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ABSTRACT 

The SEIQR mathematical model is formulated to study the spread of COVID

The equilibrium points of the system of differential equations are obtained. The 

local stability of the disease-free and endemic equilibria is studied. The global 

disease-free and endemic equilibria is also studied. The basic 

reproduction number of the model is obtained. The parameters used in the model 

are estimated. The system of differential equations representing the model is 

solved numerically using the scilab software application. The result of the 

simulation shows that the disease will eventually die out of the population for 

any value of the basic reproduction number. 

INTRODUCTION 

19 outbreak is an ongoing global pandemic of viral pneumonia caused 

severe acute respiratory syndrome coronavirus 2 (SARS- CoV-2) virus [Zhu 

outbreak was first identified in Wuhan, China, in December 2019 [(WHO) Novel Coronavirus

2020]. According to the World Health Organization (WHO), most 

people infected with the COVID-19 virus experience mild to moderate respiratory illness and 

recover without requiring special treatment [Bryner, 2020]. The virus is mostly spread between 

people during close contact. The mode of transmission is often via small droplets produced by 

coughing, sneezing and talking [European Centre for Disease Prevention and Control,
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The population under consideration has a constant size N and is sufficiently large, so that the 

sizes of each class can be considered as continuous variables. The population is homogeneously 

mixing. Individuals make contact at random and do not mix mostly in a smaller subgroup. We 

assume that there is no immigration or emigration.  The model includes vital dynamics (births 

and deaths). We assume that the births and deaths occur at equal rates and all newborns are 

susceptible. Individuals are removed by death from each class at a rate proportional to the class 

size with proportionality constant � (the death or birth rate). 
 
In the susceptible class �, a susceptible person becomes infected and moves into the Exposed 

class at a rate proportional to the product ��with proportionality constant
��. The contact rate � 

(rate of infection) is the average number of adequate contacts per infective per unit time.  From 

the exposed class (	), an individual becomes infective and moves into the infective class at a 

rate proportional to the class size 	with proportionality constant �. Individuals from the 

exposed class (E), move into the quarantined class at a rate proportional to the class size 	 with 

a constant of proportionality
. 
 
Individuals recover and leave the infective class (�) at rates proportional to the class size �, 

with proportionality constants �� ��� ��.  Individuals that don’t survive the disease die and 

leave the class (�) with proportionality constant �. Individuals from the quarantined class who 

are treated, recover and leave the class at rates proportional to the class size �, with constants 

of proportionality: �� and ��. Individuals from the quarantined class who are treated but don’t 

recover, die and move into the deceased class at a rate proportional to the class size �, with the 

proportionality constant �. 

 

Parameters of the Model �:  Natural mortality rate (Birth or Death rate). The time unit is set at day. The constant natural 

mortality rate is assumed to be inversely proportional to the global average life expectancy of 

birth. This is taken to be approximately 72 years [Roser et al, 2013].  � = ������ = 0.000038��� �. �:  The rate of infection � = (number of new cases over a time period)/ (total population at risk 

during the same time period). 
 �: Transition rate from Exposed class to Infective class (We assume it is inversely proportional 

to the latent period of the disease). In [Liu et al, 2020], it is reported that the median time prior 

to symptom onset (latent period), is 3 days. If we take the latent period to be 3 days, (range 1-

24 days), we get; � = �! = 0.33��� �. 
 
: Transition rate from Exposed class to the Quarantined class. We assume it is inversely 

proportional to the average incubation period of the disease. If we take the average incubation 

period to be 6.4 days [Backer et al, 2020], we get; 
 = ��." = 0.15625��� �. 
 ��: Recovery rate for patients with mild symptoms. We assume it is inversely proportional to 

the average period of infectivity (the time between COVID-19 infection and recovery for 

people with mild symptoms). If we take the average recovery time for people with mild 

symptoms to be 2 weeks [(WHO) Report of the WHO-China joint mission on coronavirus 

disease 2019 (COVID-19), 2020], we get; '� = ��" = 0.07143��� �. 
 ��: Recovery rate for patients with more severe symptoms. We assume it is inversely 

proportional to the average period of infectivity (the time between COVID-19 infection and 

recovery for people with severe symptoms). If we take the average recovery time for people 

with severe symptoms to be 4.5 weeks [(WHO) Report of the WHO-China joint mission on 

coronavirus disease 2019 (COVID-19), 2020], we get: '� = �!�.* = 0.03175��� � 
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�: Disease-related death rate � = (number of deaths over a defined period of time)/ (confirmed 

cases diagnosed within that time period).  The transmission dynamics of the disease is 

represented by the following system of ordinary differential equations (The SEIQR model): 

 ���+ = �, − �, �� − �� 

 ./.0 = �� �� − (
 + � + �)	  (2.1) ���+ = �	 − (�� + �� + � + �)� 

 ���+ = 
	 − (�� + �� + � + �)� 

 �2�+ = (�� + �� + �)� + (�� + �� + �)� − �2 

 �, �, 
, �, �, ��, �� > 0, 
 �, 	, �, �, 2 > 0 
 

Equilibria of the Model 
From (2.1), we have;  �(, − �̅) − �, �̅� ̅ = 0                                                                                                            (2.2) �  , �̅� ̅ − (
 + � + �)	5 = 0                                                                                                  (2.3)    �	5 − (�� + �� + � + �)� ̅ = 0                                                                                           (2.4) 
	5 − (�� + �� + � + �)�5 = 0                                                                                          (2.5)  (�� + �� + �)� ̅ + (�� + �� + �)�5 − �25 = 0                                                                      (2.6) 
From (2.4) we get; 	5 = �� + �� + � + �� � ̅

Putting 	 6 into (2.3), we have:  7�, �̅ − (
 + � + �) �� + �� + � + �� 8 � ̅ = 0 

This gives us two possible solutions: � ̅ = 0  and  9�, �̅ − (
 + � + �) �� + �� + � + �� : � ̅ = 0                                             (2.7) 

Substituting � ̅ = 0 into (2.4) and (2.5), we get: 	5 = 0, �5 = 0   ��� 25 = 0.  From (2.2), we 

get �̅ = ,. 

Hence the disease-free steady state of the system (2.1) is (,, 0, 0, 0,0). 

The other solution is: �̅ = ,(
 + � + �)(�� + �� + � + �)��                                                                   (2.8) 

Substituting (2.8) into (2.2), we get; � ̅ = ��,(
 + � + �)(�� + �� + � + �) − �,�                                                            (2,9) 

Putting (2.9) into (2.4), we get; 	5 = �,
 + � + � − �,(�� + �� + � + �)��                                                                             (3.0) 

Putting (3.0) into (2.5), we get; 
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�5 = 
�,(�� + �� + � + �)(
 + � + �) − 
�,��  

And from (2.6) we get; 25 = �(�� + �� + �)(
 + � + �)(�� + �� + � + �) + 
(�� + �� + �),(
 + � + �)(�� + �� + � + �) − ,(�� + �� + �)�− �,(�� + �� + �)��  

Hence the endemic equilibrium of the system (2.1) is at; (�̅, 	5, �,̅ �,6 25) = <,(
 + � + �)(�� + �� + � + �)��  , �,
 + � + �− �,(�� + �� + � + �)��   , ��,(
 + � + �)(�� + �� + � + �)− �,�  , 
�,(�� + �� + � + �)(
 + � + �) − 
�,�� , �(�� + �� + �)(
 + � + �)(�� + �� + � + �)+ 
(�� + �� + �),(
 + � + �)(�� + �� + � + �) − ,(�� + �� + �)� − �,(�� + �� + �)�� = 

 

Basic Reproduction Number 
Lemma 2.1The basic reproduction number for the model (2.1) is:   

2� = > ��(
 + � + �)(�� + �� + � + �) 

 

Proof 

Using the next-generation matrix(NGM) method [Diekmann et al, 2010], from (2.1), we get the 

linearized infection subsystem: �	�+ = �� − (
 + � + �)	 ���+ = �	 − (�� + �� + � + �)� 

From which we get the transmission matrix; ? = 70 �� 08     and the transition matrix@ = 7−(
 + � + �) 00 −(�� + �� + � + �)8 

We get the next-generation matrix:  

  A = −?@ � = 70 �� 08 BC
CD 1
 + � + � 0

0 1�� + �� + � + �EF
FG = BCC

D 0 ��� + �� + � + ��
 + � + � 0 EFF
G
 

From which we compute 2�: 

2� = H(I) = 12 (+��JK I + L(+��JK I)� − 4 det(I) = > ��(
 + � + �)(�� + �� + � + �) 

where H is the spectral radius. 

 

RESULTS AND DISCUSSION 

 Local Stability Analysis 
Theorem 2.2     The disease-free equilibrium of the SEIQR model is unstable for any value of 2� 

Proof 

The system (2.1) is gives rise to the Jacobian matrix; 
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P =
BC
CC
CC
D−��, − � 0 −��, 0 0�, −(
 + � + �) ��, 0 00 
 0 −(�� + �� + � + �) 00 � −(�� + �� + � + �) 0 00 0 �� + �� + � �� + �� + � −�EF

FF
FF
G
 

 At (�, 	, �, �, 2) = (,, 0, 0, 0, 0); 

P − Q� =
BCC
CD−� − Q 0 −� 0 00 −J − Q � 0 00 
 −Q −R 00 � −R −Q 00 0 R − � R − � −� − QEFF

FG
 

where J = 
 + � + �,  and  R = �� + �� + � + � det(P − Q�) = 0 gives; (� − Q)� = 0   or     (−Q)! + JQ� − (
� + R�)Q + ��R − R�J = 0 

Let  S(Q) = (−Q)! + JQ� − (
� + R�)Q + ��R − R�J = 0                               (3.1) 

By Descartes rule, [Haukkanen, 2011], we have at least one positive root. Let (3.1) be in the 

form of: ?� = T�Q! + T�Q� − T!Q + T" 

where T� = 1, T� = J, T! = 
� + R�, T" = ��R − R�J, with T�, T�, T! > 0. 

If T" > 0, then we will have only one positive root. Hence, the disease-free equilibrium of the 

SEIQR model is unstable. 

Theorem 2.3   The endemic equilibrium of the SEIQR model is unstable for any value of 2� 

Proof 

At the endemic equilibrium, the Jacobian matrix is given by; 

P =
BCC
CCC
CD −���RJ 0 −RJQ 0 0���RJ − � −J RJ� 0 00 
 0 −R 00 � −R 0 00 0 R − � R − � −�EFF

FFF
FG
 

det(P − Q�) = U
U−���RJ − Q 0 −RJQ 0 0���RJ − � −J − Q RJ� 0 00 
 −Q −R 00 � R −Q 00 0 R − � R − � −� − QU

U
 

det(P − Q�) = 0 gives (−� − Q) = 0  or Q" − V���RJ + JW Q! + V���R − R� − 
RJ� W Q� + <
J� + ����J = Q + �R�J − �R�� = 0 

   Let S(Q) = Q" − V���RJ + JW Q! + V���R − R� − 
RJ� W Q� + <
J� + ����J = Q + �R�J − �R��= 0   (3.2) 

Based on Descartes’ rule [Haukkanen, 2011], we can only have a maximum of three positive 

roots. Let (3.2) be in the form of: ?� = ,�Q" − ,�Q! + ,!Q� + ,"Q + ,* 
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where,� = 1,   ,� = X�YZ[ + J,   ,! = X�YZ − R� − \Z[X ,   ," = \[]^�X]X[ , ,* = �R�J − �R��, 

with ,�, ,�, ," > 0. 
If ,!,,* > 0,  then we will have two positive roots. 

If ,! > 0, ,* < 0, then we will have three positive roots. 

If ,! < 0, ,* > 0, then we will have two positive roots. 

If ,!, ,* < 0,  then we will have three positive roots. Hence, by Descartes’ rule, the endemic 

equilibrium of the SEIQR model is unstable. 

 

Global Stability Analysis 

Theorem 2.4If 2� < 1,  then the disease-free equilibrium point (,, 0, 0, 0, 0) is globally 

asymptotically stable in the domain:    

�̀ = a(�, 	, �, �, 2) ∈ ℝ*̂ ∶ � < ,(
 + � + �)� e 

Proof 

Consider the Lyapunov function f = 	, we have; �f�+ = g�, � − (
 + � + �)h 	 ≤ 0  jS  � < ,(
 + � + �)�  

That is; 
.k.0 ≤ 0 in the domain �̀ = g(�, 	, �, �, 2) ∈ ℝ*̂ ∶ � < �(\^X^Y)� h. 

So, for the positive definite function f, the derivative 
.l.0  is negative semi-definite in �̀. Now, 

we consider the set where 
.l.0 = 0. 

Let Δ� = g(�, 	, �, �, 2) ∈ �̀ ∶  .l.0 = 0h = m(�, 	, �, �, 2) ∈ �̀ ∶ 	 = 0n. 

Let o be the largest invariant set in Δ�. Then in Δ�, we get; ���+ = �(, − �)(3.3) ���+ = −(�� + �� + � + �)�                                                  (3.4) ���+ = −(�� + �� + � + �)�                                               (3.5) �2�+ = −�2                                                                              (3.6) 

From (3.6), we have 2 → 0  as + → ∞ . From (3.5), we have � → 0  as  + → ∞.  From (3.4), we 

have � → 0  as  + → ∞. From (3.3), we have � → ,  �q  + → ∞.  Hence,o is m(,, 0, 0, 0, 0)n.  

Hence by the LaSalle-Lyapunov theory [Hale, 1980], the disease-free equilibrium (,, 0, 0, 0,0) is globally asymptotically stable in �̀. 

Now, from �̀,  � < �(\^X^Y)�   gives;  
�\^X^Y < 1,  and we have that; �X(\^X^Y)(rs^r]^t^Y) < �\^X^Y < 1  implies that 2� < 1. 

Theorem 2.5The endemic equilibrium point (��, 	�, ��, 2�) is globally asymptotically stable 

in the region:  `� = g(�, 	, �, �, 2) ∈ ℝ*̂ ∶ 1 < /s/ < usu < vsv < wsw < xsx h. 

Proof 

Consider a Lyapunov function y defined as follows: f = z � − ���x
xs �� + z 	 − 	�	/

/s �	 + z � − ���u
us �� + z � − ��� �� +v

vs z 2 − 2�2w
ws �2       

We have; 
.{.0 = |x xsx } .x.0 + |/ /s/ } ./.0 + |u usu } .u.0 + |v vsv } .v.0 + |w wsw } .w.0 = (� − ��) |Y�x −Y�xs − �u� + �us� } + (	 − 	�) |�� xu/ − �� xsus/s } + (� − ��) |X/u − X/sus } + (� − ��) |\/v − \/svs } +(2 − 2�)m(�� + �� + �) uw − (�� + �� + �) usws + (�� + �� + �) vw − (�� + �� + �) vswsn = 
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(� − ��) ~�, (�� − �)��� + �, (�� − �)� + (	 − 	�) V�, ��	� − ����			� W + �(� − ��) (	�� − �	�)���+ 
(� − ��) V	�� − �	���� W
+ (�� + �� + �)(2 − 2�) V(�2� − ��2)22� + �2� − 2��22� W
< (� − ��) <�, �� − ���� + �, (�� − �)= + (	 − 	�) �, <(��	� − ����	)		� =
+ �(� − ��) (	�� − �	�)��� + 
(� − ��) 	�� − �	����+ (�� + �� + �)(2 − 2�) V�2� − 2��22� + �2� − 2��22� W 

Since 1 < /s/ < usu < vsv < wsw < xsx  ,  we have;  1 < xsx    and  1 < usu , which gives;  �� < ����.   

Hence, we get; �y�+ < − �,��� (�� − �)� −�
�

(�1 −�)(�1 −�) −�
�
�1�1(�1 −�)2

−� (�1 −�)(��1 −��1)
��1

−�(�1 −�)��1 −��1

��1− (�1 +�2 +�)(�1 −�) V��1 −��2

��1

+��1 −��1

��2

W < 0 

This implies, 
��

��
< 0  in the region�2 

 

Numerical Simulation 

Scilab plot of the SEIQR model for�� < 1. 

Define a solution to the system (2.1) for the parameter values; � = 0.000038, � =        0.37,   � = 0.33, � = 0.15625,   �1 = 0.07143, �2 = 0.03175, � = 2.08,  subject to the  

initial conditions: �(0) = 0.7, �(0) = 0.15, �(0) = 0.1, �(0) = 0.03  �(0) = 0.02, 

where � = �

�
,    � =  �

�
 ,    � = �

�
 , � = �

�
,   � = �

�
.The population N is taken to be 1000. 

 
Figure 1.  Numerical Plot of  Model for  R0 < 1 

 

Scilab Code 

function y dot=SEIQR model (t, y) 

ydot=[da*y(1)*y(3)d*y(1);a*y(1)*y(3)(b+n+d)*y(2);n*y(2)(v1+v2+d1+d)*y(3);b*y(2)(v1+v 

 

2+d1+d)*y(4);(v1+v2+d1)*y(3)+(v1+v2+d1)*y(4)-d*y(5)] 

end function 
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d=0.000038; 

a=0.37; 

n=0.33; 

v1=0.07143; 

v2=0.03175; 

d1=2.08; 

b=0.15625 

y0=[0.7;0.15;0.1;0.03;0.02]; 

t0=0; 

t=0:7:365; 

sol=ode([0.7;0.15;0.1;0.03;0.02],t0,t,SEIQRmodel); 

plot(t,sol(1,:),'k-o-',t,sol(2,:),'k-+-',t,sol(3,:),'k-.',t,sol(4,:),'k-x-',t,sol(5,:),'k-d-') 

title(" Plot of model with rate of infection=0.37", "fontsize",2) 

hl=legend(['s';'e';'i';'q';'r']); 

 

Scilabplot of the SEIQR model for�� > 1 

Define a solution to the system (2.1) for the parameter values; � = 0.000038, � = 10, � =
0.33, � = 0.15625, �1 = 0.07143,  �2 = 0.03175, � = 2.08,  subject to the initial conditions:  

�(0) = 0.7, �(0) = 0.15, �(0) = 0.1, �(0) = 0.03, �(0) = 0.02,  where � = �

�
, � = �

�
,

� = �

�
 , � = �

�
, � = �

�
 .  and the population N is taken to be 1000. 

 
Figure 2. Numerical Plot of Model for �0 > 1 

 

Scilab Code: 

function y dot=SEIQR model(t, y) 

ydot=[da*y(1)*y(3)d*y(1);a*y(1)*y(3)(b+n+d)*y(2);n*y(2)(v1+v2+d1+d)*y(3);b*y(2)(v1+v 

2+d1+d)*y(4);(v1+v2+d1)*y(3)+(v1+v2+d1)*y(4)-d*y(5)] 

end function 

d=0.000038; 

a=10; 

n=0.33; 

v1=0.07143; 

v2=0.03175; 

d1=2.08; 

b=0.15625 

y0=[0.7;0.15;0.1;0.03;0.02]; 

t0=0; 

t=0:7:365; 

sol=ode([0.7;0.15;0.1;0.03;0.02],t0,t,SEIQRmodel); 

plot(t,sol(1,:),'k-o-',t,sol(2,:),'k-+-',t,sol(3,:),'k-.',t,sol(4,:),'k-x-',t,sol(5,:),'k-d-') 
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title("Plot of model with rate of infection=10", "fontsize",2) 

hl=legend(['s';'e';'i';'q';'r']); 

Discussion of Results 

We have formulated an SEIQR model for the transmission dynamics of COVID-19. We studied 

the stability of the equilibrium points of the system (2.1). The local instability of the disease-

free equilibrium implies that if a small number of infected individuals are introduced into the 

population, after a short time the system will converge to the endemic equilibrium (that is, the 

disease will continue to spread in the population). For the endemic equilibrium, the local 

instability implies that if a small number of infected individuals are introduced into the 

population, then after a short time, the system will converge back to the disease-free 

equilibrium point(that is, the disease will die out). The global stability of the disease-free 

equilibrium point implies that whatever the number of the infected individuals introduced into 

the population, in the long run, the disease will eventually die out of the population. On the 

other hand, the global stability of the endemic equilibrium implies that in the long run, the 

disease will become endemic or will continue to prevail in the population, irrespective of the 

number of infected individuals introduced into the population. 
 
The parameters of the model were estimated and the model was solved numerically using the 

scilab software. The result of the simulation shows that, if the basic reproduction number is less 

than one, a very small number of individuals from the susceptible class gets infected. 

Individuals from the infected and quarantined classes are removed by death or recovery and the 

disease quickly dies out of the population. On the other hand, if the basic reproduction number 

is greater than one, a very large number of individuals from the susceptible class gets infected. 

Individuals from the infected and quarantined classes are removed by death or recovery very 

quickly and the disease dies out from the population. 

 

CONCLUSION 

Based on the results of the study, it was concluded that the SEIQR model could be used as a 

reference model for the spread of COVID-19 in a population. Analysis of the model provides 

an overview of global and local stability in the spread of COVID-19 depending upon the value 

of the basic reproduction number, and provides information on the endemic state of the disease. 

The simulation results provide a predictive picture of the short-term and long-term behavior of 

the disease outbreak, and also show that the isolation period can slow down the spread of the 

disease outbreak. 
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