INTEGER PROGRAMMING APPROACH TO NURSE SCHEDULING PROBLEM (NSP) IN HOSPITAL MANAGEMENT

ISSN: 2141-3290
www.wojast.com

UDOH 1,N. S.AND EKPENYONG ${ }^{\mathbf{2}}$, E. J.
${ }^{1}$ Department of Statistics, University of Uyo, Nigeria; ${ }^{2}$ Department of Statistics, Michael Okpara University, Umudike, Nigeria; nsesudoh@uniuyo.edu.ng,ekpesstat@yahoo.com

Abstract

The need for optimum allocation of available manpower for increase productivity and efficient management is a typical personnel scheduling problem faced by hospitals and other personnel management organizations. In this study, integer programming approach was used to solve a Nurse Scheduling Problem in the hospital using the days-off as decision variables. The result of implementation in St. Luke hospital, Anua, Uyo, Nigeria produces optimal days-off Nurses roster with ten Nurses each in Antenatal Ward, Casualty, Children, Male Surgical and Operating theatre Wards; nine Nurses each in Antenatal Clinic, Maternity Ward, Male Medical, Female Medical and Nursery Wards; three Nurses each in Anesthesia, Counseling and Immunization Units; and fourteen Nurses each in Labour Ward and Out-patients Department which ensures adequate continuous ward care services and minimizes 0.38% of the Hospital's total Nursing staff cost.

INTRODUCTION

Nursing staff scheduling is an essential task in manpower resource management in hospital and effective Nurse scheduling contributes to improved performance of Nurses. Consequently, it has a great impact on the quality of healthcare delivery, the recruitment of Nursing personnel, the development of Nursing budget, staff and patient safety, staff and patient satisfaction and administrative workload. Typically, personnel scheduling problems are highly constrained and complex optimization problem. The need to take into account individual preferences further complicates the process. Unlike many other organizations, healthcare institutions need to be staffed 24 hours a day over seven days a week. In preset shift, some Nurses are allowed to state their wishes on how they would love to be scheduled in the hospital, while other Nurses are scheduled around the preset shifts. Cheang et al (2003) added Nursing staff's preference into the factors to be considered when preparing work schedule, because according to Burke et al (2004) good quality solution can lead to a higher level of personnel satisfaction. In recent years, the emergence of larger and constrained problems such as Nurse Workforce, hospital work scheduling regulations, etc. has presented a real challenge. The Nurse scheduling problem becomes complex when additional factors such as patient admission, nurse qualifications or license to practice, type of disease as well as accidents and emergency are included. Operations/production management scheduling involves devising efficient methods to find the optimal order in which given tasks, events, or actions are carried out, usually subject to certain constraints, Fan (2020). Over the past six decades, a considerable amount of research has been expended on scheduling theory and practice. The literature contains many state-of-the-art studies on exact or approximation algorithms to solve a wide array of scheduling problems in various contexts, showing their performance analytically via establishing their computational complexity or empirically through numerical studies, Hsu and Liao (2020). Optimization problems where the variables are required to take on integer values are called integer programming (IP) problems. A linear integer programming problem is obtained when all the functions are linear, Jasbir (2004).

Efficient scheduling of nurses can greatly reduce the labour cost, which is generally a significant proportion of total cost for most organizations. The number of employees assigned
to each days-off pattern must be determined in order to satisfy all daily labour demand with the minimum number or cost of employees. Smith and Wiggins (1997) proposed a Mathematical Programming Technique as the most suitable method for solving NSP. It is primarily used in days-off Nurse scheduling and is most suitable because it eliminates the problem of infeasible or less optimal solution by enforcing integer decision variables.

The relative importance of satisfying employee needs in staffing and scheduling decisions have grown, companies offer part-time contracts or flexible work hours and take into account employee preference when creating work schedules. Betchtold et al (1991) classify personnel scheduling solution methods in two categories: linear programming or construction based. Alfares (2002) proposed ten categories for tour scheduling approaches: manual solution, integer programming, implicit modeling, decomposition, goal programming, working set generation, linear programming-based solution, construction and improvement, Meta heuristics and other methods. Prior to the development of mathematical programming (optimization techniques), most Nurses schedules were based on the cyclical modeling, Rocha et al (2013). Cyclic models consist of regular patterns which can be rotated across multiple time periods. Howell (1966) provided the first cyclical scheduling approach which takes into consideration the behavior and preference of the individual Nurse. However, in a non-cyclical scheduling process, a new schedule is generated for each scheduling period. This process is more time-consuming but is more flexible to changes such as the variability of demand, Valouxis and Housos (2000). Subsequently, heuristic models which are able to consider all the requirements at the planning stage were adopted in Nurse scheduling. This method is time-consuming and less accessible, Guinet (1995).

The focus of this work is on days-off scheduling methodology. A great deal of interest has been directed at the 5 working days, 7 days of the week $(5,7)$ days-off problem in which 2 consecutive days-off are given per week; El-Quliti and Al Darrab (2009), Alfares (1998) and Nanda and Browne (1992).However, Fitzsimmons and Fitzsimmons (2004) had proposed a formal complete formulation of Nurse scheduling problem as integer programming problem. We seek to adapt this approach to optimize days-off rosters for Nurses in the active wards using off-days as decision variables. This will reduce the hospital's labour cost and enhance efficient healthcare delivery.

St. Luke's hospital, Anua, Uyo, Nigeria has 20 wards and each ward has a minimum staffing requirement for each day. The hospital has a total of 181 full-time nurses (as at the time data were collected for this research) that work five days a week and take two consecutive days-off. Therefore, this work applies integer programming in days-off scheduling of Nurses for each ward in St. Luke's hospital, Anua, Uyo to ensure optimal scheduling of all Nurses in each ward/unit while meeting the ward's nursing-staff requirement for each day.

METHODOLOGY

The Branch and Bound Algorithm

1. Initialization: Consider the following integer programming problem (ILPP):

$$
\begin{aligned}
& \text { Maximze: } Z=c_{1} x_{1}+c_{1} x_{2}+\ldots .+c_{1} x_{n} \\
& \text { subjectto: }\left\{\begin{array}{ccccccc}
a_{21} x_{1} & + & a_{22} x_{2} & + & \ldots & a_{2 n} x_{n} & =b_{1} \\
a_{21} x_{1} & + & a_{22} x_{2} & + & \ldots & a_{2 n} x_{n} & =b_{2} \\
\vdots & \vdots & \vdots & + & \ldots & \vdots & \vdots \\
a_{m 1} x_{1} & + & a_{m 2} x_{2} & + & \ldots & a_{m n} x_{n} & =b_{n}
\end{array}\right\} \\
& x_{1}, x_{2}, \ldots x_{n} \geq 0 \text { andx} 1, x_{2}, \ldots \\
& x_{n} \text { areintegers }
\end{aligned}
$$

We obtain optimal solution of the problem ignoring the integer restriction on the variables.

2. Branching Step

i. Let X_{k} be one of the basic variables which does not have an integer value and also has the largest fractional value.
ii. Branch (that is, partition) the LP problem into 2 new LP sub-problems based on integer values of X_{k} that are immediately above and below its non-integer value (the fractional value). It is partitioned by adding 2 mutually exclusive constraints to the original LP problem. The constraints are;

$$
X_{k} \leq\left[X_{k}\right] \text { and } X_{k} \geq\left[X_{k}\right]+1
$$

Here $\left[X_{k}\right]$ is the integer portion of the current fractional value of the variable, X_{k}. This is done to exclude the non-integer value of X_{k}. The two new LP problems will be:

$$
\begin{aligned}
& \text { Maximize: } Z=\sum_{j=1}^{n} C_{j} X_{j} \\
& \text { Subject to: } \sum_{j=1}^{n} a_{i j} X_{j}=b_{i} \\
& \qquad X_{k} \leq\left[X_{k}\right] ; X_{j} \geq 0 \\
& \text { And: Maximize } Z=\sum_{j=1}^{n} C_{j} X_{j} \\
& \text { Subject to: } \sum_{j=1}^{n} a_{i j} X_{j}=b_{i} \\
& \qquad X_{k} \geq\left[X_{k}\right]+1 ; X_{j} \geq 0
\end{aligned}
$$

3. Bound Step:

Obtain the optimal solution of the sub-problems. Let the optimal value of the objectives function of the sub-problems be Z_{2} and Z_{3} respectively. The best integer solution value becomes the lower bound on the integer LP problem. Let the lower bound de denoted by Z_{L}.

4. Fathoming Step:

i. If a sub-problem yields an infeasible solution, terminate the branch.
ii. If a sub-problem yields a feasible non-integer solution, return to step 2.
iii. If a sub-problem yields a feasible integer solution, examine the value of the objective function. If the value is equal to the upper bound, an optimal upper solution is reached. But if it is not equal to the upper bound but exceeds the lower bound, this value is used as the new upper bound, then return to step 2. But, if this value is less than lower bound, terminate the branch.
5. Termination: The procedure of branching and bounding continues until no further subproblem remains to be examined. At this stage, the integer solution corresponding to the current lower bound is the optimal all-integer programming problem solution.

The ILPP analysis of the Nursing personnel data was implemented with the aid of TORA software in order to reduce the complexities and errors associated with manual computing.

Data Requirement

St. Luke's hospital, Anua, Uyo is a missionary general hospital. It has 181Nurses, 74employed by government and 107employed by missionary. A full time Nurse works five days a week with two consecutive days-off. The hospital has about 20 wards with 17 operational wards/units. Each clinical ward/unit has a daily Nurse requirement (Table 1).

Management wants to minimize the hospital's labour cost while meeting the core coverage of each day and shift and also satisfying the schedule of 5 work days and 2 days-off for staff.

Table 1: Nursing staff availability and requirement at St. Luke's Hospital, Anua, Uyo

	NURSES (CORE STAFF)			
Wards/Units	Government	Mission	Total Availability	Daily Requirements
Antenatal clinic	7	4	11	6
Antenatal ward	7	5	12	7
Anaesthesia	3	1	4	2
Casualty (emergency)	6	6	12	7
Children's ward	5	8	13	7
Labour ward	10	10	20	10
Maternity ward II	2	10	12	6
Male medical ward	6	6	12	6
Male surgical ward	3	8	11	7
Female medical ward	5	9	14	6
Female surgical ward	4	8	12	7
Out-patients Dept.	7	10	17	10
Nursery	1	10	11	6
Operating theatre	2	11	13	7
Counselling unit	3	-	3	2
Immunization	3	1	3	2

Problem Formulation

The most critical element of the scheduling problem is deciding on the days. Therefore, the decision variables can be conceptualized as the two consecutive off-days that a Nurse is assigned in a scheduling cycle. There are seven possible pairs of consecutive off-days available: Saturday - Sunday; Sunday - Monday; Monday - Tuesday; Tuesday - Wednesday; Wednesday - Thursday; Thursday - Friday and Friday - Saturday. A satisfactory schedule will be produced if assignment can be made to guarantee these off-days to Nurses while meeting the unit requirement for each day.

Let $X_{1}, X_{2}, X_{3}, X_{4}, X_{5}, X_{6}$ and X_{7} represents the number of Nurses to be off on Saturday-Sunday, Sunday-Monday, Monday-Tuesday, Tuesday-Wednesday, Wednesday-Thursday, Thursday Friday and Friday-Saturday respectively. The ILP formulated problem is:

```
Minimize \(\mathrm{Z}=X_{1}+X_{2}+X_{3}+X_{4}+X_{5}+X_{6}+X_{7}\)
Subject to: \(X_{1}+X_{2}+X_{3}+X_{4}+X_{5} \quad \geq b_{1} \quad\) (Saturday constraints)
    \(X_{2}+X_{3}+X_{4}+X_{5}+X_{6} \geq b_{2} \quad\) (Sunday constraints)
    \(X_{3}+X_{4}+X_{5}+X_{6}+X_{7} \geq b_{3} \quad\) (Monday constraints)
\(X_{1}+X_{4}+X_{5}+X_{6}+X_{7} \geq b_{4} \quad\) (Tuesday constraint)
\(X_{1}+X_{2} \quad+X_{5}+X_{6}+X_{7} \geq b_{5} \quad\) (Wednesday constraints)
\(X_{1}+X_{2}+X_{3} \quad+X_{6}+X_{7} \geq b_{6} \quad\) (Thursday constraints)
\(X_{1}+X_{2}+X_{3}+X_{4} \quad+X_{7} \geq b_{7} \quad\) (Friday constraints)
    \(X_{i} \geq 0\); and integer
```

where Z is the objective function and b_{j} is the daily staff requirement for a day of the week. The above is represented in the following matrix form;

Minimize $\mathrm{Z}=\left[\begin{array}{llllll}1 & 1 & 1 & 1 & 1 & 1\end{array}\right]\left[\begin{array}{l}1\end{array}\right]\left[\begin{array}{l}X_{1} \\ X_{2} \\ X_{3} \\ X_{4} \\ X_{5} \\ X_{6} \\ X_{7}\end{array}\right]$
Subject to: $\left[\begin{array}{lllllll}1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}X_{1} \\ X_{2} \\ X_{3} \\ X_{4} \\ X_{5} \\ X_{6} \\ X_{7}\end{array}\right] \geq\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3} \\ b_{4} \\ b_{5} \\ b_{6} \\ b_{7}\end{array}\right]$;

$$
\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3} \\
X_{4} \\
X_{5} \\
X_{6} \\
X_{7}
\end{array}\right] \geq\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right] ; \text { and integer }
$$

In Table 1, we note that some of the wards/units have the same number of daily required Nurses; therefore, their results will be similar and are therefore grouped into 4 on this basis. Let G_{1} represent Antenatal ward, Casualty ward, Children's ward, Male surgical ward, Female surgical ward and Operating theatre with a daily requirement of 7 Nurses each. The integer linear problem for G_{I} is:

```
Minimize \(\mathrm{Z}=X_{1}+X_{2}+X_{3}+X_{4}+X_{5}+X_{6}+X_{7}\)
Subject to: \(X_{1}+X_{2}+X_{3}+X_{4}+X_{5} \quad \geq 7\)
    \(X_{2}+X_{3}+X_{4}+X_{5}+X_{6} \geq 7\)
        \(X_{3}+X_{4}+X_{5}+X_{6}+X_{7} \geq 7\)
            \(X_{1}+X_{4}+X_{5}+X_{6}+X_{7} \geq 7\)
        \(X_{1}+X_{2}+X_{5}+X_{6}+X_{7} ; \geq 7\)
        \(X_{1}+X_{2}+X_{3} \quad+X_{6}+X_{7} \geq 7\)
        \(X_{1}+X_{2}+X_{3}+X_{4} \quad+X_{7} \geq 7\)
\(X_{i} \geq 0\); and integer
```

The above is represent in the following matrix form:
Minimize $\mathrm{Z}=\left[\begin{array}{llllll}1 & 1 & 1 & 1 & 1 & 1\end{array}\right]\left[\begin{array}{l}1\end{array}\right]\left[\begin{array}{l}X_{1} \\ X_{2} \\ X_{3} \\ X_{4} \\ X_{5} \\ X_{6} \\ X_{7}\end{array}\right]$
Subject to; $\left[\begin{array}{ccccccc}1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}X_{1} \\ X_{2} \\ X_{3} \\ X_{4} \\ X_{5} \\ X_{6} \\ X_{7}\end{array}\right] \geq\left[\begin{array}{c}7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7\end{array}\right]$
Similarly, integer programming formulation for G_{2} representing Antenatal clinic, Maternity ward II, Male medical ward, Female medical ward and Nursery with a daily requirement of 6 nurses, G_{3} representing Anaesthesia unit, Counseling unit and Immunization with a daily requirement of 2 Nurses and G_{4} representing Labour ward and Out-patient Department with daily requirement of 10 Nurses were formulated with values of b_{j} s on the right hand side of the constraints as 6,2 and 10 respectively.

ANALYSIS AND RESULTS

TORA (2.00)software was used to execute the branch and bound algorithm for solving the problem with the following results in Figures 2, 3, 4 and 5 which show the solutions to the Nurse Scheduling problem in St. Luke's Hospital, Anua, Uyo. The objective value (minimum) for G_{1} is 10 with $X_{1}=1 ; X_{2}=2 ; X_{3}=1 ; X_{4}=2 ; X_{5}=1 ; X_{6}=2 ; X_{7}=1$.

Node1

Node 2 No | $\mathrm{z}=10$ |
| :--- |
| $x_{1}=2$ |
| $x_{2}=1$ |
| $x_{3}=2$ |
| $x_{4}=1$ |
| $x_{5}=2$ |
| $x_{6}=1$ |
| $x_{7}=1$ |

Figure 2: Branch-and-Bound Enumeration Tree for solution of G_{1}

Infeasible Best Upper bound
Figure 3: Branch-and-bound enumeration tree for solution of G_{2}

Figure 3 shows that the objective value (minimum) for G_{2} is 9 with $X_{1}=1 ; X_{2}=1 ; X_{3}=$ $1 ; X_{4}=2 ; X_{5}=1 ; X_{6}=2 ; X_{7}=1$.

Best Upper Bound
Figure 4: Branch -and -Bound Enumeration for G_{3} solution
Similarly, the objective value (Minimum) for G_{4} consist of a single node with $\mathrm{Z}=14$ with $X_{1}=$ $2 ; X_{2}=2 ; X_{3}=2 ; X_{4}=2 ; X_{5}=2 ; X_{6}=2 ; X_{7}=2$.

Table 2: Summary of the optimal solution of the Nurse Scheduling problem

Group	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}	X_{7}	Objective value(Z)
G_{1}	1	2	1	2	1	2	1	10
G_{2}	1	1	1	2	1	2	1	9
G_{3}	0	0	1	0	1	0	1	3
G_{4}	2	2	2	2	2	2	2	14

Table 2 summarizes the optimal solution of the Nurse scheduling problem. The optimal solution for each ward is presented in Table 3.

DISCUSSION

From the result of the analysis, we found out the following:

1. In Antenatal Ward, Casualty Ward, Children's Ward, Male Surgical Ward, Female Surgical Ward and Operating Theatre $\left(\mathrm{G}_{1}\right)$ which has total availability of $12,12,13,11,12$ and 13 employed Nurses respectively; (Table 1), an optimal total of 10 Nurses for each of the wards in this group is needed in order to satisfy their daily requirement of 7 Nurses; (Table 3).

Explicitly, $X_{1}=1, X_{3}=1, X_{5}=1$ and $X_{7}=1$ indicates that one Nurse should be assigned to Saturday-Sunday off, Monday-Tuesday off, Wednesday-Thursday off and Friday-Saturday off respectively; $X_{2}=2, X_{4}=2$ and $X_{6}=2$ indicates that two Nurses should be assigned to: Sunday-Monday, Tuesday-Wednesday and Thursday-Friday off respectively; see Table 2. This would minimizes the total Nursing staff cost by 0.3%.

Table 3: Optimal solution for each ward in St. Luke's hospital, Anua, Uyo.

Wards/units								Optimal allocation of Nurses for days -off							Optimal number
of Nurses															
required															

2. In Antenatal Clinic, Maternity Ward II, Male Medical Ward, Female Medical Ward and Nursery $\left(G_{2}\right)$ with total availability of $11,12,12,14$ and 11 Nurses respectively and a daily requirement of 6 Nurses each in Table 1, an optimal total of 9 Nurses is required in each ward. Also, $X_{1}=1 ; X_{2}=1 ; X_{3}=1 ; X_{5}=1$; and $X_{7}=1$ indicate that one Nurse should be assigned to Saturday-Sunday off, Sunday-Monday off, Monday-Tuesday off, WednesdayThursday off and Friday-Saturday off respectively; $X_{4}=2$ and $X_{6}=2$ implies that two Nurses should be assigned to Tuesday-Wednesday off and Thursday-Friday off respectively; see Table 2. This would minimize the total Nursing staff cost by 0.15%.
3. In Anesthesia, Counseling and Immunization Units $\left(\mathrm{G}_{3}\right)$ with a total of 4,3 and 3 employed Nurses respectively and with a daily requirement of 2 Nurses each in Table 1, an optimal total of 3 Nurses is required; (see Table 3). $X_{1}=0 ; X_{2}=0 ; X_{4}=0$ and $X_{6}=0$ implies that no Nurse should be assigned to Saturday-Sunday off, Sunday-Monday off, Monday-Tuesday off and Thursday-Friday off respectively; $X_{3}=1, X_{5}=1$ and $X_{7}=1$ implies that one Nurse should be assigned to Tuesday-Wednesday off, Thursday-Friday and Friday-Saturday off respectively; see Table 2. This would minimize the total labour cost by 0.01%.
4. In Labour Ward and Out-Patients Department $\left(\mathrm{G}_{4}\right)$, which needs to be staffed with more Nurses than others due to their peculiar duties, the hospital employed a total of 17 Nurses and a daily requirement of 10 Nurses (Table 1), an optimal total of 14 Nurses is required; see Table 3. $X_{1}=2 ; X_{2}=2 ; X_{3}=2 ; X_{4}=2 ; X_{5}=2 ; X_{6}=2 ; X_{7}=2$ implies that two Nurses should be scheduled on Saturday-Sunday off, Sunday-Monday off, Monday-Tuesday off, Tuesday-Wednesday off, Wednesday-Thursday off, Thursday-Friday off and Friday-Saturday off respectively; see Table 2. This would minimize the total Nursing staff cost by 0.09%.
In general, the hospital would minimizes the total Nursing staff cost by 0.38% if the optimal solutions of $G_{1}=10$ Nurses, $G_{2}=9$ Nurses, $G_{3}=3$ Nurses and $G_{4}-14$ Nurses is implemented.

Table 4: Sample one week Roster for Nurses in G_{1} Wards

Nurse ID number	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
1	ON	ON	ON	ON	ON	OFF	OFF
2	OFF	ON	ON	ON	ON	ON	OFF
3	OFF	OFF	ON	ON	ON	ON	ON
4	OFF	OFF	ON	ON	ON	ON	ON
5	ON	OFF	OFF	ON	ON	ON	ON
6	ON	ON	OFF	OFF	ON	ON	ON
7	ON	ON	OFF	OFF	ON	ON	ON
8	ON	ON	ON	OFF	OFF	ON	ON
9	ON	ON	ON	ON	OFF	OFF	ON
10	ON	ON	ON	ON	OFF	OFF	ON
Required	7	7	7	7	7	7	7
Assigned	8	7	7	7	7	7	7
Excess	1	0	0	0	0	0	0

Table 5: Sample one week Roster for Nurses in G_{2} Wards

Nurse ID number	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
1	ON	ON	ON	ON	ON	OFF	OFF
2	ON	OFF	OFF	ON	ON	ON	ON
3	ON	ON	ON	OFF	OFF	ON	ON
Required	2	2	2	2	2	2	2
Assigned	2	3	2	2	2	2	2
Excess	0	0	0	0	0	0	0

Table 6: Sample one week Roster for Nurses in G_{3} Units

Nurse ID number	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
1	ON	ON	ON	ON	ON	OFF	OFF
2	OFF	ON	ON	ON	ON	ON	OFF
3	OFF	OFF	ON	ON	OFF	ON	ON
4	ON	OFF	OFF	ON	ON	ON	ON
5	ON	ON	OFF	OFF	ON	ON	ON
6	ON	ON	OFF	OFF	ON	ON	ON
7	ON	ON	ON	OFF	OFF	ON	ON
8	ON	ON	ON	ON	OFF	OFF	ON
9	ON	ON	ON	ON	OFF	OFF	ON
Required	6	6	6	6	6	6	6
Assigned	7	7	7	6	6	6	6
Excess	1	1	1	0	0	0	0

Table 7: Sample one week Roster for Nurses in G_{4} Wards

| Nurse
 number | ID | Sunday | Monday | Tuesday | Wednesday | Thursday | Friday |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Saturday

Tables 4, 5, 6 and 7 show the resulting sample scheduling for the wards with ON representing assignments and OFF representing days-off. The last three rows of each table show the requirements, total number of assignments and any excess in a given day.

CONCLUSION

Nurse scheduling analysis was carried out in this work using integer linear programming with the aid of TORA (2.00) optimization software. The results produce the following optimal daysoff schedule for Nurses with 0.38% reduction in staffing cost in St. Luke's hospital, Anua, Uyo:
i. G_{1} wards-Antenatal Ward, Casualty, Children, Male Surgical, Female Surgical and Operating Theatre Wards when assigned an optimal total of 10 Nurses each would minimize 0.13% of the total nursing staff cost with individual ward contributions of 0.02%, $0.02 \%, 0.03 \% .0 .01 \%, 0.02 \%, 0.03 \%$ respectively.
ii. G_{2} wards-Antenatal Clinic, Maternity Ward II, Male Medical, Female Medical and Nursery Wards when assigned an optimal total of 9 Nurses each would minimize 0.15% of Nursing staff cost with individual ward contributions of $0.02 \%, 0.03 \%$, $0.03 \%, 0.05 \%, 0.02 \%$ respectively.
iii. G_{3} wards-Anaesthesia, Counselling and Immunization Units when assigned an optimum of 3 Nurses each would minimize 0.01% of total Nursing staff cost with individual ward contributions of $0.01 \%, 0.00 \%, 0.00 \%$ respectively.
iv. G G_{4} wards-Labour Ward and Out-Patients Department when assigned an optimum of 14 Nurses would minimize 0.090% of total Nursing staff cost with individual contributions of 0.06% and 0.03% respectively.
This study employs an integer programming model approach for solving the 5 working days a week and 2 consecutive days-off Nurse scheduling problem. The case of St. Luke's Hospital, Anua, Uyo shows that the total Nursing staff cost of the hospital would be minimized by 0.38% if the optimal days-off schedule proposed in this work is utilized. Therefore, the use of integer programming model is essential in Nurse scheduling problem in hospital management and personnel scheduling in general in organizations with similar structure. This would help reduce labour cost and provide optimum service delivery.

REFERENCES

Alfares, H. K. (1998). Optimizing a library‘s loan policy: An Integer Programming Approach. Journal of American Society for Information Science 49(13): 1169-1176.
Alfares, H. K. (2002). Optimum Workforce Scheduling under the (14, 21) Days -off Timetable. Journal of Applied Mathematics and Decision Sciences 6(3): 191-199.
Alfares, H. K. and J.E. Bailey (1997). Integrated project task and manpower scheduling. IIE Transaction 29(9).
Azaiez, M.N. and S.S. Sharif (2005). A 0-1 Goal programming model for Nurse scheduling. Computers and Operations Research 32, 491-507.
Bechtold, S.E., M.J. Brusco and M.J. Showalter (1991).A Comparative- Evaluation of Labour Tour scheduling methods. Decision Sciences, 22 (4): 683-699.
Burke, E. K., P. D. Causmaecker, G. V. Berghe and H.V. Landeghem (2004).The state of the art of Nurse Rostering. Journal of Scheduling 7, 441-449
Burns, R.N., R. Narasimhan and L. D. Smith (1998). A set-processing algorithm for scheduling staff on 4-day or 3-day work weeks, naval research logistics 45,839-853.
Cheang, B., Li, H., Lim, A. and Rodrigues, B. (2003). Nurse Rostering Problems - A Bibliographic survey. European Journal of Operational Research 151: 447-460.
El-Quliti, S.andAl-Darrab, I. (2009). A zero-one integer programming model for the optimum workforce capacity planning with workload constraints. Azah Mohamed, Intech Open, DOI: 10.5772/10027. Available from: https://www.intechopen.com/chapters/11747
Emmons, H. and Burns, R. N. (1991). Off-day scheduling with hierarchical worker categories. Operations Research 39, 484-495.

Fan, J. (2020).Integrated Scheduling Problem on a Single Bounded Batch Machine with an Unavailability Constraint. Discrete Dynamics in Nature and Society,1:1-9 https://doi.org/10.1155/2020/8625849.
Fitzsimmons, J. A. and Fitzsimmons, M. J. (2004). Service management, operations strategy and information technology. $4^{\text {th }}$ edition boston: Mcgraw-hill/irwin
Graham, R. L., Lawler, E. L., Lenstra, J. K. and RinnoyKan, A. H. G. (1979). Optimization and approximation in deterministic sequencing and scheduling. Annals of Discrete Mathematics, 5: 287-326.
Guinet, A. (1995). Scheduling independent jobs on uniform parallel machines to minimize tardiness criteria. Journal of Intelligent manufacturing 6, 95-103.
Harmeier, P. E. (1991). Linear Programming for Optimization of Nurse Scheduling. Comput. Nurs. Journ. 9(4): 149-51.
Harvey, H. M. and K. Mona (1998). Cyclic and Non-Cyclic Scheduling of 12 hour shift Nurses by Network Programming. European Journal of Operations Research, 104(3): 582-592.
Howell, J. P. (1966). Cyclical scheduling of Nursing Personnel. Hospitals, 40(2): 77-85.
Hsu, C. and Liao, J. (2020).Two parallel-Machine Scheduling Problems with Function Constraint, Hindawi Discrete Dynamics in Nature and Society. Special Issue. Article ID 2717095, https://doi.org/10.1155/2020/2717095.
Jasbir, S. A. (2004).Introduction to Optimum Design (2 $2^{\text {nd }}$ Edition), Academic Press, New York, 17-23.
Rocha, M., Oliveira,J. F and Carravvilla, M. A (2013) Cyclic staff scheduling: Optimization models for some real-life problems Journal of Scheduling, 16(2):231-242. DOI:10.1007/s10951-012-0299-4
Sharma, J. K. (2009). Operations Research, theory and application. $5^{\text {th }}$ edition. Macmillan Publishers India Ltd.: 202-229.
Smith, L. D. and A. Wiggins (1997). A computer-based Nurse Scheduling System, Computers and Operations Research, vol. 4, 195-212.
Taha, H. A. (2005). Operations Research: An introduction; $7^{\text {th }}$ edition. Pearson Education, Inc., Singapore, 361-389.
Tobon Perez, M.V. (1984). An Integrated Methodology to Solve Staffing, Scheduling and Budgeting Problems in a Nursing Department. Ph.D. Dissertation, University of Pittsburgh.
Valouxis, C. and E. Housos (2000). Hybrid Optimization Techniques for the Work shift and Rest Assignment of Nursing Personnel. Artificial Intelligence in Medicine 20, 155-175.

