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ABSTRACT 
This paper proposes an interior-point algorithm for solving multi-objective linear 

programming problems. The algorithm is non-interactive since it does not require 

an interaction with the decision maker during the process of solving multi-

objective linear programming problems. It centered on locating a feasible 

interior-point each time the feasible region is contracted, thus generating a 

sequence of feasible interior-points that converge at the optimal compromise 

solution of a multi-objective linear programming problem. The convergence of 

the algorithm is proved to be on the boundary but not necessary at the extreme 

point of the constraint polytope. The algorithm was shown to perform with less 

number of iteration to reach the optimal compromise solution. 
 

INTRODUCTION 
Interior-point methods have become highly successful in solving linear programming problems 

especially large scale problems, while enjoying good theoretical convergence and complexity 

properties. (Ye (1997); Roos, Terlaky and Vial (1997); Rico-Ramirez and Westerberg (1999)]. 

An excellent complexity result of this paper, as well as the claim that the performance of the 

new method on real-world problem is significantly faster than the one with the simplex method. 

Since the introduction of Karmarkar’s algorithm, interior-point algorithms have been developed 

with strong theoretical properties and excellent numerical performance.  Although there have 

been a lot of theoretical advances and several interior-point methods on how to determine the 

optimal solutions for multi-objective optimization problems and improve the quality of this 

solution for optimal decisions, it is important to note that these advances require an accurate 

result that will give the objective function(s) the optimal compromise solution for a particular 

optimization problem at hand.  
 
Benayounet al, (1971) firstly presented an interactive algorithm for linear multi-objective 

programming. Its idea is the first in finding out a solution of an ideal value to every objective, 

obtaining better solution by improving unsatisfactory objective value. Geoffrion, Dyer and 

Feinberg (1972) gave an interactive approach to multi-criterion optimization where they 

defined a non-explicitly criterion function to show the decision maker’s overall preference. 
 
Anderson and Jibrin (2009) gave an interior-point method that uses weighted analytic centre. 

Anstreicher (2011) considered an extension of ordinary linear programming that adds weighted 

logarithmic barrier terms for some variables. The resulting problem generalized both linear 

programming and the problem of finding the weighted analytical centre of a polytope. They 

showed that the problem has a dual of the same form and give complexity results for several 

different interior-point algorithms. Li, Dong, Jia-wei and Qing-huai (2011) in their work 

transform multi-objective problem to unsmooth single-objective and construct new path-

following.  By path-tracking, they obtained minimal weak efficient solution of the multi-

objective problem. Meng, Shen and Jiang (2011) presented an interactive algorithm to solve the 

inequality constrained multi-objective programming problems. They transformed multi-

objective problem to single objective optimal problem with inequality constraints and prove 

that under some conditions, a best possible solution to LP problem is the same with multi-

objective Pareto. They further designed the interaction algorithm to multi-objective problem 

accordingly. 
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After the acquisition of some fundamentals from interior-point multi-objective linear 

programming, and a broad review of several methods of solutions, we can draw conclusion that 

determination of accurate and quality optimal solution of a decision problem with multi-

objectives still remains a persistent challenge.  
 
A New interior-point technique known as Feasible Region Contraction Algorithm (FRCA) 

which focused on single objective linear programming problems with unique optimal solution 

was developed by Effanga (2011). New strategies of the interior-point methods of optimization 

has been generating enormous interest [Zhao, et al. (2012)]. Pandian and Jayalakshmi (2013) 

proposed a moving optimal method for solving multi-objective linear programming problems. 

Their method provides efficient solution with satisfactory level of percentage of each objective 

functions at each point on the line. Khanjerpanah  and Pishvaee (2017) proposed a fuzzy robust  

programming approach to multi-objective  portfolio optimization problem under uncertainty. 

Lachhwanni (2018), in his work presents an alternative method based on fuzzy programming 

for solving multi-objective linear bi-level multi-follower programming problem in which there 

is no sharing of information among followers. Effanga and Nsien (2019) presents a technique 

for generating Pareto Optimal solutions of Multi-objective Linear Programming Problems.  
 
While a great variety of interior-point approaches exist to generate Pareto set, different authors 

wonder whether there would exist a fully based interior-point approach to generate the 

complete “Pareto-optimal set or a Pareto optimal point” of a Multi-Objective Linear 

Programming (MOLP) problem. However, determining a unique and quality optimal solution 

to multi-objective programming problem still remains difficult especially if the number of 

solutions and objectives are too large to allow the effective use of current existing decision 

making techniques. This work is devoted to the development of interior-point algorithm that 

gives an optimal compromise solution for multi-objective linear programming problem.  
 
The General Formulation Of Multi-Objective Linear Programming Problem 
A standard multi-objective linear programming problem (MOLPP ) can be modeled as follows:  
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where 
ij

a  is an  mxn  constraint matrix,   )(xz    is a vector of  p  real -valued functions, � is 

an n-dimensional vector of solution (decision) vector and 
mRb ∈ is vector of available 

resources (decision space). 

Let z  denote the image of X  in the objective function space:  

{ }Xxxzxzxzzz
p

n ∈==ℜ∈=    )),(  .  .  .  ),((    )(    z  :     
1 . In multi-objective 

optimization there is no feasible solution that optimizes simultaneously all objective functions. 

Thus, the concept of optimal solution is replaced by Pareto optimal, efficient or non-dominated 

solution.       
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Given a set of   p  objective functions and  m  constraints, the multi-objective linear 

programming problem can be formulated in the decision space as: 

pixbAxxcxz
i

i
...,2,1    ,0     ,   ,       )( )(

=≥≤=  

Definition 2.1  The set defined by: }0,|{ ≥≤== xbAxxRx                  

0≥x  is called the set of feasible decision vectors or the feasible  region in the decision space.      

For this study, X   is assumed to be bounded and convex set. Furthermore, the convention of 

primal and dual problem is assumed for all objective functions. 

Considering the formulation of  MOLP  problem in the decision space,  x  can be mapped into 

the set of feasible objective space vector F  giving formulation in the objective space. Each 

decision variable ),2,1,( nx j ,  .   .   .   j  =  is solved algebraically in terms of objective function 

variables ).,2,1,( pifi ,  .   .   .         =  These expressions are then substituted for the decision 

variables in the defining equation of .X  In set notation:             

}  ,                         nmrhfgfFX r
t
r +=∀≥=→ ...,2,1,|{  

where  1×= pgr    vector of objective space constraint coefficients for the  
th

r  

objective space constraint. 

pf =   vector of objective function values for objectives  , if pi  .  .  .   ,2,1=  

=rh  right hand side element of the objective space constraint 

Definition  2.2       The set   }nmrhfgfF r
t
r +=∀≥=                        ...,2,1,|{  

is called the feasible region in the objective space or the set of feasible objective vectors.   
 

Definition 2.3 A solution Xx ∈*
 is said to be efficient solution for a given problem if no 

other  Xx ∈ˆ exists such that: )(z    )ˆ( *
xxz ≤ for all � = 1,2, … , #.   

Efficient solution is also known as non-dominated solution or non-inferior solution. 

In order words, A point   Xx ∈
*

  is called a Pareto optimal point, if there does not exist  

Xx ∈ such that   )()(
*

xzxz ≤ .  If  
*

x  is a Pareto optimal, then  )( *
xz   is called non-

dominated or non-inferior point. Furthermore, a solution is called a weak Pareto optimal point 

if there does not exist  Xx ∈ s.t. ).()( *
xzxz <  The set of all (weak) Pareto optimal points is 

called the (weak) Pareto set. 

Definition 2.4 A feasible solution 
∗

x  to the multi-objective linear programming problem is 

said to be optimal if   
*

xcxc
k k      ≤   for all feasible   .kx   all and    

The optimal compromise solution (or optimal to the MOLP) is an efficient solution that 

optimizes the decision making’s   preference function.   It is a solution Xxx i ∈= )(   which 

is preferred by the decision maker to all other solutions, taking into consideration all criteria 

contained in the multi-objective function.  One property required of the optimal compromise is 

that it is non-dominated.  

A feasible solution  Xxx i ∈= } {   is said to be a non-dominated solution of the multi-objective 

linear programming problem if there is no other feasible solution    Xxx i ∈= }{ . 

The Pareto optimal solutions are ones within the search space whose corresponding objective 

vector component cannot be improved simultaneously. These solutions are also known as non-

inferior or efficient solutions. 
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Lemma 1.    Any point in a feasible solution set  Ω  is a convex combination of the extreme 

points of Ω, i.e. if ,,, 21 k
xxx  ,  .  .  .  are extreme point of Ω, then 

1
11

         ,        ,      =Ω∈∀= ∑∑
==

k

j
j

k

j
jj wwherexxwx

. 

Proof:   This is true by convexity of  Ω.� 

Theorem  1. (Anstreicher (2011)). If      , 
k

pkx ,...,2,1=  are feasible points, then  

∑∑
==

==
p

1k1k
k                 1, k

p
k

wxwx is also a feasible point. 

Proof:  By definition the set of feasible points of a primal problem is given by  

}0,|                   {    :   ≥≤∈ xbAxRxF
n

p
 

 if       ,    
k

pkx ,...,2,1=Ω∈ and  Ω ,  the solution space  are feasible points, it implies that   

 
k

x are the interior points of a convex polytope.  

By convexity the convex combination 
∑

=

=Ω∈+++
p

ik

p
      ,      1....

2

2

1

1 kp wxwxwxw  

is also a feasible solution. Hence  ∑
=

=
p

1k

 
k

k xwx  is also a feasible point, this complete the proof. 

Theorem  2. (Effanga and Nsien (2019)). If      , 
k

pkx ,...,2,1=  are Pareto optimal solutions,  

        then             
p

1k

∑
=

=
k

k xwx  is either Pareto optimal or inferior . 

     x is Pareto optimum  if  it is a boundary point,      x is inferior if it is interior point.   

Proof:     Let   Xx ∈∗
   be a solution of a given primal problem, then   

∗x  is a Pareto 

optimal for the primal problem. Let  x *k Ω∈  , pk ,...,2,1=   and  Ω   is the solution space, 

also be Pareto optimal set, then by convexity, the convex combination 

       xw  .  .  p
p

Ω∈+++ .2
2

1
1

xwxw is also a Pareto optimal set. By definition, the Pareto 

optimal is on the boundary of the polytope then  xwx

kp

k

∑
=

=
1

     is either Pareto optimum or 

inferior.  If    x  is a boundary point, then  x  is Pareto optimal otherwise it is interior point and 

it is inferior. This complete the proof.  

 

Efficient starting point 
In any interior point algorithm, the starting point determined how best the optimal solution 

would be. Here we present   a simple method of finding initial starting point and hence 

subsequent points. We solve each linear programming problem in the vector programming 

problem to obtain optimal solutions.   

Then take as the initial point  

∑
=

=
p

1k

0
         

k

k xwx
,   

  where     ∑
=

=
p

1k

       1kw  

After determining the weights, we obtain an initial efficient starting point 
eff

x  as shown in 

figure 1.   The initial efficient point is in the interior of  Ω .To locate this point, we compute  

∑
=

=
p

k

k
k xwx

1

  which is the convex combination of the optimum solution point of 
k

z of the 

given linear programming problem.  
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Theorem 3. (Ye (1997)).Let  pkx
k

, .  .        , .,2,1=    be the  optimal solution of a given MOLP 

problem. Let 
k

w  be the weights attached to  
k

z . Then the convex combination 

           k
p

k
k xwx ∑

=

=
1

 is a feasible solution to  MOLP problem.  

Proof : pkx
k

, .  .        , .,2,1=    are  extreme points of the feasible region of  MOLP.  Hence 

x   is a feasible solution to the  MOLP  by lemma 1. 

In any interior point algorithm, the starting point determined how best the optimal solution 

would be. Here we present a simple method of finding initial starting point and hence 

subsequent points. We solve each linear programming problem in the given multi-objective 

linear programming problem to obtain optimal solutions. After determining the weights  iw  ,  

we obtain an initial efficient starting point 
eff

x  as shown in figure 1. The initial efficient point 

is in the interior of solution space. To locate this point, we compute  ∑
=

=
p

k

k

k xwx
1

  which is 

the convex combination of the optimum solution point of 
k

z of the given linear programming 

problem. Then take as the initial point    ∑
=

=
p

1k

0
         

k

k xwx
  ,        

where   ∑
=

=
p

1k

       1kw  

The optimal face where the optimal solution is located can be obtained by introducing the new 

constraints   
*     kjj zxc ≥    to the given problem as shown in figure 1. The objective plane 

contract and demarcate the optimal face on the boundary of the constraints polytope as shown 

in Fig. 1 

The reduced feasible region form a solution cone with the boundary of the constraint polytope. 

The   new efficient point  neweffx  is obtained by further reduction of the feasible region. This 

further reduces the optimal face and feasible region. The iteration is repeated until the current 

efficient point finally  reach the boundary of the polytope as shown in fig. 1. When this 

happens, the termination criteria is met and the optimal compromise solution point is obtained. 

 

 Z1 

 

       Z2 

 

     E                       D 

 

             C 
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Feasible region                                     
Efficient starting point 

 

 

 

A                                                     B 

 

 

Fig. 1.    Feasible region contraction 
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The Algorithm 
Outline of  “Feasible Region Contraction Interior-Point Algorithm ( FERCIPA)” for obtaining 

optimal compromise solution  of  MOLP problem. Using the method for weights selection 

presented by Nsien (2015), and starting point in the technique for solving multi-objective linear 

programming problem, an interior-point algorithm for solving multi-objective linear 

programming problems was proposed and used to obtain the optimal compromise solution of a 

multi-objective linear programming problem as: 
 
Step  0.    Set  r = 0.  Solve each of the p linear programming problems to obtain p  optimal 

solutions       , 
rk,

pkx ,...,2,1=  with objective function    value   ,    , pkiz rk
i ,...,2,1, = ,   

respectively. 
 

Step 1.  If   ,     ,    
rk,

pkxx ,...,2,1*
=∀= then stop  

*x is the optimal compromise solution to the 

multi-objective linear programming problem, otherwise go to  step 2 

Step   2.     Compute  the weights  
r
kw    and ∑

=

=
p

1k

r*
     k

k xwx
 

 

Step   3.     If   
rx*

 is on the boundary of the feasible region, then stop,  
rx*

 is the optimal compromise solution to multi-objective linear programming problem, 

otherwise , go to step 4.        

Step  4.    Compute   pkxcz
rkkr

,.....2,1,
*

==
∗

        

In a maximization problem, the feasible solution region is being contracted by 

introducing the  constraints       ,           pkzxc krk ,...,2,1=≥ ∗

 

         or        ,          pkzxc
krk ,...,2,1=≤

∗
 in the minimization problem.     

         Set  1+= rr          ,   Return to step 0. 

Convergence of  FERCIPA 

We shall delve a little into this algorithm by presenting the fundamental insight about a 

property of boundedness of a feasible region where the interior- point method could be used to 

obtain solutions for MOLP problems. This property of  boundedness of a feasible solution 

region for a system of linear equations is summarized in the following theorem. The 

convergence of FERCIPA is summarized in the following theorem. 

Theorem 4. (Roos, et al. (1997)) 

The sequence of points  { }∞

=0r

r
x    generated FERCIPA converged to a Pareto optimum solution 

*
x  . 

Proof :  The sequence  { }∞

=0r

r
x    is monotonically increasing interior point    with respect to 

the objective function values{ }∞

=0r
kz   , i.e.  .  .  .  .     , ,2,1,1,,

=∀>
−

rkzz
rkrk

 But since the 

feasible region is compact and bounded, the sequence   { }∞

=0r

r
x    is converged to 

*
x  with 

objective function value 
*

z , i.e.     .               
*r

xxaszz
krk

→→
*,

 

  Consider the following intervals   ,   .   .  .  ,,,  .    .    ,  .  .  .    ,  .  .  .  n
kkk

nn IIIIIIIII 21
2

2
2

1
21

2
1

1
1 ;,,;,,  

 with the corresponding objective function values: 

  ,   .   .  .  ,,,  .    .    ,  .  .  .    ,  .  .  .  n
kkk

nn zzzzzzzzz 21
2

2
2

1
21

2
1

1
1 ;,,;,,  and  

*
z  
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 the optimal compromise  objective function values.                       

          Let            ], [ ,  .  .  .    ], ∗∗∗
=== zzIzzIzzI

nn
11

2
1

2
1

1
1

1
1 ],,[,[  

      ], [ ,  .  .  .    ], ∗∗∗ === zzIzzIzzI
nn
22

2
2

2
2

1
2

1
2 ],,[,[

 

      ], [ ,  .  .  .    ], ∗∗∗
=== zzIzzIzzI

n
k

n
kkkkk ],,[,[ 2211

 

Then it is observed that for ,....2,1;,.....2,1 == nk    ;  ],[ ∗
= zzI

n
k

n
k    is a decreasing 

sequence of intervals as   ∞→k and 0→
n
kI . 

Since   
12312 ,, −⊆⊆⊆ kk IIIIII    .    .    .    .  It implies that  kk II ⊆+1  . Hence the 

convergence of the algorithm.     This completes the proof.                        ■   

5.  Numerical Examples 

Let us consider the following example of multi-objective linear programming problem: 

0                               
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x
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xx
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Algorithm 

Step 0 :  solving  MOLP 3 problem, the following extreme points and their  corresponding 

objective function values were obtained:  

A(0,0),     z1 =  0,   z2 =  0,   z3  =  0;     B(15,0),        z1 = 30,    z2 =  45,    z3 =  60 

C(10,10),   z1 = 50,   z2 =  20,    z3 = 70;    D(8,12),   z1 =  52,   z2 = 12,    z3  = 65   

E(0,12),      z1 =  36,    z2 =  -12,   z3 = 36 

70    ,20        ,50      ),10,10(    ),(       ,

60    ,45        ,30      ),0 ,15(    ),(       ,

68     ,12       ,52         ), 12,8(    ) , (       ,

3

3

3

2

3

1

3

2

3

1

3*

3

2

3

2

2

2

1

2

2

2

1

2*

2

1

3

1

2

1

1

1

2

1

1

1*

1

=====

=====

=====

zzzxxxz

zzzxxxz

zzzxxxz

 

Step  1:   if   .3,2,1  , *,
=∀= kxx

rk
  then stop  

*x  is optimal compromise  solution, 

otherwise    go to step 2. 

             Since   
3*2*1**,

              i.e.    ,      xxxxx
rk

≠≠≠ ,  we go to step 2 
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Step  2:  compute the weights   
r

k
xw

*
  and   

3,2,1       ,      
131211

1
=

++
= k

ccc

c
w

k

k
 


�� = (��� − ���)(�&& − �&�) − (�&� − �&�)(��& − ���) 
= (45 − 12)(70 − 68) − (60 − 68)(20 − 12) 
=  (33)(2) − (-8)(8) 
= 130 

�� = (�&& − �&�)(��� − ���) − (��& − ���)(�&� − �&�) 
= (70 − 68)(30 − 52) − (50 − 52)(60 − 68) 
=  (2)(-22) − (-2)(-8) 
= -60 

      

110-       

     (33)(-2)-(-22)(8)       

)5250)(1245()1220)(5230(      

))(())((  1

1

3

1

1

2

2

2

1

2

3

2

1

1

2

113

=

=

−−−−−=

−−−−−= zzzzzzzzc

 

300     110    60    130              131211 =++=++ ccc  

      0.43       
300

130
              

131211

11

1 ==
++

=
ccc

c
w  

    0.20       
300

60
              

131211

12

2 ==
++

=
ccc

c
w  

     0.37       
300

110
              

131211

13

3 ==
++

=
ccc

c
w  

1     37.0    20.0    43.0             321 =++=++ www  

Compute  
r

x
*

  ,    i.e.     

10.14                                    

3.733.44                                    

)10(37.0    )15(20.0    )8(43.0            3

13

2

12

1

11

=

++=

++=++ xwxwxw

 

8.86                                     

3.705.16                                     

)10(37.0    )0(20.0    )12(43.0            3

23

2

22

1

21

=

++=

++=++ xwxwxw

 

)86.8  ,14.10(     *
=x   which is the  efficient starting point.  

Step 3:  The point  )86.8 ,14.10(     *
=x   is not on the boundary of the polytope, we go to step 

4. 

Step 4:  Compute    .3,2,1     ,     *
== kxcz

rkkr
 

46.86         

26.5620.28         

)86.8(3    )14.10(2     1

=

+=

+=rz
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21.56         

26.56    30.42         

)86.8(    )14.10(3     2

=

−=

−=rz

 

67.14         

26.58    40.56         

)86.8(3    )14.10(4     3

=

+=

+=rz

 

Contract the feasible region by introducing the constraints   
krk

zxc
*

        ≥   into  the given 

problem, we obtained: 

0                          

14.6734               

56.213                

86.4632                

12                         

302               

20              

..

34max

3max

32max

21

21

21

2

21

21

213
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≥

≥+

≥−

≥+

≤

≤+

≤+

+=

−=

+=

ix

xx

xx

xx

x

xx

xx
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xxz

xxz

xxz

 

Introducing the new constraints, we obtained the new extreme points of the contracted feasible 

region.  

F(10.14,  8.86),       z1 =  46.86,     z2 =  21.56,    z3  =  67.14   

G(10.79,  8.43),      z1 =  46.85,     z2 =  23.94,     z3 =  68.45 

H(10.31,  9.38),      z1 =  48.76,     z2 =  21,55,     z3 = 69.38 

Step 3:     The point  )9.38  ,31.10(     *
=x  is on the boundary of the constraints polytope.   

Thus the point 
*  x  is the optimal compromise  solution for the given MOLP 3 problem. 

),9.38  ,31.10(     *
=x     z1  =  48.76 ,    z2  =  21.55 ,  z3  =  69.38 

The results obtained by Feasible Region Contraction Interior-Point Algorithm (FERCIPA) will 

be compared with that obtained by Affine-Scaling Primal Algorithm (ASPA). 

Table  1.  Summary of results using FERCIPA  and  ASPA  on   MOLP problems 

Method            Problem              Decision        Objective function values      Number  of       Time  in 

                                                   Variable           Z1              Z2           Z3         iteration             (sec) 

ASPA              MOLP 1        (5.75, 5.5)             16            11.25                        9                

FERCPA         MOLP 1          (5,  7 )                 19             121              0.125 

ASPA              MOLP 2        (4.49, 5.51, 0,       4.49          5.51                        11                 -  

                                                 0, 12.5, 0)           

FERCIPA       MOLP 2    (4.5, 5.5,0,0,              4.5            5.5 1           0.125 

                                                12.5, 0)            

FERCIPA       MOLP 3        10.31, 9.39            48.77       21.55           69.38          2             0.125 
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CONCLUSION 
In this paper we have developed a feasible region contraction interior-point algorithm 

(FERCIPA) that is a viable multi-objective linear optimization technology for both single and 

multi-objectives linear programming problems. The interior-point  algorithm will give an 

optimal compromise  solution with accuracy to the multi-objective linear programming 

problems provided the issues related to computational complexity are properly addressed 

through problem formulation and through efficient implementation techniques. The comparison 

of the results in table 1 shows that FERCIPA is more efficient than ASPA because of the 

systematic method of determining weights which is used to determine the efficient starting 

point within the constraints polytope. This starting point is closer to the optimal face than the 

one obtained by approximation centrality used by ASPA. This is seen in the objective function 

values and the number of iterations needed to reach the optimal compromise solution of a 

particular problem. Also, this shows the fast convergence of our algorithm to the optimum. 
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