
Open Access article published under the terms of a  
Creative Commons license (CC BY). 

http://wojast.org 

Udoenoh et al: Global Stability Analysis of Transmission Dynamics in a    
          Compartmental Model of Coronavirus Disease with Environmental  

                         Reservoirs. https://dx.doi.org/10.4314/WOJAST.v15i1.55    

 

World Journal of Applied Science and Technology, Vol. 15 No. 1 (2023) .55 – 60   55 

GLOBAL STABILITY ANALYSIS OF TRANSMISSION DYNAMICS IN A COMPARTMENTAL  

MODEL OF CORONAVIRUS DISEASE WITH ENVIRONMENTAL RESERVOIRS 

 

UDOENOH, N. R.1*, JOSHUA, E. E.2, UDO, U. M.3 
1Department of Mathematics, University of Uyo, Uyo. Akwa Ibom state. Nigeria. 
2Department of Mathematics, University of Uyo, Uyo. Akwa Ibom state. Nigeria. 

3Department of Mathematics, Nigeria Maritime University, Delta state. Nigeria. 

*nsikakudoenoh@uniuyo.edu.ng 

 

ABSTRACT 

This work proposes and analyzes a non-linear deterministic model which describes the outbreak of Coronavirus disease with 

fomites (environmental reservoirs) propagating the spread of the infection in human population. Suitable Lyapunov functions 

are constructed to demonstrate the Global Asymptotic Stability (GAS) of both the Endemic Equilibrium (EE) and Disease 

Free Equilibrium (DFE) of the system. The EE was also found to be epidemiologically relevant when the basic reproduction 

number of new infections is greater than unity. 
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INTRODUCTION 

In Wuhan, central China, a city of 11 million people, a new 

deadly respiratory infection outbreak was reported late 

December, 2019. The novel COVID-19 (as it was eventually 

named) has so far ravaged the world for nearly three years 

now and has shown no signs of completely disappearing 

anytime soon. In fact, recent reports from the World Health 

Organization (WHO) and several independent researches 

verify the emergence of new strands of the deadly infectious 

disease continuously spreading even further to more 

geographical locations on the planet (Hossain et al., 2021; 

WHO, 2022a). Casualty figures worldwide, currently totals 

6,287,117 as at May 31, 2022 with around 526,558,033 

confirmed infection cases and counting (WHO, 2022b). The 

Coronavirus disease is one of the many respiratory infections 

in the Severe Acute Respiratory Syndrome (SARS) family. 

COVID-19 also known as Severe Acute Respiratory 

Syndrome Coronavirus 2 (SARS-CoV-2) is only the third 

zoonotic transmitted human coronavirus in recent times 

(Zhou et al., 2020), preceded by SARS-CoV-1 and Middle 

East Respiratory Syndrome Coronavirus (MERS-CoV) 

outbreaks of the year 2002 and 2012 respectively (Drosten 

et al., 2003; Peiris et al., 2003; Zaki et al., 2012). 

Specifically, SARS-CoV-2 is the virus that causes the 

respiratory illness responsible for the so called COVID-19 

pandemic today. A typical symptomatic infected individual 

can go from mere dry coughs, running high fevers to 

experiencing breathing difficulties, multiple organ failures 

and eventually death in a matter of days. Owing to the 

severity of the outbreak, the WHO declared it a public health 

emergency of international concern January 30, 2020 and 

subsequently a pandemic on March 11, barely two months 

later. There are a few conflicting theories on the possible 

origins of the virus, however its genetic similarity to bat-

borned coronaviruses suggest that its origins may not be far 

from human-bat interactions of some sort. Being a highly 

contagious single-stranded RNA virus, human to human 

transmission occurs when around 200 to 800 infectious 

SARS-CoV-2 virions are passed on. Like most respiratory 

infections, coronavirus spreads rapidly via respiratory 

droplets from infected individuals either during voluntary 

acts such as speaking, singing or even during involuntary 

actions such as sneezing, coughing and so on. These droplets 

being naturally defined as aerosols vary in their mid-air 

suspension lifetime according to size. Efforts to curb the 

spread of the virus have seen multiple mitigation measures 

including community lockdown, social distancing, face 

masking, vaccination, quarantine of infected individuals and 

so on. Some of these measures have affected the global 

economy in diverse ways. However, containing the outbreak 

and easing the spread of the virus is a task that the human 

society as a whole must tackle head-on and urgently too. The 

transmission of infectious diseases is a complicated 

diffusion process occuring in susceptible populations. 

Numerous factors play key roles in the said diffusion, from 

population growth rate to seasonal migration as a result of 

natural or unnatural causes. Environmental reservoirs are 

one of such factors which this work is focused on. These 

include different types of surfaces that can hold droplets on 

contact with infected individuals which are then picked up 

by unsuspecting susceptibles on contact with same surfaces. 

Examples of environmental reservoirs for Coronavirus 

spread include door knobs, bus rails, table surfaces, shared 

clothing etc. Thus motivated by some the classical 

techniques in Dénes and Röst (2016), Gao et al. (2018), and 

Korobeinikov (2006), we propose and analyze an eco-

epidemiological compartmental model with the disease 

infection spread via direct contacts and environmental 

reservoirs. In a nutshell, this work attempts to describe the 

outbreak and spread of coronavirus disease by highlighting 

the role fomites in the transmission dynamics. Global 

asymptotic stability analysis of both the endemic 

equilibrium and disease free equilibrium of the system is 

then demonstrated using suitable Lyapunov functions. 

Epidemiologically relevant thresholds for the basic 

reproduction number of new infections are noted and its 

connection to fomites presented. 

 

Model Formulation 

Dynamical systems whether physical, biological or social 

may be expressed conveniently or modeled in the form of 

differential equations. These equations provide vital insight 

into the overall behaviour of a system if they are formulated 

with underlying factors and assumptions governing the 

system. Our model in this work, is based on SEIFR system 

of 𝑁(𝑡) size of individuals at time 𝑡 where individuals are 
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classified into different compartments: Susceptible (𝑡) , 

Exposed 𝐸(𝑡) , Infectious 𝐼(𝑡), and Recovered 𝑅(𝑡), while 

Fomites 𝐹(𝑡), is the class used to capture the contributions 

to the spread of the virus due to environmental reservoirs. 

An individual becomes infected when in contact with the 

virus through infected persons or infected surfaces 

(formites). The model (1) below is a nonlinear system of 

equations describing Covid-19 outbreak with all parameters 

as described in the Table 1. 

𝑑𝑆

𝑑𝑡
= Λ − (𝛼𝐼 + 𝛽𝐸 + 𝛾𝐹)𝑆 − 𝜇𝑆  

𝑑𝐸

𝑑𝑡
= (𝛼𝐼 + 𝛽𝐸 + 𝛾𝐹)𝑆 − (𝜇 + 𝛿 + 𝛽𝑒)𝐸   

𝑑𝐼

𝑑𝑡
= 𝛽𝑒𝐸 − (𝜇 + 𝛿 + 𝜎)𝐼          (1) 

𝑑𝐹

𝑑𝑡
= 𝜑𝑒𝐸 + 𝜑𝑖𝐼 − 𝜂𝐹   

𝑑𝑅

𝑑𝑡
= 𝜎𝐼 − 𝜇𝑅  

subject to the initial conditions: 

𝑆(0) = 𝑆0 ≥ 0, 𝐸(0) = 𝐸0 ≥ 0, 𝐼(0) = 𝐼0 ≥ 0, 𝑅(0) =
𝑅0 ≥ 0 and 𝐹(0) = 𝐹0 ≥ 0. 

Table 1: Parameters and their biological/ecological meaning 

Symbol Biological/Ecological meaning  

𝛬 Per Capita inflow rate of humans  

𝛼 Rate of individuals upon contact with 

infectious person becomes 

 

 infected with Covid-19  

𝛽 Rate of individuals upon contact with 

exposed person becomes 

 

 infected with Covid-19  

𝛾 Rate of individuals upon contact with 

Fomites becomes infected 

 

 with Covid-19  

𝛽𝑒 Rate of exposed individuals becoming 

infectious 

 

𝜎 Fraction of infectious individuals upon 

effective treatment who are 

 

 successfully recovered  

𝜇 Natural death rate  

𝛿 Covid-19 induced death rate  

𝜂 Rate of decontamination of Coronavirus 

from the Fomites 

 

𝜑𝑒 The rate at which exposed individuals 

contribute Coronavirus to 

 

 the Fomites  

𝜑𝑖 The rate at which infectious individuals 

contribute Coronavirus to 

 

It is trivial to show that 𝑆, 𝐸, 𝐼, 𝑅 ≥ 0 and are all ultimately 

bounded by 
𝛬

𝜇
 and also, 0 ≤ 𝐹 ≤

𝛬(𝜑𝑒+𝜑𝑖)

𝜂𝜇
 , showing that the 

system of equations of the model (1) has unique solution 

and hence well-posed on the set; 

𝛤 : = {(𝑆, 𝐸, 𝐼, 𝐹, 𝑅) ∈ ℝ+
5 ; 0 ≤ 𝑁 ≤

𝛬

𝜇
,  0 ≤ 𝐹 ≤

𝛬(𝜑𝑒 + 𝜑𝑖)

𝜂𝜇
,  ℝ+ = [0, ∞)} 

Equilibrium Analysis 

Disease Free Equilibrium 

The disease-free equilibrium point, 𝑒0, is given by; 

𝑒0 = (𝑆0, 0,0,0,0) = (
𝛬

𝜇
, 0,0,0,0)                 (2) 

 

Basic Reproduction Number 

Consider the two vectors ℱ𝑖 = (
(𝛼𝐼 + 𝛽𝐸 + 𝛾𝐹)𝑆

0
0

)  

and 𝒱𝑖 = (

(𝜇 + 𝛿 + 𝛽𝑒)𝐸

−𝛽𝑒𝐸 + (𝜇 + 𝛿 + 𝜎)𝐼
−𝜑𝑒𝐸 − 𝜑𝑖𝐼 + 𝜂𝐹

) 

 

The Jacobians of ℱ𝑖 and 𝒱𝑖 w.r.t 𝐸, 𝐼, 𝐹 are 

 ℱ = (
𝛽𝑆 𝛼𝑆 𝛾𝑆
0 0 0
0 0 0

) and 𝒱 =

(

(𝜇 + 𝛿 + 𝛽𝑒) 0 0

−𝛽𝑒 (𝜇 + 𝛿 + 𝜎) 0
−𝜑𝑒 −𝜑𝑖 𝜂

) respectively, and thus, 

we have 

𝒱−1 =

1

𝜂(𝜇+𝛿+𝛽𝑒)(𝜇+𝛿+𝜎)
(

𝜂(𝜇 + 𝛿 + 𝜎) 0 0

𝜂𝛽𝑒 𝜂(𝜇 + 𝛿 + 𝛽𝑒) 0

ϱ 𝜑𝑖(𝜇 + 𝛿 + 𝛽𝑒) 𝜛

) 3) 

where ϖ = (𝜇 + 𝛿 + 𝛽𝑒)(𝜇 + 𝛿 + 𝜎) and 𝜚 = 𝜑𝑒(𝜇 + 𝛿 +
𝜎) + 𝛽𝑒𝜑𝑖 

⇒ ℱ𝒱−1(𝑒0) =
1

𝜂(𝜇+𝛿+𝛽𝑒)(𝜇+𝛿+𝜎)
(

𝜃 𝜗 𝜙
0 0 0
0 0 0

)     (4) 

where 𝜃 = 𝛽𝜂(𝜇 + 𝛿 + 𝜎)𝑆0 + 𝛼𝜂𝛽𝑒𝑆0 + 𝛾[𝜑𝑒(𝜇 + 𝛿 +
𝜎) + 𝛽𝑒𝜑𝑖]𝑆0,  

𝜗 = [𝛼𝜂(𝜇 + 𝛿 + 𝛽𝑒) + 𝛾𝜑𝑖(𝜇 + 𝛿 + 𝜎)]𝑆0  

and  𝜙 = 𝛾(𝜇 + 𝛿 + 𝛽𝑒)(𝜇 + 𝛿 + 𝜎)𝑆0 

 

The characteristic equation ∣ ℱ𝒱−1(𝑒0) − 𝜆𝐼 ∣= 0 implies 

𝜆2[
𝛽𝜂(𝜇+𝛿+𝜎)𝑆0+𝛼𝜂𝛽𝑒𝑆0+𝛾[𝜑𝑒(𝜇+𝛿+𝜎)+𝛽𝑒𝜑𝑖]𝑆0

𝜂(𝜇+𝛿+𝛽𝑒)(𝜇+𝛿+𝜎)
− 𝜆] = 0  (5) 

Therefore, the basic reproduction number ℛ0, is, 

 

ℛ0 =
𝛬[(𝛽𝜂+𝛾𝜑𝑒)(𝜇+𝛿+𝜎)+(𝛼𝜂+𝛾𝜑𝑖)𝛽𝑒]

𝜇𝜂(𝜇+𝛿+𝛽𝑒)(𝜇+𝛿+𝜎)
    (6) 

which may also be written as ; 

ℛ0 =
𝛽𝛬

𝜇(𝜇+𝛿+𝛽𝑒)
+

𝛼𝛽𝑒𝛬

𝜇(𝜇+𝛿+𝜎)(𝜇+𝛿+𝛽𝑒)
+

𝛾𝛬[𝜑𝑒(𝜇+𝛿+𝜎)+𝛽𝑒𝜑𝑖]

𝜇𝜂(𝜇+𝛿+𝜎)(𝜇+𝛿+𝛽𝑒)
  7) 

where the first two terms in (7) reflect the contributions 

through the two transmission routes within humans (exposed 

to susceptibles and infected to susceptibles), while the last 

term captures the contributions via the fomites. 
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Existence of Endemic Equilibrium 

The Endemic equilibrium point, 𝑒∗ = (𝑆∗, 𝐸∗, 𝐼∗, 𝐹∗, 𝑅∗) is 

obtained by setting the equations of the model to zero and 

solving them together to get: 

𝑆∗ =
𝛬

𝜇ℛ0
,  𝐸∗ =

𝛬

(𝜇+𝛿+𝛽𝑒)
(1 −

1

ℛ0
) ,

 𝐼∗ =
𝛬𝛽𝑒

(𝜇+𝛿+𝛽𝑒)(𝜇+𝛿+𝜎)
(1 −

1

ℛ0
) ,

𝑅∗ =
𝜎𝛽𝑒

𝜇(𝜇+𝛿+𝜎)
(1 −

1

ℛ0
)  and,

𝐹∗ =
1

𝜂
{

𝜑𝑒

(𝜇+𝛿+𝜎)
+

𝜑𝑖𝛽𝑒

(𝜇+𝛿+𝛽𝑒)(𝜇+𝛿+𝜎)
} (1 −

1

ℛ0
)

   (8) 

Obviously, the endemic equilibrium exists and is 

epidemiologically relevant if ℛ0 > 1. It also collapses to 𝑒0 

when ℛ0 = 1. Our attention will now be directed towards 

obtaining the conditions for global stability of the system 

equilibria. Several authors have analyzed and studied the 

global behaviour of epidemiological models (Dénes and 

Röst, 2016; Gao et al., 2018; Khan et al., 2015; 

Korobeinikov, 2006; Kyrychko and Blyuss, 2005). The 

approach for analyzing classical SIR epidemic models is 

quite similiar and applicable to SEIR, SEIS, SVEIR, and a 

number of other compartmental variants (Hethcote, 2000). 

Proposition 1.0  

If ℛ0 < 1, then the DFE of system (1) is globally 

asymptotically stable. 

Proof. We will proceed by constructing a suitable Lyapunov 

function. We collapse the equations of the system to just 

three revelant classes namely 𝑆, 𝐸, and 𝐼. It is verifiable that 

if the DFE for 𝑆𝐸𝐼 is globally asymptotically stable, then 

with 𝐹(𝑡) and 𝑅(𝑡) → 0, the DFE for 𝑆𝐸𝐼𝐹𝑅 model is also 

globally asymptotically stable (Martcheva, 2015). Now, Let 

𝑉 be a Lyapunov function on ℝ+
3  which clearly belongs to 

the positive orthant. Assuming it is given by; 

𝑉 = 𝑚(𝑆 − 𝑆∗ − 𝑆∗ln
𝑆

𝑆∗) +
1

(𝜇+𝛿+𝛽𝑒)
𝐸 +

1

𝛽𝑒
𝐼  (9) 

where 𝑚 is a positive real number yet to be determined and 

𝑆∗ =
𝛬

𝜇
. It is clear that 𝑉 = 0 at the DFE. To see that 𝑉 > 0 

∀ (𝑆, 𝐼, 𝐸) different from the 𝐷𝐹𝐸, it suffices to note that 

the first term of 𝑉 which may be written as; 

𝑚𝑆∗ (
𝑆

𝑆∗ − 1 − ln
𝑆

𝑆∗)  is strictly positive 

for instance a function ℎ(𝑥) = 𝑥 − 1 − ln𝑥 has a global 

minimum at 𝑥 = 1 i.e. ℎ(1) = 0 and thus positive 

everywhere else for 𝑥 > 0 and not 1. The last two terms of 

𝑉 are also clearly positive. Thus 𝑉 is positive definite on the 

entire space and can be shown to be radially unbounded (i.e. 

𝑉(𝑥) → ∞ if ||𝑥|| → ∞). We now take its derivative w.r.t. 𝑡. 

𝑉′ = 𝑚(1 −
𝑆∗

𝑆
)𝑆′ +

1

(𝜇 + 𝛿 + 𝛽𝑒)
𝐸′ +

1

𝛽𝑒
𝐼′ 

𝑉′ = 𝑚(1 −
𝑆∗

𝑆
)[𝛬 − (𝛼𝐼 + 𝛽𝐸 + 𝛾𝐹)𝑆 − 𝜇𝑆] +

1

(𝜇 + 𝛿 + 𝛽𝑒)
[(𝛼𝐼 + 𝛽𝐸 + 𝛾𝐹)𝑆 − (𝜇 + 𝛿 + 𝛽𝑒)𝐸] +

1

𝛽𝑒

[𝛽𝑒𝐸 − (𝜇 + 𝛿 + 𝜎)𝐼]
 

𝑉′ = 𝑚𝛬 − 𝑚𝛼𝑆𝐼 − 𝑚𝛽𝑆𝐸 − 𝑚𝛾𝑆𝐹 − 𝑚𝜇𝑆 −
𝑚𝛬2

𝜇𝑆
+

𝑚𝛼𝛬𝐼

𝜇
+

𝑚𝛽𝛬𝐸

𝜇
+

𝑚𝛾𝛬𝐹

𝜇
+ 𝑚𝛬 +

𝛼

(𝜇 + 𝛿 + 𝛽𝑒)
𝑆𝐼 +

𝛽

(𝜇 + 𝛿 + 𝛽𝑒)
𝑆𝐸 +

𝛾

(𝜇 + 𝛿 + 𝛽𝑒)
𝑆𝐹 −

(𝜇 + 𝛿 + 𝜎)

𝛽𝑒

𝐼

𝑉′ = 2𝑚𝛬 + [
𝛼

(𝜇 + 𝛿 + 𝛽𝑒)
𝑆𝐼 +

𝛽

(𝜇 + 𝛿 + 𝛽𝑒)
𝑆𝐸 +

𝛾

(𝜇 + 𝛿 + 𝛽𝑒)
𝑆𝐹

−𝑚𝛼𝑆𝐼 − 𝑚𝛽𝑆𝐸 − 𝑚𝛾𝑆𝐹] − 𝑚𝜇𝑆 −
𝑚𝛬2

𝜇𝑆
+

𝑚𝛼𝛬𝐼

𝜇
+

𝑚𝛽𝛬𝐸

𝜇
+

𝑚𝛾𝛬𝐹

𝜇
−

(𝜇 + 𝛿 + 𝜎)

𝛽𝑒

𝐼                                                                              (10)

 

by choosing 𝑚 =
1

(𝜇+𝛿+𝛽𝑒)
, the second term of (10) 

vanishes and then we collect the remaining terms as 

follows; 

 

𝑉′ = −
𝛬

(𝜇 + 𝛿 + 𝛽𝑒)
(

𝛬

𝜇𝑆
+

𝜇𝑆

𝛬
− 2) +

[
𝛼𝛽𝑒𝛬

𝜇(𝜇 + 𝛿 + 𝛽𝑒)(𝜇 + 𝛿 + 𝜎)
(1 +

𝛽𝐸

𝐼
+

𝛾𝐹

𝐼
) − 1]

(𝜇 + 𝛿 + 𝜎)

𝛽𝑒
𝐼

 

𝑉′ = −
𝛬

(𝜇+𝛿+𝛽𝑒)
(

𝛬

𝜇𝑆
+

𝜇𝑆

𝛬
− 2) + [(ℛ0 − 𝜅) (1 +

𝛽𝐸

𝐼
+

𝛾𝐹

𝐼
) − 1]

(𝜇+𝛿+𝜎)

𝛽𝑒
𝐼
(11) 

 

where 𝜅 =
𝛽𝛬

(𝜇+𝛿+𝛽𝑒)
+

𝛾𝛬[𝜑𝑒(𝜇+𝛿+𝜎)+𝛽𝑒𝜑𝑖]

𝜇𝜂(𝜇+𝛿+𝜎)(𝜇+𝛿+𝛽𝑒)
 

 

written more compactly as; 

𝑉′ = −
𝛬

𝑚
𝛹 + 𝛷

(𝜇+𝛿+𝜎)

𝛽𝑒
𝐼 < 0 

 , if  𝛹 > 0 and 𝛷 < 0  12) 

where 𝛹 =
𝛬

𝜇𝑆
+

𝜇𝑆

𝛬
− 2 and 𝛷 = (ℛ0 − 𝜅)(1 +

𝛽𝐸

𝐼
+

𝛾𝐹

𝐼
) −

1 

let 𝑤 =
𝛬

𝜇𝑆
 then, 

𝛹 = 𝑤 +
1

𝑤
− 2 =

(𝑤2−2𝑤+1)

𝑤
=

(𝑤−1)2

𝑤
> 0, for 𝑤 ≠

1, since 𝑤 > 0       (13) 

also 𝛷 = (ℛ0 − 𝜅)(1 +
𝛽𝐸

𝐼
+

𝛾𝐹

𝐼
) − 1 is clearly negative 

with ℛ0 < 1 

Hence 𝑉′ < 0 and we have therefore achieved a candidate 

Lyapunov function and by the revelant theorem claim that 

the DFE is globally asymptotically stable. ◻ 

Lemma 1.0 

The Arithmetic mean of a sequence of positive numbers is 

greater than their geometric mean. 

Theorem 1.The EE of system (1) is globally asymptotically 

stable provided (
𝛼𝛬𝐼

𝜉𝜇
+ 𝜅) > ℛ0 > 1. 

Proof. We again resort to the method earlier deployed in 

the proof of the propostion above. The components (𝑆, 𝐸, 𝐼) 

are assumed to belong in ℝ+
3  and thus our Lyapunov 

function of choice is given by; 

𝐿 = 𝑚1(𝑆 − 𝑆∗ − 𝑆∗ln
𝑆

𝑆∗) + 𝑚2(𝐸 − 𝐸∗ − 𝐸∗ln
𝐸

𝐸∗)𝐸 +

𝑚3(𝐼 − 𝐼∗ − 𝐼∗ln
𝐼

𝐼∗)𝐼     (14) 

where 𝑚1, 𝑚2, 𝑚3 are all positive real numbers to be 

determined. It is easy to see that 𝐿 = 0 when (𝑆, 𝐸, 𝐼) =



Open Access article published under the terms of a  
Creative Commons license (CC BY). 

http://wojast.org 

Udoenoh et al: Global Stability Analysis of Transmission Dynamics in a 
Compartmental Model of Coronavirus Disease with Environmental 

Reservoirs 

 

World Journal of Applied Science and Technology, Vol. 15 No. 1 (2023) .55 – 60   58 

(𝑆∗, 𝐸∗, 𝐼∗), positive otherwise and radially unbounded. 

Remains to show that 𝐿′ < 0, where 𝐿′ means the first 

derivative of 𝐿 w.r.t 𝑡. 

𝐿′ = 𝑚1(1 −
𝑆∗

𝑆
)𝑆′ + 𝑚2(1 −

𝐸∗

𝐸
)𝐸′ + 𝑚3(1 −

𝐼∗

𝐼
)𝐼′ 

𝐿′ = 𝑚1(1 −
𝑆∗

𝑆
)[𝛬 − (𝛼𝐼 + 𝛽𝐸 + 𝛾𝐹)𝑆 − 𝜇𝑆] +

𝑚2(1 −
𝐸∗

𝐸
)[(𝛼𝐼 + 𝛽𝐸 + 𝛾𝐹)𝑆 − (𝜇 + 𝛿 + 𝛽𝑒)𝐸]

+𝑚3(1 −
𝐼∗

𝐼
)[𝛽𝑒𝐸 − (𝜇 + 𝛿 + 𝜎)𝐼]

 

 (15) 

Substituting the equilibrium value for 𝛬 from (1) into (15) , 

we obtain 

𝐿′ = 𝑚1(1 −
𝑆∗

𝑆
)[(𝛼𝐼∗ + 𝛽𝐸∗ + 𝛾𝐹∗)𝑆∗ + 𝜇𝑆∗) − (𝛼𝐼 + 𝛽𝐸 + 𝛾𝐹)𝑆 − 𝜇𝑆]

+𝑚2(1 −
𝐸∗

𝐸
)[(𝛼𝐼 + 𝛽𝐸 + 𝛾𝐹)𝑆 − (𝜇 + 𝛿 + 𝛽𝑒)𝐸] +

𝑚3(1 −
𝐼∗

𝐼
)[𝛽𝑒𝐸 − (𝜇 + 𝛿 + 𝜎)𝐼]

(16)  

next we combine +𝜇𝑆∗ − 𝜇𝑆 with 𝑚1(1 −
𝑆∗

𝑆
) which is the 

first term of the product in (16) and then we open up the 

brackets 

𝐿′ = −𝑚1𝜇
(𝑆−𝑆∗)2

𝑆
+ 𝑚1𝛼𝐼∗𝑆∗ + 𝑚1𝛽𝐸∗𝑆∗ + 𝑚1𝛾𝐹∗𝑆∗ − 𝑚1𝛼𝐼𝑆

−𝑚1𝛽𝐸𝑆 − 𝑚1𝛾𝐹𝑆 − 𝑚1𝛼
𝐼∗𝑆∗2

𝑆
− 𝑚1𝛽

𝐸∗𝑆∗2

𝑆
− 𝑚1𝛾

𝐹∗𝑆∗2

𝑆
+ 𝑚1𝛼𝐼𝑆∗

+𝑚1𝛽𝐸𝑆∗ + 𝑚1𝛾𝐹𝑆∗ + 𝑚2𝛼𝐼𝑆 + 𝑚2𝛽𝐸𝑆 + 𝑚2𝛾𝐹𝑆 − 𝑚2(𝜇 + 𝛿 + 𝛽𝑒)𝐸

−𝑚2𝛼
𝐼𝑆𝐸∗

𝐸
− 𝑚2𝛽𝐸∗ − 𝑚2𝛾

𝐹𝑆𝐸∗

𝐸
+ 𝑚2(𝜇 + 𝛿 + 𝛽𝑒)𝐸∗ + 𝑚3𝛽𝑒𝐸

−𝑚3(𝜇 + 𝛿 + 𝜎)𝐼 − 𝑚3𝛽𝑒
𝐸𝐼∗

𝐼
+ 𝑚3(𝜇 + 𝛿 + 𝜎)𝐼∗

       

(17) 

we now set 𝑚1 = 𝑚2 so that −𝑚1𝛼𝐼𝑆 − 𝑚1𝛽𝐸𝑆 − 𝑚1𝛾𝐹𝑆 

can cancel out with +𝑚2𝛼𝐼𝑆 + 𝑚2𝛽𝐸𝑆 + 𝑚2𝛾𝐹𝑆 then we 

multiply and divide certain fractions by equilibrium values 

𝐿′ = −𝑚1𝜇
(𝑆−𝑆∗)2

𝑆
+ 𝑚1𝛼𝐼∗𝑆∗ + 𝑚1𝛽𝐸∗𝑆∗ + 𝑚1𝛾𝐹∗𝑆∗ − 𝑚1𝛼

𝐼∗𝑆∗2

𝑆

−𝑚1𝛽
𝐸∗𝑆∗2

𝑆
− 𝑚1𝛾

𝐹∗𝑆∗2

𝑆
+ 𝑚1𝛼𝐼𝑆∗ + 𝑚1𝛽𝐸𝑆∗ + 𝑚1𝛾𝐹𝑆∗

−𝑚2(𝜇 + 𝛿 + 𝛽𝑒)𝐸 − 𝑚2𝛼
𝐼𝑆𝐸∗

𝐸𝐼∗𝑆∗
𝐼∗𝑆∗ − 𝑚2𝛽𝐸∗ − 𝑚2𝛾

𝐹𝑆𝐸∗

𝐸

+𝑚2(𝜇 + 𝛿 + 𝛽𝑒)𝐸∗ + 𝑚3𝛽𝑒𝐸 − 𝑚3(𝜇 + 𝛿 + 𝜎)𝐼

−𝑚3𝛽𝑒
𝐸𝐼∗

𝐼𝐸∗
𝐸∗ + 𝑚3(𝜇 + 𝛿 + 𝜎)𝐼∗

                      

(18) 

It is clear from the corresponding equilibrium equation in 

(1) that 

𝛼𝐼∗𝑆∗ + 𝛽𝐸∗𝑆∗ + 𝛾𝐹∗𝑆∗ = (𝜇 + 𝛿 + 𝛽𝑒)𝐸∗ 

also since 𝑚1 = 𝑚2, we then choose 𝑚3 such that 

𝑚3(𝜇 + 𝛿 + 𝜎)𝐼∗ = 𝑚2(𝜇 + 𝛿 + 𝛽𝑒)𝐸∗ 

recall from the corresponding equilibrium equation in (1) 

𝛽𝑒𝐸∗ = 𝑚2(𝜇 + 𝛿 + 𝛽𝑒)𝐼∗ 

⇒ 𝑚3 = 𝑚2

(𝜇 + 𝛿 + 𝛽𝑒)

𝛽𝑒

 

the last term in (18), 𝑚3(𝜇 + 𝛿 + 𝜎)𝐼∗ therefore becomes 

𝑚2(𝜇 + 𝛿 + 𝛽𝑒)𝐸∗ which then becomes 𝑚2(𝛼𝐼∗𝑆∗ +
𝛽𝐸∗𝑆∗ + 𝛾𝐹∗𝑆∗). Also the 15𝑡ℎ term, 𝑚2(𝜇 + 𝛿 + 𝛽𝑒)𝐸∗ 

again becomes 𝑚2(𝛼𝐼∗𝑆∗ + 𝛽𝐸∗𝑆∗ + 𝛾𝐹∗𝑆∗). The 2𝑛𝑑, 3𝑟𝑑 

and 4𝑡ℎ term may be collectively written as 𝑚1(𝛼𝐼∗𝑆∗ +
𝛽𝐸∗𝑆∗ + 𝛾𝐹∗𝑆∗).  

The equation 𝑚3𝛽𝑒 = 𝑚2(𝜇 + 𝛿 + 𝛽𝑒) is again deployed at 

the 18𝑡ℎ term, thus −𝑚3𝛽𝑒
𝐸𝐼∗

𝐼𝐸∗ 𝐸∗ becomes −𝑚2(𝛼𝐼∗𝑆∗ +

𝛽𝐸∗𝑆∗ + 𝛾𝐹∗𝑆∗)
𝐸𝐼∗

𝐼𝐸∗. Bringing them all together and we 

have 

𝐿′ = −𝑚1𝜇
(𝑆−𝑆∗)2

𝑆
+ 𝑚1𝛼𝐼∗𝑆∗[3(1 +

𝛽𝐸∗

𝛼𝐼∗ +
𝛾𝐹∗

𝛼𝐼∗ )

−
𝑆∗

𝑆
(1 +

𝛽𝐸∗

𝛼𝐼∗ +
𝛾𝐹∗

𝛼𝐼∗ ) −
𝐸∗𝐼𝑆

𝐸𝐼∗𝑆∗ (1 +
𝛽𝐸

𝛼𝐼
+

𝛾𝐹

𝛼𝐼
)

−
𝐸𝐼∗

𝐼𝐸∗ (1 +
𝛽𝐸∗

𝛼𝐼∗ +
𝛾𝐹∗

𝛼𝐼∗ )] + [𝑚1𝛼𝑆∗(1 +
𝛽𝐸

𝛼𝐼
+

𝛾𝐹

𝛼𝐼
) − 𝑚3(𝜇 + 𝛿 + 𝜎)]𝐼

+[𝑚3𝛽𝑒 − 𝑚2(𝜇 + 𝛿 + 𝛽𝑒)]𝐸

(19) 

 

The last term on the RHS of (19), [𝑚3𝛽𝑒 − 𝑚2(𝜇 + 𝛿 +
𝛽𝑒)]𝐸 clearly vanishes from (19). The 3𝑟𝑑 term may be 

further simplified as follows; 

[𝑚1𝛼𝑆∗(1 +
𝛽𝐸

𝛼𝐼
+

𝛾𝐹

𝛼𝐼
) − 𝑚2

(𝜇 + 𝛿 + 𝛽𝑒)

𝛽𝑒

(𝜇 + 𝛿 + 𝜎)]𝐼 

[
𝑚1𝛼𝛽𝑒𝑆∗(𝛼𝐼 + 𝛽𝐸 + 𝛾𝐹) − 𝑚2𝛼𝐼(𝜇 + 𝛿 + 𝛽𝑒)(𝜇 + 𝛿 + 𝜎)

𝛼𝐼𝛽𝑒

]𝐼 

choosing 𝑚1 = 𝑚2 = 1 we have that the 3𝑟𝑑 term 

simplifies to 

𝑆∗(𝛼𝐼 + 𝛽𝐸 + 𝛾𝐹) −
(𝜇 + 𝛿 + 𝛽𝑒)(𝜇 + 𝛿 + 𝜎)

𝛽𝑒

𝐼 

Recall that we had already established from (7) that; 
𝛼𝛽𝑒𝛬

𝜇(𝜇 + 𝛿 + 𝜎)(𝜇 + 𝛿 + 𝛽𝑒)
= ℛ0 − 𝜅, and ℛ0 − 𝜅 > 0 

 

where 

𝜅 =
𝛽𝛬

(𝜇 + 𝛿 + 𝛽𝑒)
+

𝛾𝛬[𝜑𝑒(𝜇 + 𝛿 + 𝜎) + 𝛽𝑒𝜑𝑖]

𝜇𝜂(𝜇 + 𝛿 + 𝜎)(𝜇 + 𝛿 + 𝛽𝑒)
 

 

thus we have 

 

(𝜇 + 𝛿 + 𝜎)(𝜇 + 𝛿 + 𝛽𝑒)

𝛽𝑒

=
𝛼𝛬𝐼

𝜇(ℛ0 − 𝜅)
 

 

obviously we obtain 

𝜉 −
𝛼𝛬𝐼

𝜇(ℛ0 − 𝜅)
 where 𝜉 = 𝑆∗(𝛼𝐼 + 𝛽𝐸 + 𝛾𝐹) 

 

which yields 
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𝜉𝜇(ℛ0 − 𝜅) − 𝛼𝛬𝐼

𝜇(ℛ0 − 𝜅)
 

which results in a negative value if ℛ0 <
𝛼𝛬𝐼

𝜉𝜇
+ 𝜅. 

The 1𝑠𝑡 term in the RHS of (19) is obviously negative 

except at 𝑆 = 𝑆∗. The 2𝑛𝑑 term may be written as follows; 

 

𝑚1𝛼𝑆∗(1 +
𝛽𝐸∗

𝛼𝐼∗
+

𝛾𝐹∗

𝛼𝐼∗
)[3 −

𝑆∗

𝑆
−

𝐸∗𝐼𝑆

𝐸𝐼∗𝑆∗
−

𝐸𝐼∗

𝐼𝐸∗
] 

as 𝐸 → 𝐸∗, 𝐼 → 𝐼∗, and 𝐹 → 𝐹∗. To see that the term 3 −
𝑆∗

𝑆
−

𝐸∗𝐼𝑆

𝐸𝐼∗𝑆∗ −
𝐸𝐼∗

𝐼𝐸∗ is indeed negative, let 𝑎1 =
𝑆∗

𝑆
, 𝑎2 =

𝐸∗𝐼𝑆

𝐸𝐼∗𝑆∗ , 𝑎3 =
𝐸𝐼∗

𝐼𝐸∗ 

 

observe that 𝑎1𝑎2𝑎3 = 1 

by Lemma 1.0 we have that; 

 

(𝑎1 + 𝑎2 + 𝑎3)

3
≥ √𝑎1𝑎2𝑎3

3  

⇒
𝑆∗

𝑆
+

𝐸∗𝐼𝑆

𝐸𝐼∗𝑆∗
+

𝐸𝐼∗

𝐼𝐸∗
≥ 3 

therefore the term 3 −
𝑆∗

𝑆
+

𝐸∗𝐼𝑆

𝐸𝐼∗𝑆∗ +
𝐸𝐼∗

𝐼𝐸∗ < 0 and only equal 

to zero when (𝑆, 𝐸, 𝐼) = (𝑆∗, 𝐸∗, 𝐼∗).  

 

Thus, the derivative of our Lyapunov function ultimately 

results in 

𝐿′ ≤ 0. 
 

A quick application of Krasovkii-LaSalle theorem 

accomodates 𝐿′ being equal to zero, as it is quite easy to see 

that the set 𝛤 = {𝑢 ∈ ℝ+
3 ;  𝐿′(𝑢) = 0} consists of the 

singleton (𝑆∗, 𝐸∗, 𝐼∗). ◻ 

 

Conclusion 

The global asymptotic stability of the endemic equilibrium 

was demonstrated via a suitable candidate Lyapunov 

function. The basic reproduction number ℛ0, was obtained 

for the model (1) and the DFE was shown to be globally 

stable when ℛ0 < 1. This implies the population would 

eventually be free of the disease, as it will die out in due 

course. It was also noted that above the threshold value of 1, 

the EE is globally asymptotically stable, indicating 

persistence of the disease in the population. Our result shows 

that environmental reservoirs play a significant role in said 

persistence. This claim is validated by the last term in the 

expression for ℛ0 in (7) which clearly highlights the 

contributions to new infections in the population due to 

fomites. Frequent application of disinfectants to all surfaces 

that could potentially spread the viral disease would be an 

effective control measure, as such action would continuously 

reduce the term responsible for the spread via fomites until 

it eventually vanishes from ℛ0. This ultimately shifts the ℛ0 

value further left of the critical threshold, thus slowing down 

the spread of the disease in the population from an endemic 

towards a disease free status. The persistence of the disease 

has also seen the emergence and evolution of new strands of 

the virus. Intensified global efforts to contain the virus have 

necessitated the use of huge amounts of disinfectants and 

antibiotics with rapid biological and environmental impacts 

on surface waters, wastewater, soils and sediments (Chen et 

al., 2021), thus posing global health threats on another 

dimension. 

REFERENCES 

Buonomo, B. and Lacitignola, D. (2011). Global stability for 

a four-dimensional epidemic model. Note di Matematica, 

30(2): 83-96. 

Chen, Z., Guo, J., Jiang, Y. and Ying, S. (2021). High 

concentration and high dose of disinfectants and 

antibiotics used during the COVID-19 pandemic threaten 

human health. Environmental Sciences Europe, 33(1): 1-

4. 

Dénes, A., and Röst, G. (2016). Global stability for SIR and 

SIRS models with nonlinear incidence and removal terms 

via Dulac functions. Discrete and Continuous Dynamical 

Systems-Series B, 21(4): 1101-1117. 

Drosten, C., Günther, S., Preiser, W., van der Werf, S., 

Brodt, H.-R., Becker, S., Rabenau, H., Panning, M., 

Kolesnikova, L., Fouchier, R., Berger, A., Burguière, A., 

Cinatl, J., Eickmann, M., Escriou, N., Grywna, K., 

Kramme, S., Manuguerra, J.-C., Müller, S., Rickerts, V., 

Stürmer, M., Vieth, S., Klenk, H.-D., Osterhaus, A., 

Schmitz, H and Doerr, H. (2003). Identification of a 

novel coronavirus in patients with severe acute 

respiratory syndrome. New England Journal of 

Medicine, 348: 1967-1976. 

Gao, D.-p., Huang, N.-j., Kang, S. M. and Cong, Z. (2018). 

Global stability analysis of an SVEIR epidemic model 

with general incidence rate. Boundary Value Problems, 

2018(42): 1-22. 

Hethcote, H. W. (2000). The mathematics of infectious 

diseases. SIAM review, 42(4): 599-653. 

Hossain, M. K., Hassanzadeganroudsari, M. and 

Apostolopoulos, V. (2021). The emergence of new 

strains of SARS-CoV-2. What does it mean for COVID-

19 vaccines? Expert Review of Vaccines, 20(6): 635-638. 

Khan, M. A., Abbas, S., Khan, M. Y., and Hussain, A. 

(2015). Global dynamics of SEIRS epidemic model with 

non-linear generalized incidences and preventive 

vaccination. Advances in Difference Equations, 2015(1): 

1-18. 

Korobeinikov, A. (2006). Lyapunov functions and global 

stability for SIR and SIRS epidemiological models with 

non-linear transmission. Bulletin Of Mathematical 

Biology, 68(3): 615-626. 

Kyrychko, Y. N. and Blyuss, K. B. (2005). Global properties 

of a delayed SIR model with temporary immunity and 

nonlinear incidence rate. Nonlinear Analysis: Real World 

Applications, 6(3): 495-507. 

Martcheva, M. (2015). Global stability of equilibria of the 

SEIR model. In: An introduction to mathematical 

epidemiology. New York: Springer, pp. 154-155. 

Peiris, J. S. M., Lai, S. T., Poon, L. L. M., Guan, Y., Yam, 

L. Y. C., Lim, W., Nicholls, J., Yee, W. K. S., Yan, W. 

W., Cheung, M. T., Cheng, V. C. C., Chan, K. H., Tsang, 

D. N. C., Yung, R. W. H., Ng, T. K. and Yuen, K. Y. 

(2003). Coronavirus as a possible cause of severe acute 



Open Access article published under the terms of a  
Creative Commons license (CC BY). 

http://wojast.org 

Udoenoh et al: Global Stability Analysis of Transmission Dynamics in a 
Compartmental Model of Coronavirus Disease with Environmental 

Reservoirs 

 

World Journal of Applied Science and Technology, Vol. 15 No. 1 (2023) .55 – 60   60 

respiratory syndrome. The Lancet, 361(9366): 1319-

1325. 

WHO. (2022a). Tracking SARS-CoV-2 variants. [Online] 

Available at: https://www.who.int/activities/ tracking -

SARS-CoV-2-variants [Accessed 31 May 2022]. 

WHO. (2022b). WHO Coronavirus (COVID-19) 

Dashboard. [Online] Available at: 

https://covid19.who.int/ [Accessed 31 May 2022]. 

Zaki, A. M., van Boheemen, S., Bestebroer, T. M., 

Osterhaus, A. D. M. E. and Fouchier, R. A. M. (2012). 

Isolation of a novel coronavirus from a man with 

pneumonia in Saudi Arabia. New England Journal of 

Medicine, 367(19), 1814-1820. 

Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., 

Zhang, W., Si, H.-R., Zhu, Y., Li, B., Huang, C.-L., 

Chen, H.-D., Chen, J., Luo, Y., Guo, H., Jiang, R.-D., 

Liu, M.-Q., Chen, Y., Shen, X.-R., Wang, X., Zheng, X.-

S., Zhao, K., Chen, Q.-J., Deng, F., Liu, L.-L., Yan, B., 

Zhan, F.-X., Wang, Y.-Y., Xiao, G.-F. and Shi, Z.-L. 

(2020). Discovery of a novel coronavirus associated with 

the recent pneumonia outbreak in humans and its 

potential bat origin. Nature, 579(7798), 270-273. 

 


