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ABSTRACT 

An elliptic membership function has been proposed in the literature for interval type-2 fuzzy logic system. In this paper, 

elliptic non- membership function is incorporated into the conventional elliptic membership function model to obtain elliptic 

interval type-2 intuitionistic fuzzy sets for the first time. The elliptic interval type-2 intuitionistic fuzzy logic system so 

formed is applied for the prediction of two benchmark non-linear systems and results compared with Gaussian interval type-2 

intuitionistic fuzzy logic system. Experimental results show that the elliptic interval type-2 intuitionistic fuzzy logic system 

outperforms the traditional Gaussian interval type-2 intuitionistic fuzzy logic system in the problem instances investigated.  
 

KEYWORD: Interval type-2 intuitionistic fussy sets, elliptic membership function, gradient descent, optimization, system 
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INTRODUCTION 

Fuzzy set (FS) of type-1 introduced by Zadeh (1965) has 

been used extensively for modelling uncertainty in 

applications until the introduction of type-2 FS in Zadeh 

(1975), which is an extension of the type-1 FS. Since then, 

there has been an upsurge in the use of type-2 FS to solve 

many real world problems. According to Mendel (2007), FS 

of type-1 has been known to be scientifically incorrect to 

model uncertainty because the membership function (MF) is 

precise once it has been obtained. Type-2 FSs are found to 

outperform type-1 FSs in many applications because type-2 

FSs have MFs that are both type-1 FSs (fuzzy). A 

technology that has boosted and paved the way for effective 

utilization of fuzzy logic systems is the marriage of fuzzy 

logic theory and artificial neural network. These 

combinations have been adopted by researchers to solve 

many real world problems in diverse domains and 

magnitude. Type-2 FSs with fuzzy MFs are known to possess 

additional design degrees of freedom, which give it an edge 

over the type-1 FSs with the possibility to directly model 

uncertainties better (Mendel and John, 2002). 
 

Although the classical FSs (T1 and T2) have made great 

impacts in the modelling of uncertainty in many 

applications, they however, still use only MFs to define the 

two states of a concept namely; degree of membership 

(DoM) and degree of non membership  (DoNM), defined by 

non-MF (NMF). In the case of classical FS, the NMF is 

complementary to MF, meaning that MF carries a dual 

representation and this may not be applicable in most real 

world situations. For certain problem cases, there may be 

some form of hesitation in trying to assign the MF or NMF 

values. Hence the need to separately specify NMF of an 

element such that 0 ≤ MF + NMF ≤  1. Thus, Atanassov 

(1986) generalized the classical FS and presented 

intuitionistic fuzzy set (IFS). The IFS has additional 

component called NMF which is defined separately from 

MF. Atanassov also defined a hesitation index such that MF 

and NMF are not always complementary, thus enabling 

hesitation. According to Atanassov (1986), one of the 

unique things about IFS is the presence of the hesitation 

degree. The only condition of IFS is that the sum of MF 

and NMF is in the range of 0 and 1, ∀x ∈ X. The IFS-

based models are often more appropriate in many cases 

where human opinions are elicited because IFS enables and 

captures hesitation occasioned by vague perception in 

human language representation. However, MFs and NMFs 

of IFS are precise; they may struggle with higher levels of 

uncertainty. In Atanassov and Gargov (1989), IFS is 

extended to interval valued intuitionistic fuzzy set (IVIFS) 

whose MFs and NMFs are fuzzy, thus capturing abundance 

of information and more fuzziness. For IVIFS, the condition 

is that the sum of the upper MF and upper NMF must lie 

between 0 and 1. In Eyoh et al., (2016), a new type of 

intuitionistic FS called interval type-2 intuitionistic FS 

(IT2IFS) is introduced where, unlike the IVIFS, the sum of 

the lower MFs and upper NMFs must not be greater than 1 

and the sum of the upper MFs and lower NMFs must not be 

greater than 1. These present IT2IFS as a different 

architecture from IVIFS. The interval type-2 intuitionistic 

fuzzy logic systems (IT2IFLSs) have found applications in 

many problem domains such as time series (Eyoh et al., 

2017, Luo et al., 2019), regression problems (Eyoh et al., 

2018a, Yuan and Chao, 2019) and identification and 

prediction problems (Eyoh et al., 2018b). 
 

An FS (Type-1 or Type-2) can be defined using different 

forms of MFs. These MFs are regarded as the basic building 

blocks of FLS and the shapes play important role in the 

overall performance of FLSs. A MF of type-2 is defined by 

the shape of the footprint of uncertainties (FOUs) formed by 

two type-1 MFs such as triangular, trapezoidal, Gaussian, 

bell-shaped, sigmoid, pi, z-shaped, etc. According to 

Kayacan et al., (2017), these listed MFs have some 

parameters that are coupled, especially those that are for the 

support and width of the MFs. In Khanesar et al., (2011a), a 

new type of MF called the elliptic MF is introduced for 

interval type-2 fuzzy sets (IT2FSs). With the elliptic MF, the 

parameters that define the width of uncertainty are decoupled 

from the parameters that specify the center and support of 
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the MFs of IT2FSs. This feature presents the elliptic MF as 

a unique MF amongst existing type-2 fuzzy MFs (Kayacan 

et al., 2017). 

Elliptic type-2 MF is derived from triangular MF and has been 

defined for interval type-2 fuzzy logic system (IT2FLS). As 

earlier stated, defining elliptic MF involves decoupling the 

uncertainty parameters from those that defined the width and 

center of the elliptic MF. According to Kayacan et al., 

(2017), uncertainty representation using elliptic MF is closer 

to the human way of thinking when compared to Gaussian or 

triangular MFs. This work therefore adopts elliptic MFs and 

NMFs, otherwise known as elliptic IT2IFSs in the prediction 

of some non-linear problems and compares its performance 

with those of Gaussian IT2IFSs. For elliptic IT2IFSs, the 

degrees of uncertainty are defined by varying parameters a1 

and a2 while those of the Gaussian are defined by varying the 

standard deviations. The Gaussian MF being a widely 

adopted MF for optimization problems is adopted for 

comparison.  

The elliptic MF of IT2FLS was first proposed in Khanesar et 

al., (2011a). The authors applied the new MF for the analysis 

of noise reduction property of IT2FLS. The authors noted that 

elliptic IT2FLS has better noise reduction property when 

compared to the type-1 FLS. Other type-2 FLSs have been 

defined using elliptic MFs with applications in several 

domains. For instance, Kayacan and Maslim (2016), 

employed elliptic type-2 fuzzy neural network for trajectory 

tracking control of quadrotor vertical take-off and landing 

unmanned aerial vehicles. The authors compared the 

performance of the type-2 elliptic MF with its type-1 and 

found to be better in terms of accuracy of prediction. 

Acikgoz and Sekkeli (2019) adopted a type-2 neuro-fuzzy 

controller defined using elliptic MFs to model solid state 

transformers. The designed system was compared with its 

type-1 counterpart and shown to perform better in terms of 

accelerating the dynamic response of the solid state 

transformer structure as well as enhancing its durability. 

Kayacan et al., (2017) applied IT2FS defined with elliptic 

MF for time series problems with acceptable performance. 

In Kayacan et al., (2018), the authors employed elliptic 

IT2FLS for the prediction of oil prices and for 3D trajectory 

tracking problem of a quadrotor. The authors concluded that 

the elliptic IT2FLS provided comparable results with 

triangular and Gaussian IT2FLSs.  In Khanesar et al., 

(2011b), the elliptic IT2FLS trained with Levenberg 

marquardt algorithm is adopted for the prediction of Mackey 

Glass time series with acceptable accuracy. Khanesar et al., 

(2015) proposed an IT2FLS that benefits from elliptic MFs 

to investigate the trajectory tracking problem of a magnetic 

rigid spacecraft. Results revealed that the elliptic IT2FLS 

provided better results in terms of a smaller steady state error 

and a faster transient response of the system  
 

BASIC DEFINITIONS 

Definition 1: Given a finite universe of discourse X, an 

IFS A∗ is a set with MFs µ and non MFs ν with some degree 

of hesitation π on the set definitions given as: 

A∗ = (< x, µA∗ (x), νA∗ (x) >|x ∈ X) : X → [0, 1]       (1) 

Definition 2: A MF denoted as µ is the degree to which an 

element, x 

belongs to a set, A∗, written as µA∗ (x) : X → [0, 1] 

Definition 3: A non-MF ν of an IFS A∗ is defined as the degree 

to which an element does not belong to a set written as νA∗ 

(x) : X → [0, 1] 

Definition 4: An hesitation index, π of an IFS is the degree 

of neutrality of an element 

x to a set A written as: πA∗ (x) = 1 − (µA∗ (x) + νA∗ (x)) 

such that X → [0, 1]. Obviously 

0 ≤ πA∗ (x) ≤ 1 

Definition 5: An interval type-2 intuitionistic fuzzy set 

(IT2IFS), A˜∗ on the universe of discourse X is a set with 

type-2 membership and type-2 non-MFs given as: 

A˜∗ = (< x, µ̃Ã∗  (x), ν̃ A˜∗ (x) > |x ∈ X)                            (2) 

Any system that adopts one or more IT2IFS in the antecedent 

or consequent parts of the rule base is known as interval 

type-2 intuitionistic fuzzy logic system (IT2IFLS). The 

IT2IFLS consists of the four modules namely: the 

intuitionistic fuzzifier, intuitionistic rule base, intuitionistic 

fuzzy inference engine and intuitionistic output processing. 

Figure 1 shows the overall structure of IT2IFLS. 
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Figure 1: Structure of IT2IFLS (Eyoh et al., 2022)

Layer 1: The first layer of the IT2IFLS structure is the input 

layer that passes input values to the fuzzification layer. 

 

Layer 2: The second layer is the fuzzification layer which 

translates the inputs values into IT2IFSs. The outputs from 

this layer are the degrees of membership and non-

membership. The intersection points form the hesitation 

indices. 

 

Layer 3: The third layer is the rule layer of the IT2IFLS 

which computes the firing strengths of the IF…THEN rules. 

In layer 4, the firing strengths calculated in Layer 3 are 

normalized. 

 

The last layer (Layer 5) is the output layer of IT2IFLS. The 

final output is calculated as the sum of the MF output and 

NMF output as in Eqn. (3). 

 

y = 
(1−𝛽) ∑ (𝑓𝑘

𝜇
+𝑓𝑘

𝜇
)𝑦𝑘

𝜇𝑀
𝑘=1

∑ 𝑓𝑘
𝜇𝑀

𝑘=1 +∑ 𝑓𝑘
𝜇𝑀

𝑘=1

  +    
𝛽 ∑ (𝑓𝑘

𝑣+𝑓𝑘
𝑣)𝑦𝑘

𝑣𝑀
𝑘=1

∑ 𝑓𝑘
𝑣𝑀

𝑘=1 +∑ 𝑓𝑘
𝑣𝑀

𝑘=1

  (3) 

 

k = (1, 2, …, M) are the number of IF…THEN rules. 

 

The output is a weighted average of each IF-THEN rule's 

output and as such does not require any defuzzification 

procedure. 𝑓𝑘
𝜇

, 𝑓𝑘
𝜇

,  𝑓𝑘
𝑣, 𝑓𝑘

𝑣,  are the lower membership, upper 

membership, lower non-membership and upper non-

membership firing strengths respectively. 𝛽 is the user 

defined parameter that determines the contribution of MF 

and NMF to the final outputs while 𝑦𝑘
𝜇

 and 𝑦𝑘
𝑣  are the 

consequent outputs for MFs and NMFs respectively.  
  

Elliptic Interval Type-2 Intuitionistic Fuzzy Set 

The elliptic MF so far has been defined for IT2FLSs with only 

MFs. For interval type-2 intuitionistic fuzzy sets, two elliptic 

fuzzy functions are defined: one for MF and the other for 

non-MF. For the MF: the upper and the lower MFs are 

specified. 

 

The elliptic upper MF is defined as follows: 

𝜇 = (1 − |
𝑥−𝑐

𝑑
|

𝑎1
)

1

𝑎1
(1 − 𝜋)                    (4) 

 

The elliptic lower MF is defined as follows: 

 

𝜇 = (1 − |
𝑥−𝑐

𝑑
|

𝑎2
)

1

𝑎2
(1 − 𝜋)                                           (5) 

 

Applying the same principles for Gaussian NMF, the elliptic 

NMF is obtained as follows:  

The elliptic upper NMF is defined as follows: 

𝑣 = (1 − 𝜋) − (1 − |
𝑥−𝑐

𝑑
|

𝑎2
)

1

𝑎2
              (6)                                   

  

The elliptic lower MF is defined as follows: 

𝑣 = (1 − 𝜋) − (1 − |
𝑥−𝑐

𝑑
|

𝑎1
)

1

𝑎1
                      (7) 

 

where c and d are the center and the width of the MF and 

NMF respectively. The parameters a1 and a2 determine the 

width of the uncertainty of the proposed MF and NMF and 

should be selected such that a1 > 1 and 0 < a2 < 1. Figure 2 

shows intuitionistic elliptic MF and NMFs when parameter 

a1= 1.2 and a2 = 0.9 while Figure 3 shows intuitionistic 

elliptic MF and NMFs when parameter a1= 1.6 and a2 = 0.6. 

      

 

Figure 2: Elliptic IT2IFS when 𝑎1 = 1.2 and 𝑎2 = 0.9 

 

Figure 3: Elliptic IT2IFS when a1 = 1.6 and a2 = 0.6 

 

When a1 and a2 are equal to 1, a triangular intuitionistic MF 

and NMF is formed as shown in Figure 4. 

 

Figure 4: IFS formed when a1 = 1 and a2 = 1 
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COMPUTATIONAL APPROACH 

Elliptic IT2IFLS Parameter Update using Gradient 

Descent 

In this section, the rules for the learning of IT2IFLS 

parameters using gradient descent (GD) approach are 

presented. GD-based approaches have been widely adopted 

in the literature for the update of the parameters of FLSs. The 

problems under investigation are optimization 

(minimization) problems and the purpose is to minimize the 

cost function. For a single output of IT2IFLS, the cost 

function is computed as: 

 

𝐸 =  
1

2
(𝑦𝑎 − 𝑦)2                               (8) 

where ya is the measured output and y is the output generated 

by the IT2IFLS model. The update rules based on GD are 

represented as in (9) to (14): 

𝑤𝑖𝑘(𝑡 + 1)  = 𝑤𝑖𝑘(𝑡) − 𝛾
∂𝐸

∂𝑤𝑖𝑘
    

𝑏𝑘(𝑡 + 1)  = 𝑏𝑘(𝑡) − 𝛾
∂𝐸

∂𝑏𝑘

𝑐𝑖𝑘(𝑡 + 1)  = 𝑐𝑖𝑘(𝑡) − 𝛾
∂𝐸

∂𝑐𝑖𝑘

𝑎1,𝑖𝑘(𝑡 + 1)  = 𝑎1,𝑖𝑘(𝑡) − 𝛾
∂𝐸

∂𝑎1,𝑖𝑘

𝑎2,𝑖𝑘(𝑡 + 1)  = 𝑎2,𝑖𝑘(𝑡) − 𝛾
∂𝐸

∂𝑎2,𝑖𝑘

𝑑𝑖𝑘(𝑡 + 1)  = 𝑑𝑖𝑘(𝑡) − 𝛾
∂𝐸

∂𝑑𝑖𝑘

 

 
where γ is the learning rate, w, b are the 

parameters of the consequent parts and c, d, a1, 

a2 are parameters of the antecedent parts. The consequent 

parameters of IT2IFLS are adjusted as follows:

 

 

∂𝐸

∂𝑤𝑖𝑘

=
∂𝐸

∂𝑦

∂𝑦

∂𝑦𝑘

∂𝑦𝑘

∂𝑤𝑖𝑘

= ∑  

𝑘

∂𝐸

∂𝑦
[

∂𝑦
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𝜇
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𝜈

∂𝑦𝑘
𝜈

∂𝑤𝑖𝑘

] 

= (𝑦(𝑡) − 𝑦𝑎(𝑡)) ∗ [(1 − 𝛽) (
𝑓𝑘

𝜇

∑  𝑀
𝑘=1 𝑓𝑘

𝜇
+∑  𝑀

𝑘=1 𝑓̅
𝑘
𝜇 +

𝑓̅
𝑘
𝜇

∑  𝑀
𝑘=1 𝑓𝑘

𝜇
+∑  𝑀

𝑘=1 𝑓̅
𝑘
𝜇)  +𝛽 (

𝑓𝑘
𝑣

∑  𝑀
𝑘=1 𝑓𝑘

𝑣+∑  𝑀
𝑘=1 𝑓𝑘

𝑣
¯ +

𝑓𝑘
𝑣
¯

∑  𝑀
𝑘=1 𝑓𝑘

𝑣+∑  𝑀
𝑘=1 𝑓𝑘

𝑣
¯ )] ∗ 𝑥𝑖   (15) 

 
∂𝐸

∂𝑏𝑘
=

∂𝐸

∂𝑦

∂𝑦

∂𝑦𝑘

∂𝑦𝑘

∂𝑏𝑘
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∂𝐸

∂𝑦
[

∂𝑦

∂𝑦𝑘
𝜇

∂𝑦𝑘
𝜇

∂𝑏𝑘
+

∂𝑦

∂𝑦𝑘
𝜈

∂𝑦𝑘
𝜈

∂𝑏𝑘
]  = (𝑦(𝑡) − 𝑦𝑎(𝑡)) ∗ [(1 − 𝛽) (

𝑓𝑘
𝜇

∑  𝑀
𝑘=1 𝑓𝑘

𝜇
+∑  𝑀

𝑘=1 𝑓̅
𝑘
𝜇 +

𝑓̅
𝑘
𝜇
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𝜇
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𝜇) 

 

+𝛽 (
𝑓𝑘

𝑣

∑  𝑀
𝑘=1 𝑓𝑘

𝑣+∑  𝑀
𝑘=1 𝑓𝑘

𝑣
¯ +

𝑓𝑘
𝑣
¯

∑  𝑀
𝑘=1 𝑓𝑘

𝑣+∑  𝑀
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𝑣
¯ )] ∗ 1      (16) 

where yk is the output of the kth rule. The premise parameters for IT2IFLS are computed as follows: 

   

∂𝐸
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The derivatives for the MFs are as follows:  

∂𝜇‾ 𝑖𝑘

∂𝑎1,𝑖𝑘
= (𝜋 − 1) (

1

𝑎1,𝑖𝑘
2 ln (1 − |

𝑥𝑖−𝑐𝑖𝑘

𝑑𝑖𝑘
|

𝑎1,𝑖𝑘

) × (1 − |
𝑥𝑖−𝑐𝑖𝑘

𝑑𝑖𝑘
|

𝑎1,𝑖𝑘

)

1

𝑎1,𝑖𝑘 +
1

𝑎1,𝑖𝑘
ln |

𝑥𝑖−𝑐𝑖𝑘

𝑑𝑖𝑘
| |

𝑥𝑖−𝑐𝑖𝑘

𝑑𝑖𝑘
|

𝑎1,𝑖𝑘

(1   |
𝑥𝑖−𝑐𝑖𝑘

𝑑𝑖𝑘
|

𝑎1,𝑖𝑘

)

1

𝑎1,𝑖𝑘
−1

)     (21)  

∂𝜇‾ 𝑖𝑘

∂𝑐𝑖𝑘
= (𝜋 − 1)

1

|𝑑𝑖𝑘|
sign (𝑥𝑖 − 𝑐𝑖𝑘) |

𝑥𝑖−𝑐𝑖𝑘

𝑑𝑖𝑘
|

𝑎1,𝑖𝑘−1

× (1 − |
𝑥𝑖−𝑐𝑖𝑘

𝑑𝑖𝑘
|

𝑎1,𝑖𝑘
)

1

𝑎1,𝑖𝑘
−1

                   (22 

∂𝜇‾ 𝑖𝑘

∂𝑑𝑖𝑘
= − ((𝜋 − 1)

12

|𝑑𝑖𝑘|
sign(𝑑𝑖𝑘)|𝑥𝑖 − 𝑐𝑖𝑘| |

𝑥𝑖−𝑐𝑖𝑘

𝑑𝑖𝑘
|

𝑎1,𝑖𝑘−1

× (1 − |
𝑥𝑖−𝑐𝑖𝑘

𝑑𝑖𝑘
|

𝑎1,𝑖𝑘
)

1

𝑎1,𝑖𝑘
−1

)               (23) 

∂𝜇𝑖𝑘

∂𝑎2,𝑖𝑘
= (𝜋 − 1) (

1

𝑎2,𝑖𝑘
2 ln (1 − |

𝑥𝑖−𝑐𝑖𝑘

𝑑𝑖𝑘
|

𝑎2,𝑖𝑘

) × (1 − |
𝑥𝑖−𝑐𝑖𝑘

𝑑𝑖𝑘
|

𝑎2,𝑖𝑘

)

1

𝑎2,𝑖𝑘 +
1

𝑎2,𝑖𝑘
ln |

𝑥𝑖−𝑐𝑖𝑘

𝑑𝑖𝑘
| |

𝑥𝑖−𝑐𝑖𝑘

𝑑𝑖𝑘
|

𝑎2,𝑖𝑘

× (1 − |
𝑥𝑖−𝑐𝑖𝑘

𝑑𝑖𝑘
|

𝑎2,𝑖𝑘

)

1

𝑎2,𝑖𝑘
−1

)          (24) 

(9) 

 

(10) 

 

(11) 

 

 

(12) 

 

(13) 

 

(14) 

(17) 

 

(18) 

 

 

(19) 

 

(20) 
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∂𝜇𝑖𝑘

∂𝑐𝑖𝑘
= (𝜋 − 1)

1

|𝑑𝑖𝑘|
sign (𝑥𝑖 − 𝑐𝑖𝑘) |

𝑥𝑖−𝑐𝑖𝑘

𝑑𝑖𝑘
|

𝑎2,𝑖𝑘−1

× (1 − |
𝑥𝑖−𝑐𝑖𝑘

𝑑𝑖𝑘
|

𝑎2,𝑖𝑘
)

1

𝑎2,𝑖𝑘
−1

     (25) 

∂𝜇𝑖𝑘

∂𝑑𝑖𝑘
= − ((𝜋 − 1)

1

|𝑑𝑖𝑘|
sign (𝑑𝑖𝑘)|𝑥𝑖 − 𝑐𝑖𝑘| |

𝑥𝑖−𝑐𝑖𝑘

𝑑𝑖𝑘
|

𝑎2,𝑖𝑘−1

× (1 − |
𝑥𝑖−𝑐𝑖𝑘

𝑑𝑖𝑘
|

𝑎2,𝑖𝑘
)

1

𝑎2,𝑖𝑘
−1

)    (26) 

The derivatives for the non-MFs are obtained in the same way thus:  

∂𝜈‾ 𝑖𝑘

∂𝑎2,𝑖𝑘
= −(𝜋 − 1) (

1

𝑎2,𝑖𝑘
2 ln (1 − |

𝑥𝑖−𝑐𝑖𝑘

𝑑𝑖𝑘
|

𝑎2,𝑖𝑘

) × (1 − |
𝑥𝑖−𝑐𝑖𝑘

𝑑𝑖𝑘
|

𝑎2,𝑖𝑘

)

1

𝑎2,𝑖𝑘  +
1

𝑎2,𝑖𝑘
ln |

𝑥𝑖−𝑐𝑖𝑘

𝑑𝑖𝑘
| |

𝑥𝑖−𝑐𝑖𝑘

𝑑𝑖𝑘
|

𝑎2,𝑖𝑘

× (1 − |
𝑥𝑖−𝑐𝑖𝑘

𝑑𝑖𝑘
|

𝑎2,𝑖𝑘

)

1

𝑎2,𝑖𝑘
−1

  (27) 

∂𝜈‾ 𝑖𝑘

∂𝑐𝑖𝑘
= − ((𝜋 − 1)

1

|𝑑𝑖𝑘|
sign (𝑥𝑖 − 𝑐𝑖𝑘) |

𝑥𝑖−𝑐𝑖𝑘

𝑑𝑖𝑘
|

𝑎2,𝑖𝑘−1

× (1 − |
𝑥𝑖−𝑐𝑖𝑘

𝑑𝑖𝑘
|

𝑎2,𝑖𝑘
)

1

𝑎2,𝑖𝑘
−1

)    (28) 

∂𝜈‾ 𝑖𝑘

∂𝑑𝑖𝑘
= ((𝜋 − 1)

12

|𝑑𝑖𝑘|
sign (𝑑𝑖𝑘)|𝑥𝑖 − 𝑐𝑖𝑘|

𝑥𝑖−𝑐𝑖𝑘

𝑑𝑖𝑘
|

𝑎2,𝑖𝑘−1

× (1 − |
𝑥𝑖−𝑐𝑖𝑘

𝑑𝑖𝑘
|

𝑎2,𝑖𝑘
)

1

𝑎2,𝑖𝑘
−1

)    (29) 

∂𝜈𝑖𝑘

∂𝑎1,𝑖𝑘
= −(𝜋 − 1) (

1

𝑎1,𝑖𝑘
2 ln (1 − |

𝑥𝑖−𝑐𝑖𝑘

𝑑𝑖𝑘
|

𝑎1,𝑖𝑘

) × (1 − |
𝑥𝑖−𝑐𝑖𝑘

𝑑𝑖𝑘
|

𝑎1,𝑖𝑘

)

1

𝑎1,𝑖𝑘  +
1

𝑎1,𝑖𝑘
ln |

𝑥𝑖−𝑐𝑖𝑘

𝑑𝑖𝑘
| |

𝑥𝑖−𝑐𝑖𝑘

𝑑𝑖𝑘
|

𝑎1,𝑖𝑘

× (1 − |
𝑥𝑖−𝑐𝑖𝑘

𝑑𝑖𝑘
|

𝑎1,𝑖𝑘

)

1

𝑎1,𝑖𝑘
−1

)  (30) 

∂𝜈𝑖𝑘

∂𝑐𝑖𝑘
= − ((𝜋 − 1)

1

|𝑑𝑖𝑘|
sign (𝑥𝑖 − 𝑐𝑖𝑘) |

𝑥𝑖−𝑐𝑖𝑘

𝑑𝑖𝑘
|

𝑎1,𝑖𝑘−1

× (1 − |
𝑥𝑖−𝑐𝑖𝑘

𝑑𝑖𝑘
|

𝑎1,𝑖𝑘
)

1

𝑎1,𝑖𝑘
−1

)    (31) 

∂𝜈𝑖𝑘

∂𝑑𝑖𝑘
= ((𝜋 − 1)

12

|𝑑𝑖𝑘|
sign (𝑑𝑖𝑘)|𝑥𝑖 − 𝑐𝑖𝑘|

𝑥𝑖−𝑐𝑖𝑘

𝑑𝑖𝑘
|

𝑎1,𝑖𝑘−1

× (1 − |
𝑥𝑖−𝑐𝑖𝑘

𝑑𝑖𝑘
|

𝑎1,𝑖𝑘
)

1

𝑎1,𝑖𝑘
−1

)    (32) 

   

EXPERIMENTAL STUDIES 

The elliptic IT2IFLS is proposed for non linear systems 

prediction and its performance is compared with Gaussian 

IT2IFLS with uncertain standard deviation. The parameters 

and the intervals adopted for the studies are as depicted in 

Table 1. The performance criterion adopted is the RMSE in 

order to assess the performance of both systems and is 

defined as:    

RMSE = √
1

𝑁
∑ (𝑦𝛼  −  y)𝑁

𝑖=1
2   (33) 

 

Table 1: Parameter boundaries for the Prediction Problems 

Elliptic IT2IFS MF /NMF Gaussian IT2IFS 

MF/NMF 

Parameter Boundary Parameter Boundary 

Center (c) [0, 1] Center (c) [0, 1] 

Width (d) [0.5, 1.30] Standard 

deviation (𝜎) 

[0, 1] 

a1 [1.1, 1.5] 𝜋 [0, 1] 

a2 [0.2, 1] 

𝜋 [0, 1] 

Mackey Glass Prediction Problem 

In this study, a benchmark Mackey-Glass prediction 

problem is analyzed which is as defined in equation (34). 

 
𝑑𝑥(𝑡)

𝑑𝑡
 = 

𝑎∗𝑥(𝑡− 𝜏)

1+ 𝑥(𝑡− 𝜏)𝑛 − 𝑏 ∗ 𝑥(𝑡)   (34) 

 

where a, b and n are real numbers, t is the current time and 

τ is a non-negative time delay constant. At τ ≤17, the 

Mackey-Glass tends to display a deterministic behaviour 

which turns chaotic when τ > 17. For this analysis, the inputs 

vector is given as: [x(t-18), x(t-12), x(t- 6), x(t)] with τ = 17 

while the target output is x(t + 6). For each input, two elliptic 

and Gaussian IT2IFSs are utilized.  

 

Table 2: Performance of elliptic and Gaussian IT2IFLSs on 

the prediction of Mackey-Glass 

 

IT2IFLS MF/NMF Train RMSE Test RMSE 

Elliptic IT2IFLS 0.0190 0.0130 

Gaussian IT2IFLS 0.0194 0.0163 

 

Figure 5: Actual and predicted outputs of Mackey-Glass 

time series data 

Lorenz time series 

The Lorenz time series has been introduced by Edward 

Lorenz (1963) and has contributed to the development of 

Chaotic time series prediction. The Lorenz equation is given 

in equation (35). The Lorenz model is a nonlinear dynamic 

system that demonstrates a long-term behavior of the Lorenz 

oscillator. The Lorenz model mathematical equation is as 

expressed below: 

𝑑𝑥(𝑡) 𝑑𝑡 =  𝜌[𝑦(𝑡)  −  𝑥(𝑡)] 
 𝑑𝑦(𝑡) 𝑑𝑡 =  𝑥(𝑡) [𝑟 −  𝑧(𝑡)]  −  𝑦(𝑡) 

𝑑𝑧(𝑡) 𝑑𝑡 =  𝑥(𝑡)𝑦(𝑡) –  𝑏𝑧(𝑡)  (35) 
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The commonly used initial conditions for parameters, σ, r 

and b take the values 10, 28 and 8/3 respectively. Data for 

the experiment is generated using the x, y and z-components 

(see Figure 6) of the Lorenz time series. Figure 7 is the 3-

dimensional phase space of Lorenz chaotic time series. A 

one step ahead prediction is analyzed using the input-output 

generating vector which consists of the present value and 

three last values: [x(t), x(t-1), x(t-2), x(t-3); x(t+1)], where 

x(t + 1) is the target. A total of 2500 data points are generated 

with 1500 used for training and the remaining 1000 instances 

for testing. 
 

 

Figure 6: Lorenz time series on x, y and z-axes. 

  

Figure 7: 3D-Lorenz attractor phase diagram 
 

Table 3: Performance comparison of IT2IFLS-Elliptic 

(Gaussian) on Lorenz time series (x - axis) 

IT2IFLS MF/NMF Train RMSE Test RMSE 

Elliptic IT2IFLS 0.0799 0.0515 

Gaussian IT2IFLS 0.1064 0.0691 
 

Table 4: Performance comparison of IT2IFLS-Elliptic 

(Gaussian) on Lorenz time series (y-axis) 

IT2IFLS MF/NMF Train RMSE Test RMSE 

Elliptic IT2IFLS 0.1368 0.0878 

Gaussian IT2IFLS 0.1830 0.1190 
 

Table 5: Performance comparison of IT2IFLS-Elliptic 

(Gaussian) on Lorenz time series (z-axis) 

IT2IFLS MF/NMF Train RMSE Test RMSE 

Elliptic IT2IFLS 0.0189 0.0508 

Gaussian IT2IFLS 0.0951 0.0618 

  

 

 

Figure 8: x-axis actual and predicted outputs using elliptic 

and Gaussian IT2IFLSs 

 

 

Figure 9: y-axis actual and predicted outputs using elliptic 

and Gaussian IT2IFLSs 

 

Figure 10: z-axis actual and predicted outputs using elliptic 

and Gaussian IT2IFLSs. 

 

DISCUSSION AND CONCLUSION 

Gaussian membership and non-MFs have been used 

extensively in fuzzy logic systems to solve problems 

involving parameter optimization in uncertain environments. 

In this paper, an elliptic membership and non-MFs are 

adopted for the prediction of two non-linear systems and the 

results compared with Gaussian membership and non MFs. 

Table 2 shows the RMSE of the prediction of Mackey Glass 

time series using elliptic and Gaussian IT2IFLSs while Figure 

5 shows the actual and the predicted outputs. From Table 2, 

the training RMSE of elliptic IT2IFLS is comparable with that 

of the Gaussian IT2IFLS, however, for the test RMSE, the 

elliptic IT2IFLS shows improved performance, an indication 

that elliptic IT2IFLS has lower error in terms of accuracy of 
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prediction in the test set which is not biased. Analysis is also 

conducted using the Lorenz time series, another widely used 

benchmark dataset. Shown in Tables 3, 4 and 5 are the results 

of prediction based on elliptic and Gaussian IT2IFLSs on the x, y 

and z-axes data of the Lorenz time series. As seen from 

Tables 3 to 5, the elliptic IT2IFLS provides lower RMSE for 

all the axes predictions. Figures 8, 9 and 10 are the actual 

and predicted outputs of Lorenz time series for x, y and z-

axes respectively of the first 500 instances. A closer look at 

the three figures shows that the elliptic IT2IFLS predictions 

follow the actual outputs more closely than those of the 

Gaussian IT2IFLS. In the overall, this study demonstrates 

that the elliptic IT2IFLS is more efficient in terms of error 

reduction and can be applied in any uncertain environment 

where accuracy is paramount.  

In the future, we intend to adopt other learning algorithms 

(extended Kalman filter, simulated annealing) and real world 

data to test the efficiency of the two fuzzy models. 
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