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ABSTRACT
The Heisenberg uncertainty relation as well as the Fisher information are presented analytically and numerically for the
Generalized radial Yukawa potential. The probability density for the ground and first excited state has been analyzed via the
Fisher information for this potential model. Some numerical results are obtained. From the numerical results obtained, we
observed that, for » =0, 1, the position-space Fisher information I, increases with increasing potential parameter @, while the
momentum-space Fisher information I, initially increases, and later decreases with increasing potential parameter a. The
Fisher-information-based uncertainty relation and the Heisenberg uncertainty relation have been verified to hold for this
atomic model. In addition, we observed a squeezed phenomenon in some of the results in position r and momentum p for the

ground and first excited states.

KEYWORDS: Schrédinger Equation; Nikiforov-Uvarov method; Manning Rosen plus exponential Yukawa

Potential.

INTRODUCTION

As stated by the density functional theory (DFT), the
physical and chemical properties of fermionic systems
(atoms, molecules, nuclei, solids) can be completely
described by means of the single-particle probability
densities in the position and momentum spaces (Hohenberg,
et al., 1964). The spread of the probability densities which
characterizes their allowed quantum states are quantified by
the information-theoretic measures in a more appropriate
manner than the celebrated variance or other measures of
dispersion (Sen, 1995 and Dehesa, et al., 2005). This is due
to the fact that, these information-theoretic tools do not make
any reference to some specific point of the corresponding
Hilbert space. These measures play important roles in the
uncertainty and other quantum parameters.

Fisher information is one of the main information-theoretic
measures that was first introduced by Fisher in 1925, as a
measure of intrinsic accuracy in statistical estimation theory
(Fisher, 1925 and Sears, et al., 1980). Since then, it has found
many applications in different areas of sciences,
communication and quantum computation (Hohenberg,
1964 and Dehesa, et al, 2005). Several laws and
fundamental equations in physics have been obtained
through the principle of minimum/maximum Fisher
information, examples include: the equation of non-
relativistic quantum mechanics, the time-dependent Kohn-
Sham equations and the time-dependent Euler equation of
density functional theory, amongst others (Frieden, 1998;
Reginatto, 1998 and Nalewajski, 2003). Fisher information
of the electronic distribution functions is closely related to
the vonWeizsicker kinetic energy functional of atomic and
molecular systems and the kinetic energy (Parr, et al. 1989;
Romera, et al., 1994 and Sears, 1980). As reported by
Nalewajski, Fisher information have been used in numerous
ways in quantum chemistry and more generally, molecular
electronic structure theory (Nalewajski, 2008). In addition,
it is used as descriptors of chemical reactivity of molecules

(Montgomery, et al., 2008; Esquivel, ef al., 2010 and Grassi,
2011).

However, the study of information theory of quantum-
mechanical systems have been extensively used in recent
years to study a variety of quantum mechanical systems
(Majernik, et al., 1996; Yanez, et al., 1994; Dehesa, et al.,
1997; Dehesa, et al., 2006; Yahya, et al., 2014a; Yahya, et
al., 2014b; Yahya, et al., 2013; Osobonye, et al., 2020; Patil,
et al., 2007; Isonguyo, et al., 2018; Okon, et al., 2018 and
Antia, et al., 2018). This is because, it provides a deeper
knowledge into the internal structure of the quantum systems
and it is closely related with modern quantum computation
and information, which is a basic theory for numerous
technological developments (Gadre, et al., 1991 and
Nielson, 2001). The Fisher information in the position-space
I; is defined by (Fisher, 1925, Isonguyo, et al., 2018; Okon,
etal., 2018),

1= 208 ar = 4 [/ ()Pdr = (02, ()

the corresponding quantity for the momentum space Fisher
information I, is defined as,

o= JEOL ar = 4 [[¢' p)Par = (). @

The Fisher information product is expresses as I, = I.1p,
where Y/(r) is a normalized eigenfunction in the spatial
coordinate and ¢ (p) is its normalized eigenfunction in the
momentum coordinate which is obtained by the Fourier
transform of Y (r) . Fisher information is the gradient
functional of probability density, as such, it is a local
measure of the extent and concentration of the probability
density of the system in the spatial localization of the
electron cloud. The higher this quantity, the more
concentrated the single particle density, the smaller the
uncertainty and the higher the accuracy in predicting the
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localization of the particles (Yahya, et al., 2014a and Falaye,
etal., 2014).

In this paper, the aim is to investigate the Fisher information
for the generalized radial Yukawa Potential (GYP) and its
uncertainty principle. The Yukawa potential is very useful in
describing the nuclear interaction between protons and
neutrons due to the creation and exchange of pion (Yukawa,
1935; Oluwadare, et al., 2016 and Adamowski, 1985). This
model has found extensive applications in the various
branches of Physics such as atomic and nuclear physics,
solid state physics, Plasma physics, and alot more (Greiner,
2000 and Preston, et al., 1975). GYP is a combination of a
long range Yukawa interaction and a short range repulsive
inversely quadratic Yukawa interaction (Oluwadare, et al.,
2016 and Isonguyo, et al., 2018).

Furthermore, we shall study the Uncertainty Relation
(Heisenberg uncertainty relation) which is an important
aspect of quantum mechanics. This Principle was introduced
by Heisenberg in 1927. The Heisenberg uncertainty principle
for the product of the uncertainties in the position and
momentum spaces, expressed in terms of Planck’s constant
is given as (Heisenberg, 1927)

Ardp =7, 3)
where,

=(r?)—(r)? and Ap = (p?)—(P)* . (4

Arand Ap represent the position and momentum
uncertainties, respectively. This relation implies that it is
physically impossible to measure exactly both position and
momentum simultaneously (Heisenberg, 1927 and Chen, et
al., 2013). In addition, we shall study the squeezing
behaviour of the ground and first excited states for some of
the potential parameter a.

This work is structured as follows: In the next Section, we
obtained the eigensolution for the Generalized Yukawa
potential, the normalized wave function and the probability
density of the system. Furthermore, the Fisher information
and the Heisenberg uncertainty relation is presented for
GYP, some numerical results are also given. Finally, the
discussion and conclusion follows.

GENERALIZED YUKAWA POTENTIAL AND ITS
ANALYTICAL SOLUTION

In this section, we shall present the analytical solution of
this system, which is necessary for obtaining the wave
function and probability density needed for the analysis.
The radial Schrodinger equation is given as (Greiner, 2000;
Galindo, et al., 1978 and Ita, et al., 2015)

h21(1+1)
2ur?

d 1/)111(7”)

bt 1 2 { (B = V() - 5 () =0,

)

with the Generalized radial Yukawa potential (GYP) defined
as (Oluwadare, et al., 2016)
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vy = - () - e, (6)

where E is the exact bound state energy eigenvalue, (1) is
the eigenfunction, u represents the reduced mass,(h=u=1). n
denotes the principal quantum number (n and [ are known as
the vibration-rotation quantum numbers), » is the inter-
nuclear separation. V,, and V; are constants which determine
the potential strength, @ is the screening parameter which
characterize the range of the interaction. The plot of this
potential model as a function of r is shown below.
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Figure 1: Shape of the Generalized Yukawa Potential (GYP)
as a function of r, for some values of a, with I/, = 5.0, V; =
10.0

On substituting equation (6) into equation (5) and then solve,
the wave function and energy eigenvalue equation for the
generalized Yukawa potential are obtained respectively as:

_Zar)nPn(ZS, 2n-1) (1

Yl () = Ny(e™)*(1—e

—2e —Zar)

=N,;s€(1 — s)”Pn(zg‘ -1 — 25), s=e20" (7)
and
2r2q2 |n +n+——“—V°+l(l+1)+(2n+1)8

E=- u (2n+1)+28 ’ ®)
where

_ | UE _ l _2;1V1 _
€= ’ —2a2h2,6—\/4+l(l+1) oz , A=
\/i 2V, 4101+ 1) . 9)

The normalization constant can be calculated using
[ &P (@)| dr = 1 (Greiner, 2000 and Galindo, et al.,
1978). For n =0, 1 we have

GYP _ 2al(2e+2n+1)

No™" = 2\’ rn+1)ree) ° (10)
GYP __ asl'(2e+2n+3)

M \/n(n+1)r(zn)(2n+25+1)r(25+2) (D
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Hence, the normalized wave function in position space for
two low lying states n = 0, 1, are then given by:

GYP — 2ar(2e42n+1) - _ar\erq _ ,—2ary\n
YEP(r) = 2 [FCED) (pmarye(y o2y (12)
and
NGYP
PEYP(r) = "L (™) (1 — e24TYT (1 — 2e7247) (22 +
2n+1)—2n+2e+1), (13)
while the corresponding normalized wave function in

momentum-space is obtained by finding the Fourier
transform of &P (r) as (Greiner, 2000):

ip
GYP (1) = L [® g=ipr ) GYP _ N r(n+‘1)r(£+s)
e (p) \/ﬁfo e g™ (r)dp V2m 2ar(E+etn+1)

: (14)
Wi (p) = =, e P i (dp =

NGYP T(+1)(a(n+2e+1)-inp)T(2+e) 1)
Vzm 2a2r(L+e4n+2) ’

The probability density for GYP is obtained by squaring
equation (7) which gives

p(r) = [p&P@)|* = Nas?(1 -

2
2g, 2n-1
)21 [p,f =g - 25)] . (16)
n=0,1=0
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Figure 2: Wave function plot in the ground state for GYP
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Figure 3: Wave function plot in the first excited state for
GYP
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Figure 4: Probability density plot in the ground state for GYP
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Figure 5: Probability density plot in the first excited state for
GYP

UNCERTAINTY
INFORMATION
The expectation values for the GYP are evaluated using the
following equations (Greiner, 2000):

PRINCIPLE AND FISHER

(M = [7 WS @) S (dr L (r?), =
W8P () r2 YSrP (rydr a17)

P = [ WS P2 PSP (dr (), = 0. (18)

On substituting equations (14), (15)into (17) and (18), then
simplify the integrals above for the ground and first excited

state,
(n=0, 1) yields

_ T@n+1)r(2e)(Hz(e+n)—H2e-1)

(T)O - >

4a2T(2e+2n+1)

(19)

1
8aZ(e+n+1)2T(2e+2n+2)

(r)1 =

r@n+1)re)(2(n+1)(2e+ 1)(17+£+1)(2£+2n+1)H2(€+,1)
+2(M+1)((M+1)((2n+3)+8e2+10(n+1)s) >
—2(m+1)(2e+1)(n+e+1)(2n+2e+1) (PO (28) +Y))

(20)

(7"2 )o =
T(2n+DI2e)(~Hz(e4m 1@ @) +v)2—p M 2e+2n+1)+p (D (2¢))
8a3T(2e+2n+1)

21)

where H denote the Harmonic number, () is digamma
function, ™ denote polygamma function and y is the
Euler-Mascheroni constant (Adamowski, 1965).
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The Fisher information for the generalized radial Yukawa
potential is evaluated by using the probability density
obtained for this system in equation (16) and then, analyze
via the Fisher information formula in equations (1) and (2).
The Fisher information for GYP in the spatial coordinate is
expressed as:

ISP = 4 [ [/ (1)) *ridr =
16a f_ll (1%) W W2 dv, v=1-2s, s =e 29 (22)

Therefore, substituting equation (7) into equation (22) gives
the following expression

ove
(YR
32a%Nr f—lli +(2)' (57 e+ n+2m BEV)
R AL

(23)

Due to the complicated form of the integral in equation (23)
for n-state, we shall be limited to studying few low-lying
state, that is, the ground and first excited state. The Fisher
information in spatial coordinate for GYP is obtained as
follows (Yanez, et al., 2008; Sanchez-Moreno, et al., 2011
and Guerrero, et al., 2010):

For the ground state, equation (23) becomes
167P (1) = 4anl'(2n-1)r(2e+1) (NSYP)2
0 - 0 5

r(2e+2n)
also, for the first excited state, we have

24
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177 (r) = BT (NEYP Y2, (25)
It is very complicated to obtain the Fisher information in
momentum coordinate IF¥F (p) analytically. Hence, we will
compute it numerically by finding the Fourier transform of
the position coordinate wave function in equation (7) , then,
substitute into equation (22) and simplify.
NUMERICAL RESULTS

Table 1: Numerical Results For Fisher Information in the
ground eigenstates for various values of a, with [=0, V, =
0.5, V/; = 1.0, min = minimum value for the Generalized
Yukawa Potential (GYP)

a I I, | LI, >36.0 | min(,l,)
0.01 | 0.08960 | 446.652 | 40.02002 36.0
0.02 [ 0.09507 | 421.566 | 40.07689 36.0

(5:031% 0.09973 | 402.772 | 40.16978 36.0
0.04 | 0.10360 | 389.012 | 40.30164 36.0
0.06 | 0.10667 | 379.477 | 40.47767 36.0
0.07 | 0.10893 | 373.674 | 40.70543 36.0
0.08 | 0.11040 | 371.337 | 40.99560 36.0
0.09 [ 0.11107 | 372.398 | 41.36113 36.0
0.10 [ 0.11093 | 376.967 | 41.81808 36.0
0.20 | 0.11000 | 385.353 | 42.38883 36.0
0.30 [ 0.05667 | 1262.05 | 71.51621 36.0
0.40 [ 0.08333 | 1101.25 | 91.77080 36.0
0.50 [ 0.35000 | 167.448 | 58.60680 36.0
0.60 | 0.75000 | 70.0530 | 52.53975 36.0
0.70 | 1.28333 | 39.0202 | 50.07579 36.0
0.80 | 1.95000 | 25.0028 | 48.75546 36.0
0.90 | 3.68333 | 12.8635 | 47.38052 36.0

Table 2: Numerical Results For Uncertainty Relation in the ground eigenstates for various values of a, with [=0, V, = 0.5,
V; = 1.0, min = minimum value for the Generalized Yukawa Potential (GYP)

a (r?) (r) A(r) (4r)? ®*) A(p) A(MA(p) | (Ar)*(Ap)* | min{(Ar)*(Ap)
>h/, }
0.01 | 111.663 | 9.64398 | 4.319334 | 18.6566 | 0.02240 | 0.149666 0.646459 | 0.41790 0.250000
0.02 | 105.391 | 9.36281 | 4.210616 | 17.7294 | 0.02377 | 0.154164 0.649127 | 0.42141 0.250000
0.03 | 100.693 | 9.14193 | 4.137404 | 17.1182 | 0.02493 | 0.157903 0.653308 | 0.43418 0.250000
0.04 | 97.2530 | 8.97159 | 4.094334 | 16.7634 | 0.02590 | 0.160935 0.658921 | 0.43403 0.250000
0.06 | 93.4185 | 8.75862 | 4.087184 | 16.7049 | 0.02723 | 0.165024 0.674488 | 0.44488 0.250000
0.07 | 92.8343 | 8.70929 | 4.120985 | 16.9826 | 0.02760 | 0.166132 0.684629 | 0.46872 0.250000
0.08 | 93.0995 | 8.69625 | 4.180279 | 17.4746 | 0.02777 | 0.166634 0.696575 | 0.48527 0.250000
0.09 | 94.2418 | 8.71992 | 4.266702 | 18.2049 | 0.02773 | 0.166533 0.710547 | 0.50482 0.250000
0.10 | 96.3383 | 8.78211 | 4.383240 | 19.2129 | 0.02750 | 0.165831 0.726878 | 0.52835 0.250000
0.20 | 315.513 | 14.4686 | 10.30399 | 106.172 | 0.01417 | 0.119024 1.226419 | 1.50447 0.250000
0.30 | 275312 | 13.1241 | 10.15236 | 103.070 | 0.02083 | 0.144338 1.465367 | 2.14695 0.250000
0.40 | 41.8620 | 5.42482 | 3.526092 | 12.4334 | 0.08750 | 0.295804 1.043032 | 1.08792 0.250000
0.50 | 17.5133 | 3.57460 | 2.176117 | 4.73546 | 0.18750 | 0.433013 0.942286 | 0.97892 0.250000
0.60 | 9.75505 | 2.69184 | 1.583997 | 2.50902 | 0.32083 | 0.566421 0.897209 | 0.80498 0.250000
0.70 | 6.25070 | 2.16609 | 1.248501 | 1.55877 | 0.48750 | 0.698212 0.871718 | 1.94611 0.250000
0.80 | 435788 | 1.81484 | 1.031600 | 1.06421 | 0.68750 | 0.829157 0.855370 | 1.09787 0.250000
0.90 | 3.21588 | 1.56279 | 0.879524 | 0.77354 | 0.92083 | 0.959600 0.843991 | 0.71232 0.250000
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Table 3: Numerical Results For Fisher Information in the first excited eigenstates for various values of a, with [=0, V, =
0.5, V; = 1.0, min = minimum value for the Generalized Yukawa Potential (GYP)

a I, I, I, >360 [ min(ll,)
0.01 | 0.064765 | 2736.54 177.2331 36.0
0.02 | 0.064000 | 2745.94 175.7402 36.0
0.03 | 0.059432 | 2919.82 173.5310 36.0
0.04 | 0.051062 | 3352.11 171.1644 36.0
0.05 | 0.038889 | 4393.56 170.8608 36.0
0.06 | 0.022914 | 8105.23 185.7200 36.0
0.07 | 0.003136 | 2093930 656.6146 36.0
0.08 | 0.022222 | 9944.06 220.9789 36.0
0.09 | 0.056173 | 3255.44 182.8672 36.0
0.10 | 0.098765 | 1770.79 174.8928 36.0
0.20 | 1.000000 | 170.590 170.5900 36.0
0.30 | 2.765430 | 61.8560 171.0584 36.0
0.40 | 5.395060 | 31.7561 171.3261 36.0
0.50 | 8.888890 | 19.2925 171.4889 36.0
0.60 | 13.24690 | 12.9538 171.5977 36.0
0.70 | 18.46910 | 9.29522 171.6743 36.0
0.80 | 24.55560 | 6.99362 171.7325 36.0
090 |31.50620 | 5.45217 171.7772 36.0

Table 4: Numerical Results For Uncertainty Relation in the first excited eigenstates for various values of a, with [=0, V, =
0.5, V; = 1.0, min = minimum value for the Generalized Yukawa Potential (GYP)

a (r?) (r) A(r) (Ar)? ®*) A(p) AMA®P) | (Ar)?(Ap)] min{(Ar)* (A
>N/, }
0.01 | 684.135 | 24.3656 | 9.51065 | 90.4501 | 0.01619 | 0.127245 | 1.210185 | 1.46443 0.250000
0.02 | 686.485 | 24.3930 | 9.56382 | 91.4639 | 0.01600 | 0.126491 | 1.209737 | 1.46346 | 0.250000
0.03 | 729.955 | 25.1147 | 9.96026 | 99.2068 | 0.01486 | 0.121893 | 1.214091 1.42963 0.250000
0.04 | 838.028 | 26.8056 | 10.9310 | 119.488 | 0.01277 | 0.112984 | 1.235033 | 1.52586 | 0.250000
0.05 | 1098.39 | 30.3730 | 13.2616 | 175.871 | 0.00972 | 0.098601 | 1.307615 | 1.79465 0.250000
0.06 | 2026.31 | 39.9130 | 20.8149 | 433.265 | 0.00573 | 0.075686 | 1.575400 | 2.48259 | 0.250000
0.07 | 52348.3 | 172.500 | 150.314 | 22592.0 | 0.00078 | 0.027999 | 4.208444 | 17.6218 | 0.250000
0.08 | 2486.02 | 42.4889 | 26.0904 | 680.708 | 0.00556 | 0.074536 | 1.944662 | 3.78477 | 0.250000
0.09 | 813.860 | 25.4090 | 12.9708 | 168.241 | 0.01404 | 0.118504 | 1.537097 | 2.36213 0.250000
0.10 | 442.698 | 19.0307 | 8.97385 | 80.5328 | 0.02469 | 0.157135 | 1.410104 | 1.98829 | 0.250000
0.20 | 42.6475 | 6.03208 | 2.50230 | 6.26149 | 0.25000 | 0.500000 | 1.251151 1.56528 | 0.250000
0.30 | 15.4640 | 3.64010 | 1.48784 | 2.21369 | 0.69136 | 0.831479 | 1.237109 | 1.53044 | 0.250000
0.40 | 7.93903 | 2.61021 | 1.06105 | 1.12581 | 1.34877 | 1.161363 | 1.232266 | 1.51849 | 0.250000
0.50 | 4.82313 | 2.03532 | 0.82498 | 0.68061 | 2.22222 | 1.490712 | 1.229812 | 1.51243 0.250000
0.60 | 3.23845 | 1.66818 | 0.67500 | 0.45562 | 3.31173 | 1.819815 | 1.228375 | 1.50891 0.250000
0.70 | 2.32381 | 1.41334 | 0.57121 | 0.32628 | 4.61728 | 2.148785 | 1.227396 | 1.50653 0.250000
0.80 | 1.74841 | 1.22608 | 0.49511 | 0.24513 | 6.13890 | 2.477680 | 1.226721 1.50488 | 0.250000
0.90 | 1.36304 | 1.08266 | 0.43691 | 0.19089 | 7.87655 | 2.806519 | 1.226194 | 1.50353 0.250000
DISCUSSION increasing potential parameter a, in the ground and first

We report the numerical values of the Fisher information
and uncertainty relations both in the position and momentum
spaces I, , I, (r?), (r), (p®), A(r)A(p) and their associated
uncertainty relations for generalized radial Yukawa
potential. The results in Tables (1) and (3) show that, the
position-space Fisher information /. increases with

excited states (n = 0,1) while the momentum space Fisher
information I, first increases and later decreases with
increasing potential parameter a. This implies that, the Fisher
information with large values have high accuracy in
predicting the localization of the particles in the atomic
system. Also, we have been able to verify that the Fisher-
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information-based-uncertainty relation (I.I, = 36.0) holds
for the potential model under study. In addition, we observed
from Tables (2) and (4) a squeezed phenomenon for some of
the screening parameter a in the momentum space p for the
ground state when a < 0.7, while in the first excited state, the
squeezed phenomenon (squeezed states) occurs in both
position » and momentum p when a > 0.6 and a < 0.2,
respectively. A state is defined to be squeezed if (Ar)> < 0.5
or (Ap)* < 0.5, where (Ay)? =(y*)—(y)*,y =1 or p
(Esquivel et al., 2000, Grassi, 2011). Our results also obey
the Heisenberg uncertainty relation A(r)A(p) = h/z for

GYP. Figures 2-4 demonstrate the variation of the wave
function and the probability densities with position r and
momentum p respectively, for the ground and first excited
states for some values of the screening parameter a.

CONCLUSION

In this article, we have presented the Fisher information and
uncertainty relations for the generalized radial Yukawa
potential in both the position and momentum spaces. The
Fisher information was calculated by utilizing the
probability density, which is the square of the wave function,
obtained through the exact solution of this system. The
validity of the Fisher-information based uncertainty relation
which is stronger version of Heisenberg uncertainty
principle have been verified to hold for this atomic model.
We found from our results that, for » = 0, 1, the position-
space Fisher information I. increases with increasing
potential parameter a, while the momentum-space Fisher
information I, first increases, and then decreases with
increasing potential parameter a. We have also observed that,
there exist a squeezed phenomenon in both position and
momentum space in the ground and first excited state for
some values of the potential parameter a. The squeezed in
position r is compensated for by an increase in the
momentum p and otherwise, such that, the Heisenberg
Uncertainty principle is satisfied for the atomic model as
displayed in the numerical results.
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