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ABSTRACT 

In the paper, the effects of radiation on two dimensional non-Newtonian Casson fluid flows over an exponentially shrinking 

sheet through a porous medium with heat generation and viscous dissipation are investigated. The governing high nonlinear 

partial differential equations, with the aid of similarity transformation are converted to nonlinear ordinary differential 

equations and then solved numerically using a shooting method with fourth order Runge-Kutta scheme. The effects of the 

controlling parameters on velocity and temperature profiles are illustrated graphically using MATLAB software. The result 

shows that the skin-friction coefficient and Nusselt number reduces with increase in the values of the radiation and suction 

parameter. Also, increase in the Casson and suction parameters leads to increase in the velocity distribution of the fluid and 

decrease in the temperature distribution of the fluid. 
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INTRODUCTION 

The advancement of science and technology has brought 

about keen interest in magnetohydrodynamic (MHD) flows 

over a stretching surface due to its wide range of applications 

in our everyday life. Theoretical and experimental 

researches are available for study. (Crane, 1970) worked on 

viscous fluid flow over a linearly stretching sheet. (Gupta 

and Gupta, 1977) investigated stretching sheet of heat and 

mass transfer with suction or blowing. Many researchers 

over time took their research further by investigating 

different models of exponentially stretching sheet like 

(Ekang et al., 2021).  Non-Newtonian fluids are gaining 

more ground because in modern industrial and engineering 

processes, many fluids display non-Newtonian dynamics 

and behaviour. Casson fluid which acts like elastic solids 

(e.g. human blood, honey, jelly, tomato sauce, etc.) is one of 

such non- Newtonian fluids. Solving analytically using 

Homotopy Analysis Method (HAM), (Animasaun et al., 

2016) worked on Casson fluid flow with variable thermo-

physical properties along an exponentially stretching sheet 

with suction and exponentially decaying internal heat 

generation. They concluded that an increase in the variable 

plastic dynamic viscosity parameter of Casson fluid 

corresponds to an increase in the velocity profile and a 

decrease in temperature profile. (Nadeem et al., 2013) 

studied 3D Casson fluid flow past a porous linearly 

stretching sheet; their findings show that the magnetic field, 

Casson fluid parameter and porosity parameter reduces 

the velocity profiles. (Sharada and Shankar, 2015) 

investigated effects of soret and dufour on Casson fluid over 

an exponentially stretching surface. From their work it was 

observed that temperature increases with increasing values 

of the dufour number and chemical reaction parameter while 

the velocity profile decreases. An increase in the Soret 

number increases the concentration profile and the boundary 

layer thickness. (Mukhopadhayay et al., 2013) looked into 

Casson fluid flow exponentially stretching permeable 

surface. They observed that increasing the values of the 

Casson parameter decreases the velocity profile and 

enhances the temperature profile. It was also observed that 

increase in the values of the suction parameter increases the 

skin-friction coefficient. Chemically reactive Casson fluid 

flow with hall current and dufour effect was studied by 

(Viyayaragavan and Karthikeyan, 2018). Their studies show 

that the velocity in the boundary layer region increases when 

the magnetic parameter, Schmidt number and chemical 

reaction parameter are increased. The temperature decreases 

with increase in Prandtl number and radiation parameter.  

 

 Boundary layer flow and heat transfer of Casson fluid over 

a porous linear stretching sheet with variable wall was 

handled by (Sankad and Maharudrappa, 2018). Recently, 

(Kumar et al., 2020) studied Casson fluid flow over an 

exponentially curved sheet with radiation effect. They 

concluded that friction heating contributed to fluid 

temperature rising. Also, that fluid velocity is a declining 

function of Casson and magnetic field parameters. MHD 

Casson fluid flow with multiple slip effects was investigated 

by (Jain and Parmar, 2018). 

Shrinking sheet literatures are available for study but limited 

when compared with stretching sheet yet it is also important. 

(Bhattacharyya, 2011) worked on an exponentially shrinking 

sheet. They observed that the temperature and the thermal 

boundary layer thickness decreases with Prandtl number, 

radiation parameter and heat sink parameter and the heat 

source parameter act oppositely. Stagnation point flow and 

heat transfer over an exponentially shrinking sheet was 

investigated by (Bhattacharyya and Vajravelu, 2012). It was 

highlighted that dual solutions exist even when the shrinking 

rate is smaller than the straining rate. (Bhattachryya and Pop, 

2011) considered boundary layer flow due to an 

exponentially shrinking vertical sheet with suction. From 

their analysis, it was observed that dual solutions for the flow 

field are obtained and the velocity at a point increase with 

the magnetic parameter for the first solution and decreases 

for the second solution.  

Porous stretching surfaces have many applications in 

petroleum industries, crystal fiber production, 

manufacturing processes; MHD power generators etc. 
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(Nadeem et al., 2012) investigated a Casson fluid flow using 

an exponentially shrinking sheet. Casson fluid through a 

porous medium over a stretching/shrinking sheet was 

discussed by (Rao and Sreenadh, 2017). It was observed that 

the boundary layer thickness reduces with increase in Casson 

parameter values. Recently, (Senge et al., 2021) investigated 

MHD flow over an exponentially stretching sheet embedded 

in a thermally stratified porous medium. 

The purpose of this present work is to unveil Casson fluid 

flow with heat generation and radiation effect through a 

porous medium of an exponentially shrinking sheet in the 

presence of viscous dissipation. The governing partial 

differential equations (PDEs) are converted to ordinary 

differential equations (ODEs) with the help of suitable 

similarity transformation. These obtained ODEs are solved 

using shooting method along with fourth order Runge-Kutta 

scheme. The resulting numerical values of the controlling 

parameters are demonstrated in graphs and discussed.  

To the best of the authors’ knowledge, no information is yet 

available for this exact research work. 

METHODS 

Mathematical Formulation  

We consider a two-dimensional, steady, electrically 

conducting and incompressible viscous flow over an 

exponentially shrinking sheet through a porous medium in 

the presence of a uniform magnetic field, radiation and heat 

source. The induced magnetic field is neglected under the 

approximation of the small Reynolds number. The sheet is 

situated at 𝑦 = 0 , with the flow being confined in  𝑦 > 0. 

Under the above assumptions, the continuity, momentum 

and energy equations may be written as: 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0          (1) 

 

𝑢
𝜕𝑢
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1

𝛽
)
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𝜗

𝑘∗ 𝑢   (2) 
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𝛽
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𝑄𝑜

𝜌𝐶𝑝
(𝑇 − 𝑇∞) −

1

𝜌𝐶𝑝

𝜕𝑞𝑟

𝜕𝑦
                     (3) 

 

where 𝑢  and 𝑣  are the components of velocity in 𝑥  and 𝑦 

directions respectively, 𝜗 =
𝜇

𝜌
  is the kinematic viscosity, 𝜌 

is the density, 𝛽 =
𝜇𝐵√2𝜋𝑐

𝑝𝑦
 is the Casson parameter, 𝑇 is the 

temperature, 𝛼 =
𝑘

𝜌𝐶𝑝
 is the thermal diffusivity, 𝐶𝑝  is the 

specific heat, 𝑞𝑟 is the radioactive heat flux, 𝑄𝑜 is the heat 

source coefficient, 𝜎 is the electrical conductivity, 𝐵(𝑥) =

𝐵𝑜𝑒
𝑥

𝐿  is the magnetic field where 𝐵𝑜 is the constant, 𝑘∗  is 

the permeability coefficient of porous medium.   

Using approximation of Rosseland for radiation, the 

radiative heat flux can be written as follows: 

𝑞𝑟 = −
4𝜎

3𝑘∗

𝜕𝑇4

𝜕𝑦
      (4) 

where 𝜎 is the Stefan-Boltzman constant and 𝑘∗  is the 

absorption coefficient. Using Taylor series to expand 𝑇 

about 𝑇4 and neglecting higher order terms, we can write: 

𝑇4 = 4𝑇∞
3𝑇 − 3𝑇∞

4         (5) 

Hence; 

𝜕𝑞𝑟

𝜕𝑦
 = −

16𝜎∗𝑇∞
3

3𝑘∗

𝜕2𝑇

𝜕𝑦2    … (6) 

Therefore the energy equation (eqn. 3) can be written as 

follows: 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
 = 𝛼

𝜕2𝑇
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𝜗
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(1 +

1

𝛽
) (

𝜕𝑢

𝜕𝑦
)2 +

𝑄𝑜

𝜌𝐶𝑝
(𝑇 − 𝑇∞) +

16𝜎∗𝑇∞
3

3𝜌𝐶𝑝𝑘∗

𝜕2𝑇

𝜕𝑦2     … (7) 

The rheological equation of state for an isotropic and 

incompressible flow of a Casson fluid is assumed to be as 

follows: 

𝜏𝑖𝑗 = {

2(𝜇𝐵  +  
𝑝𝑦

√2𝜋
)𝑒𝑖𝑗 ;    𝜋>𝜋𝑐

2(𝜇𝐵 +  
𝑝𝑦

√2𝜋𝑐
)𝑒𝑖𝑗 ;  𝜋<𝜋𝑐

                                       …  (8) 

Here 𝜇𝛽 is the Casson coefficient of viscosity or plastic 

dynamic viscosity of the non-Newtonian fluid, 𝜋 is the 

product of the component of deformation rate with itself 

(i.e. 𝜋 = 𝑒𝑖𝑗𝑒𝑗𝑖 ) where 𝑒𝑖𝑗   is the (𝑖, 𝑗)𝑡ℎ  component of the 

deformation rate, 𝜋𝑐  is the critical value of the product of the 

component of the rate of strain tensor with itself, 𝑃𝑦 =
𝜇𝛽√2𝜋

𝛽
 is the yield stress of the fluid, 𝜇 is the dynamic 

viscosity. According to (Aminasaun, 2015), in a case of 

Casson fluid (non-Newtonian) flow, where  𝜋 > 𝜋𝑐 , it is 

possible to say that  

𝜇 = 𝜇𝛽 +
𝑃𝑦

√2𝜋
            (9) 

Substituting the value of 𝑃𝑦  , eqn. (9) becomes 

𝜇 = 𝜇𝛽(1 +
1

𝛽
)                … (10) 

The kinematic viscosity of Casson fluid is now a function 

depending on plastic dynamic viscosity, density and Casson 

parameter (𝛽) 

ϑ =
𝜇𝛽

𝜌
(1 +

1

𝛽
)                          (11) 

The corresponding boundary conditions are as follows: 

𝑢 = −𝑢𝑤  𝑣 = 𝑉(𝑥)  𝑇 = 𝑇𝑤   at  𝑦 = 0 

𝑢 → 0, 𝑇 →  𝑇∞   as 𝑦 →  ∞    (12) 

Here 𝑢 = −𝑢𝑤 = 𝑎𝑒
𝑥

𝐿 is the shrinking velocity with 𝑎 as the 

shrinking constant, 𝑇𝑤 = 𝑇∞ + 𝑏𝑒
2𝑥

𝐿  is the temperature at 

the sheet, 𝑇∞ is the free stream temperature assumed to be 

constant, 𝐿 is the characteristics length,  𝑉(𝑥) = 𝑉𝑜𝑒
𝑥

2𝐿 is a 
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special type of velocity at the wall where 𝑉𝑜  is a constant, 

𝑉𝑜(𝑥) < 0 is the strength of the suction velocity and 𝑉𝑜(𝑥) >
0 is the strength of the blowing velocity. 

The continuity equation is satisfied by introducing the 

stream function 𝜓(𝑥, 𝑦) defined in its usual notation as 

𝑢 = 
𝜕𝜓

𝜕𝑦
   and  𝑣 = −

𝜕𝜓

𝜕𝑥
    (13) 

Now, introduce the similarity variable 𝜂 with the following 

similarity deformations; 

𝜓 =  √2𝑎𝜗𝐿𝑓(𝜂)𝑒
𝑥

2𝐿,   

𝜂 = 𝑦√
𝑎

2𝜗𝐿
𝑒

𝑥

2𝐿,   

𝑇 = 𝑇∞ + 𝑏𝑒
2𝑥

𝐿 𝜃(𝜂)    (14) 

 

𝑢 = 𝑎𝑒
𝑥

𝐿𝑓′(𝜂),  

𝑣 = −√
𝑎𝜗

2𝐿
𝑒

𝑥

2𝐿[𝑓(𝜂) + 𝜂𝑓′(𝜂)]  

By substituting the above equations (14) into the momentum 

and energy governing equations (eqn. 2 and 7), we will have 

the following transformation;   

(1 +
1

𝛽
)𝑓‴ + 𝑓𝑓″ − 2𝑓′2 − (𝑀 + 𝐾)𝑓′ = 0   (15) 

 
1

𝑃𝑟
(1 +

4

3
𝑅) 𝜃″ − 4𝜃𝑓′ + 𝜃′𝑓 + 2𝑄𝜃 + (1 +

1

𝛽
)𝐸𝑘𝑓″2 = 0

                                …    (16) 

 

Subject to the boundary conditions as follows: 

𝑓′(0) = −1,        𝑓(0) = 𝑆      𝜃(0) = 1       𝑎𝑡        𝜂 = 0  

𝑓′(𝜂) → 0,             𝜃(𝜂) → 0             𝑎𝑠            𝜂 → ∞  (17) 

 

Here, primes denote differentiation with respect to the 

similarity variable η and the        dimensionless parameters 

are as follows; 

𝑀 =
2𝐿𝜎𝐵0

2

𝜌
  is the magnetic parameter; 

𝐾 =
2𝜈𝐿

𝐾∗     is the permeability parameter; 

𝑅 =
4𝜎∗𝑇∞

3

𝑘𝑘∗     is radiation parameter; 

𝑄 =
𝑄0𝐿

𝐶𝑝𝑎𝜌𝑒
𝑥
𝐿

    is the heat source; 

𝐸𝑘 =
𝑎2

𝑏𝐶𝑝
      is the Eckert number;  

𝑆 = −𝑉𝑜√
2𝐿

𝑎𝑣
> 0     is suction parameter; 

𝑃𝑟 =
𝜇

𝑘
                  is the Prandtl number. 

The physical quantity of interest is the wall skin friction 

coefficient 𝐶𝑓 and Nusselt number 𝑁𝑢𝑥 defined respectively 

as follows: 

𝐶𝑓 =
𝜏𝑤

𝜌𝑈𝑤
2  ;                 𝑁𝑢𝑥 =

𝑥𝑞𝑤

𝑘(𝑇𝑤−𝑇∞)
            … (18) 

where 𝜏𝑤  is the shear stress along the exponentially 

shrinking sheet and 𝑞𝑤 is heat flux from the sheet and are 

defined as follows: 

𝜏𝑤 = (𝜇𝛽 +
𝑃𝑦

√2𝜋𝑐
)(

𝜕𝑢

𝜕𝑦
)𝑦=0; 𝑞𝑤 = −𝑘(

𝜕𝑇

𝜕𝑦
))𝑦=0   (19) 

 

Therefore, we get the wall skin friction coefficient and the 

local Nusselt number as described by (Zaib et al., 2016) as 

follows: 

(1 +
1

𝛽
) 𝑓″(0) = √

2𝐿

𝑥
 𝐶𝑓√𝑅𝑒𝑥   (20)

  

−𝜃′(0) = √
2𝐿

𝑥

𝑁𝑢𝑥

√𝑅𝑒𝑥
    (21) 

Here the local Reynolds number is given as: 

  𝑅𝑒𝑥 = 
𝑥𝑢𝑤

𝜈
   

 

Method of Solution 

We solve the dimensionless governing equations (15) and 

(16) subject to the corresponding boundary conditions (17) 

numerically using the shooting method along with fourth 

order Runge-Kutta technique. First, we define new variables 

for the equations as follows: 

𝑓1 = η , 𝑓2 = 𝑓 , 𝑓3 = 𝑓′,  𝑓4 = 𝑓″ ,  𝑓5 = 𝜃,  𝑓6 = 𝜃′  (22) 

The governing dimensionless coupled higher order nonlinear 

differential equations (15) and (16) as well as the boundary 

conditions (17) are transformed to a system of first order 

differential equations.  

𝑓1
′ = 1 

𝑓2
′ = 𝑓′ = 𝑓3 

𝑓3
′ = 𝑓″ = 𝑓4 

𝑓4
′
 = 𝑓‴ = [2𝑓′2 − 𝑓𝑓″ + (𝑀 + 𝐾)𝑓′] (1 +

1

𝛽
)⁄  (23) 

𝑓5
′
 = 𝜃′ = 𝑓6 

𝑓6
′𝜃″

= 𝑃𝑟 [4𝜃𝑓′ − 𝜃′𝑓 − 2𝑄𝜃 − (1 +
1

𝛽
) 𝐸𝑘𝑓″2] (1 +

4

3
𝑅)⁄  

 

Here, primes denote differentiation with respect to η and the 

boundary conditions are as follows; 

𝑓3(0) = −1,        𝑓2(0) = 𝑆      𝑓5(0)  1          𝑎𝑡        𝑓1 = 0 

𝑓3(𝜂) → 0,     𝑓5(𝜂) → 0      𝑎𝑠      𝑓1 → ∞   (24) 

 

𝑓4(0) = ε1 

𝑓6(0) = ε2  

 

Using the shooting method, the missing values, ε1and ε2 are 

required but no such values are given after the boundary 

conditions when non-dimensioned. Suitable guessed values 

are chosen and the integration is carried out. The calculated 

values for 𝑓′  and 𝜃  at 𝜂∞ = 10 are compared with the 

boundary conditions. The better estimation for ε1 and ε2 are 

obtained, IVP are solved by using the fourth order Runge-

Kutta technique with step size h = 0.2. The above procedure 

is repeated until result up to desired degree of accuracy 

0.00001 is obtained. From the numerical computation, ε1 is 

proportional to the skin-friction coefficient 𝑓″(0) and ε2 is 

proportional to Nusselt number −𝜃′(0). The results obtained 
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are presented in tables and MATLAB was used to plot the 

graphs and the main features are analyzed and discussed. 

 

RESULTS AND DISCUSSION 

The effects of the dimensionless governing parameters 

namely: Casson parameter (𝛽), Magnetic parameter (𝑀), 

Thermal radiation parameter (𝑅), Prandtl number (𝑃𝑟), Heat 

source (𝑄), Suction parameter (𝑆), Permeable parameter (𝐾) 

and Eckert parameter (𝐸𝑘) on the velocity and temperature 

distribution profiles are analyzed numerically using the 

method mentioned in the previous section. Numerical values 

were plotted into graphs using MATLAB varying the fluid 

parameters with basic at 𝑅 = 1.0, 𝑀 = 1.0, 𝑃𝑟 = 2.0, 𝑆 =
2.5, 𝐾 = 1.0, 𝐸𝑘 = 1.0, 𝛽 = 1.0, and 

𝑄 = 1.0.   
 

Figures 1 and 2 depict the effect of the Casson parameter on 

velocity and temperature distribution of the fluid. It is 

observed that as the values of the Casson parameter increase, 

the velocity increases, while the reverse is the case for the 

temperature distribution. 

 

 
Figure 1: Effect of Casson Parameter (β) on Velocity profile 
 

 
Figure 2: Effect of Casson Parameter (β) on Temperature 

profile. 
 

Figures 3 and 4 show how the velocity and the temperature 

profiles are affected by the magnetic parameter. It can be 

seen that an increase in the values of the magnetic parameter 

leads to an increase in the velocity distribution of the fluid 

while in the temperature profile, there is a decrease in the 

temperature distribution of the fluid. 

 
Figure 3: Effect of Magnetic Parameter (M) on Velocity 

profile 

 
Figure 4: Effect of Magnetic Parameter (M) on Temperature 

profile 

 

Figures 5 and 6 depict the effect of the suction parameter on 

velocity and temperature profiles. Increase in the values of 

the suction parameter leads to increase in the velocity 

distribution and decrease in the temperature distribution of 

the fluid. 

 
Figure 5: Effect of Suction Parameter (S) on Velocity profile 

 
Figure 6: Effect of Suction Parameter (S) on Temperature 

profile 

 

Figures 7 and 8 show the effect of the permeable parameter 

on velocity and temperature profiles. As the value of the 

permeable parameter is increased, the fluid has more spaces 

to flow, hence the increase in the velocity distribution of the 

fluid in the presence of suction. While the temperature 

distribution of the fluid decreases with an increase in the 

value of the permeable parameter. 

 
Figure 7: Effect of Permeability Parameter (K) on Velocity 

profile 
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Figure 8: Effect of Permeability Parameter (K) on 

Temperature profile 

 

Figure 9 highlights the effect of the heat source parameter on 

temperature profile. Increase in the value of the heat source 

parameter leads to increase in the temperature distribution of 

the fluid. 

 
Figure 9: Effect of Heat Source Parameter (Q) on 

Temperature profile 

Figure 10 depicts how the temperature profile is affected by 

the radiation parameter. The temperature distribution of the 

fluid decreases as the values of the radiation parameter 

increases. 

 
Figure 10: Effect of Radiation Parameter (R) on 

Temperature profile 

Figure 11 illustrates how the Eckert parameter affects the 

temperature profile. From the graph, increase in the Eckert 

parameter leads to decrease of the temperature distribution 

of the fluid. 

 
Figure 11: Effect of Eckert Parameter (Ek) on Temperature 

profile 

Table 1: The numerical values of 𝑓″(0) and −𝜃′(0) for 

different values of 𝑀 and 𝑆 

 

 

Table 1 represents values of skin-friction coefficient and 

Nusselt number for various values of: Magnetic parameter 

(𝑀) and suction parameter (𝑆). The values of the other non 

dimensionless parameters are kept constant at the basic 

level. Table 1 shows that increase in the values of the 

magnetic parameter leads to decrease in skin-friction 

coefficient and increase in the Nusselt number. While 

increase in the suction parameter leads to decrease in skin-

friction coefficient and the Nusselt number. 

 

CONCLUSION 

Two dimensional electrically conducting MHD flow was 

discussed in this research work. Similarity transformations 

were used for the conversion of nonlinear partial differential 

equations to nonlinear ordinary differential equations. 

Numerical solutions were carried out using shooting 

methods along with fourth order Runge-Kutta technique and 

graphical results for velocity and temperature profiles were 

obtained. The effects of various controlling parameters on 

the flow and heat transfer were observed from the graphs. 

The skin- friction coefficient, Nusselt number and the 

temperature distribution of the fluid are seen to reduce with 

enhancement in the values of the radiation parameter (𝑅) and 

suction parameter (𝑆). Momentum boundary layer thickness 

and the skin-friction coefficient increases while the Nusselt 

number decreases with increasing values of the magnetic 

parameter (𝑀). The velocity and temperature distribution of 

the fluid increases and decreases respectively as the values 

of the Casson parameter ( 𝛽 ) and suction parameter ( 𝑆 ) 

increases. 
 

Nomenclature 

𝑥 Distance along the surface 

𝑦 Distance perpendicular to the surface 

𝑢 Velocity along x-direction 

𝑣 Velocity along y-direction 

𝑔 Acceleration due to gravity 

𝐿  Reference length  

𝑇 Fluid Temperature 

𝑇𝑤 Surface Temperature  

𝑇∞ Ambient Temperature 

𝑄 Heat source parameter 

𝑄𝑜 Heat generation/absorption coefficient 

𝐶𝑓 Skin-friction coefficient 

𝑁𝑢𝑥 Nusselt number  

𝐾  Permeable parameter 

𝐾∗ Permeability of the porous medium 

𝐵0 Strength of the magnetic field 
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Ek=1.0

Ek=2.0

Ek=2.5

Ek=3.0

R = 1.0

M = 1.0

K = 1.0

S = 2.5

Q = 1.0

  = 1.0

Pr = 2.0

Ek

𝑴 𝑺 𝒇″(𝟎) −𝜽′(𝟎) 

1 2.5 0.1269 1.7875 

2 2.5 0.0671 2.7867 

3 2.5 0.0378 5.1429 

4 2.5 0.0220 17.5599 

1 2.6 0.1207 1.6769 

1 2.7 0.1147 1.5854 

1 2.8 0.1090 1.5143 
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𝐵 Magnetic field 

𝑞𝑤 Heat flux 

𝑞𝑟 Radiative heat flux 

𝜏𝑤 Shear stress 

𝑃𝑟  Prandtl number 

𝑅𝑒𝑥 Reynold number 

𝑐𝑝 Specific heat capacity 

𝑅  Radiation parameter 

𝑆   Suction parameter 

𝐸𝑘 Eckert parameter 

𝑀      Magnetic parameter 

𝑘         Coefficient of thermal conductivity 
 

Greek Symbols 

𝛽          Coefficient of thermal expansion 

𝜗          Kinematic viscosity 

𝜎          Electrical conductivity 

𝜌          Density 

𝜂          Similarity variable 

𝜓         Stream function 

𝜃          Non-dimensional temperature 

𝜇          Dynamic viscosity 

𝛼         Thermal diffusivity 

Subscript 

𝑤 Property at the surface 

∞ Property at ambient 
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