical approach that can boost a 

successful and healthy cellular radio network performance improvement. Precise path loss 

modelling and prediction will provide realistic idea about the level of signal attenuation loss in 

the entire coverage service areas. It will also support in tight

likely to be impacted negatively by interference around the cell edge/con
 
In this research, a joint wavelet and long short term model has been used for modelling and 

prediction of signal path losses in urban microcellular radio networks

signal strength data was first obtained and routed through a wa

process employing two decomposition levels. The decomposed measured received strength 

constituents were converted to path loss values and then utilised as input data to LTSM deep 

neural network model where relevant extracted infor

predictive adaptive learning. 

model over other prediction techniques are also statistically quantified and provided using four 

different first order statistical metrics. The metric include: the 

(RMSE), Standard Deviation (STD), Mean Absolute Percentage Error (MAPE) and Mean 

Figure 12: Proposed Hybrid Wavelet

LSTM Path loss Prediction for  eNodeB  

Site 3, (with updates) 
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Table 3: Statistical error values attained using Convectional LSTM Path loss Prediction Approach

Performance eNodeB 

Site 1 

eNodeB 

Site 2 

eNodeB 

Site 3 

eNodeB 

Site 4 

8.12 10.01 15.77 7.53 

5.83 7.18 10.92 5.46 

9.99 12.06 19.77 11.26 

9.68 11.69 18.86 11.24 

Table 4: Statistical error values attained using Hybrid wavelet-LSTM Path loss Prediction Approach

eNodeB 

Site 1 

eNodeB 

Site 2 

eNodeB 

Site 3 

eNodeB 

Site  4 

4.17 4.50 2.79 3.47 

3.02 3.26 2.05 2.51 

4.89 6.32 4.19 4.68 

5.27 5.79 3.89 4.66 

CONCLUSION 

Accurate predictive analysis and modelling of signal path loss during and after cellular network 

planning process, presented in this work remained one key practical approach that can boost a 

successful and healthy cellular radio network performance improvement. Precise path loss 

ction will provide realistic idea about the level of signal attenuation loss in 

the entire coverage service areas. It will also support in tight-fitting of cell fringe areas that are 

likely to be impacted negatively by interference around the cell edge/contour.  

In this research, a joint wavelet and long short term model has been used for modelling and 

signal path losses in urban microcellular radio networks.The measured received 

signal strength data was first obtained and routed through a wavelet-based decomposition 

process employing two decomposition levels. The decomposed measured received strength 

constituents were converted to path loss values and then utilised as input data to LTSM deep 

neural network model where relevant extracted information is captured and trained for robust 

. The degree of prediction accuracy using the Wavelet

model over other prediction techniques are also statistically quantified and provided using four 

cal metrics. The metric include: the Root Mean Squared Error 

(RMSE), Standard Deviation (STD), Mean Absolute Percentage Error (MAPE) and Mean 

Figure 12: Proposed Hybrid Wavelet-

ediction for  eNodeB  
Figure 13: Proposed Hybrid Wavelet

LSTM Path loss Prediction for  eNodeB  

Site 4 (with updates) 
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Table 3: Statistical error values attained using Convectional LSTM Path loss Prediction Approach 

Prediction Approach 

of signal path loss during and after cellular network 

planning process, presented in this work remained one key practical approach that can boost a 

successful and healthy cellular radio network performance improvement. Precise path loss 

ction will provide realistic idea about the level of signal attenuation loss in 

fitting of cell fringe areas that are 

 

In this research, a joint wavelet and long short term model has been used for modelling and 

.The measured received 

based decomposition 

process employing two decomposition levels. The decomposed measured received strength 

constituents were converted to path loss values and then utilised as input data to LTSM deep 

mation is captured and trained for robust 

The degree of prediction accuracy using the Wavelet-LSTM 

model over other prediction techniques are also statistically quantified and provided using four 

Root Mean Squared Error 

(RMSE), Standard Deviation (STD), Mean Absolute Percentage Error (MAPE) and Mean 

Figure 13: Proposed Hybrid Wavelet-

LSTM Path loss Prediction for  eNodeB  
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Absolute Error (MAE). In terms of RMSE, the proposed hybrid approach improves the mean 
prediction efficiency by 50% compared to the conventional prediction method. 
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