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ABSTRACT 

The increasing demand for seamless wireless services coupled with underutilization of limited spectrum due to fixed channel 

allocation policy have posed numerous challenges to wireless communications. There is need to design appropriate channel 

allocation strategies for continuous communication by mobile users for higher spectral efficiency. Cognitive radio network 

(CRN) offers a solution to the spectrum scarcity problem inherent in 4G and other networks through dynamic spectrum 

access, by allowing unlicensed secondary users (SUs) with cognitive devices to opportunistically access the spectrum holes 

when the licensed primary users (PUs) are not occupying them. Often times, measurements taken by SUs during the sensing 

process are uncertain due to multipath fading, shadowing and varying channel conditions. This results in imprecise spectrum 

detection and selection by SUs during switching decisions causing incessant spectrum handoff and undesirable ping-pong 

effect. In this paper, a support vector machine (SVM) classifier is used to categorize spectrum into two classes of busy and 

idle. Then, based on heterogeneous quality of service (QoS) requirements of the SUs, dynamic activities of PUs, and the 

fluctuating channel state information, a QoS-aware Adaptive Neuro-Fuzzy Inference System (ANFIS) framework is 

developed for spectrum switching decision using underlay spectrum access model. SVM predicted spectrum holes with 

98.8% accuracy. ANFIS model yielded a 91.62% accuracy in the task of allocating spectrum holes to SUs for coexistent 

with PUs. Results further indicate that the intelligent framework can ensure fairness among SUs, reduce interference, 

improve throughput, and spectral efficiency. It can be deployed in disaster relief and emergency, public safety, and battlefield 

environments. 

 

Keywords: QoS-aware, spectrum decision, cognitive radio network, support vector machine, adaptive neuro-fuzzy inference 

system 

 

INTRODUCTION  

Cognitive radio network (CRN) is a fifth generation (5G) 

radio system that deploys technology which allows the 

system to obtain knowledge of its operational and 

geographical environment in order to permit opportunistic 

and intelligent spectrum access. The network permits 

unlicensed secondary users (SUs) to coexist with the 

licensed primary users (PUs) by opportunistically accessing 

unutilized or underutilized spectrum holes without causing 

undue interference to PUs and with other SUs (Zakariya et 

al., 2020; Akhtar et al., 2018). The 5G concept promises 

seamless communication with capabilities for higher 

capacity, higher data rate, low end-to-end latency, reduced 

cost, consistent quality of experience/quality of service 

(QoE)/(QoS) provisioning including massive connectivity to 

Internet of Things (IoT) devices, which existing 4G network 

cannot offer. Other important features of 5G network include 

pervasive computing, IPv6 routing for Low-power and 

Lossy Networks (LLNs), wearable devices with Artificial 

Intelligence (AI) facilities, and unified global standard.  
 

Two important capabilities that differentiate CRNs from the 

traditional wireless networks are the ability of the cognitive 

radio (CR) to adapt spectrum environment and protect the 

transmission of PUs (Alqahtani et al., 2023; Moghaddam, 

2018; Cavalcanti and Ghosh, 2008) for efficient spectrum 

utilization. Figure 1 shows a CRN structure indicating how 

PUs and SUs can coexist for data transmission. The 

architecture considers different types of applications that run 

on the SU device which generate packets with diverse traffic 

and QoS requirements (Mishra and Mathur, 2014). 

However, the existing fixed channel allocation scheme 

indicates that wireless network is challenged with severe 

spectrum inefficiency. Figure 2 shows how the busy and idle 

frequency channels are distributed over time. It indicates the 

prevalence of wastage of inadequate spectrum resources. 

Again, while some spectrum channels are overcrowded, 

others are left unutilized or underutilized. While a primary 

traffic shows a busy channel, indicating that actual data 

transmission is ongoing by PUs, the larger parts of the 

spectrum band remain unused or idle and these are known as 

spectrum holes. Spectrum holes are formed as a result of 

non-utilization of licensed spectrum resource. With CR 

technology, the SUs can exploit or access the idle channels 

but wrong allocation of idle channels can force an SU to 

vacate current channel once a PU arrives, which leads to an 

SU switching channel to several different spectrum holes 

just to continue communication. This incessant spectrum 

handoff is undesirable for time-critical missions as packet 

loss may also arise. The CR has intelligence to sense, learn 

and optimize performance where, the communication 

system can take predictive actions by referring to diverse 

optimization algorithms used in different layers of the radio 

protocol stack for selection of radio access technology 

(Alqahtani et al., 2023; Anandakumar and Umamaheswari, 

2017). According to Anjum et al. (2016), generated traffic 

can be classified into four different priority levels with 

associated sensitivity to latency as shown in Table 1. The 

QoS traffics are further categorized into real-time (RT) and 

non-real-time (NRT) traffic. Consequently, it becomes 

important to develop intelligent dynamic spectrum 

management schemes to efficiently allocate spectrum 

resource and ensure the smooth coexistence of users with 

varied QoS guarantees. 
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Figure 1: A CRN architecture 

 

 

 
 

Figure 2: Existing fixed spectrum allocation scheme 

 

Table 1: Traffic type and QoS requirements  
Traffic 

Type 

Description Priority QoS 

Type 

Voice Traffic is more sensitive to 

latency e.g. voice call, audio 

streaming 

Highest 

priority 

RT 

Video Traffic is sensitive to latency 

e.g. video conferencing, 

video streaming 

Second 

highest 

priority 

RT 

Best 

effort 

Bursty traffic, less sensitive 

to latency e.g. web browsing 

Lower 

priority 

NRT 

Backgr

ound 

Traffic has no strict latency 

e.g. email, print jobs 

Lowest 

priority 

NRT 

 

Although a number of researches have addressed the 

problem of spectrum holes detection and allocation, many of 

them do not specify the space big enough to be classified as 

spectrum hole for specific applications (Tlouyamma and 

Velempini, 2021; Jasrina et al., 2016; Anjum et al., 2016), 

despite using inefficient energy detection approach. Some 

works do not consider the diverse QoS requirements from 

the applications of the incoming SU requests (Yawada and 

Dong 2019). Still, most works consider single or at most two 

frequency bands such as Television (TV) bands and/or 

Wireless Fidelity (Wi-Fi), 2G Global System for Mobile 

Communications (GSM) or 3G Universal Mobile 

Telecommunications System (UMTS) channels (Giral et al., 

2021; Hernández et al., 2018; Aguilar-Gonzalez et al. 2016; 
Hernández et al. 2015a), where the switching decision is not 

activated by intelligent soft computing techniques (Aguilar-

Gonzalez et al. 2016; Salgado et al. 2016; Vithalani and 

Vithalani, 2017) on realistic data. 

The objective of this work is to develop a QoS-aware 

framework for efficient spectrum management in CRN by 

utilizing two intelligent techniques namely, Support Vector 

Machine (SVM) and Adaptive-Neuro Fuzzy Inference 

System (ANFIS). The SVM model is used to accurately 

predict the existence of spectrum holes to facilitate higher 

detection probability while ANFIS model selects the best 

available spectrum hole, from the given pool, for allocation 

to SUs. The significance of SVM is that it allows the data to 

be precisely classified into one of two classes (idle or busy 

channels) by defining a margin or hyperplane. Unlike other 

classifiers, SVM increases the confidence of classification 

by maximizing the decision surface with less computation, 

allowing a clear separation of data in the data space. ANFIS 

implements a hybrid framework that combines the learning 

capability of artificial neural network and the output of fuzzy 

logic (FL) decision, for fast, accurate and excellent 

generalization results. Our channel assignment algorithm, 

within the framework, ensures that only bandwidth size 

greater than or equals to 7 MHz are allotted to RT application 

requests of SUs while the rest are allotted to NRT application 

requests. The performance of the ANFIS model in the task 

of efficient channel allocation is evaluated using accuracy 

metric while precision, recall, and F1-score are used to 

analyze the performance of the SVM classifier in spectrum 

holes prediction. This approach can ensure fairness, 

minimize spectrum handoff, maximize spectral efficiency 

and network throughput. It can further advance the 

emergence of new operators, innovative services and 

wireless technologies for diverse IoT applications. Finally, 

improved revenue generation to service providers and higher 

satisfaction to all network users shall be guaranteed. 

Basically, traffic data was collected from the switching 

office of a network operator on 3G UMTS and 4G Long-

Term Evolution (LTE) networks as primary networks while 

Wi-Fi data from obtained from the research in Ekpenyong et 

al., (2018). Based on the allotted frequency bands of these 

networks, the activities of the PUs are considered while SUs 

with different QoS demands are expected to detect available 

spectrum holes for possible transmission on the band.  

Although, spectrum activities vary with time, frequency and 

spatial domain, this work explores only time and frequency 

domains while the spatial domain is kept constant as the 

experiments are conducted in one geographical location 

within the same altitude. Lastly, the underlay scheme of 

spectrum access is adopted where SUs are allowed to share 

the channel with active PUs provided that an SU interference 

level does not exceed an acceptable threshold called 

interference temperature, which is set to 5.1dB. This is 

unlike the interweave or overlay schemes where SUs must 

give up the utilized spectrum whenever a licensed PU begins 

transmission (Khalid and Yu, 2018). Our approach promises 

adaptation to real-time spectrum conditions, offering 

regulators, licenses, and the general public flexible, efficient 

and comprehensive use of the spectrum. It can support 

network service providers in optimizing the allocation of 

limited spectrum resources by prioritizing SUs for 

admission. The spectrum decision shall be network-assisted.  

The rest of the paper is organized as follows.  
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Section 2 reviews related literature on CRNs by 

summarizing various strategies adopted by previous studies 

for spectrum detection and channel allocation toward 

efficient spectrum management. Section 3 presents the 

proposed QoS-aware framework for efficient spectrum 

switching decision while Section 4 discusses the results 

obtained from developing the framework with visualized 

outputs. Section 5 concludes the paper with direction for 

future works. 
 

RELATED WORKS 

 

CR technology supports the IEEE 802.22 wireless standard 

to provide transparency in radio resource management by 

affording cognition for diverse services and applications (Ali 

et al. 2020). This attempts to guarantee fairness to both PUs 

and SUs. Essentially, spectrum sensing involves the 

compilation of spectrum measurements and user preferences 

from the radio environment for proper cognition and flexible 

spectrum usage. The cognition circle of a cognitive radio is 

shown in Figure 3, where the CR decides about its action, 

after observing its environment. An initial switching may 

lead to an immediate action, while usual operation implies a 

decision making based on learning from observation, 

historical data and the consideration of the actual state of the 

environment. A message may be sent to the SU to 

dynamically reconfigure its parameters such as transmission 

power in order to transmit within the allotted frequency 

channel of available spectrum holes (Tlouyamma 

and Velempini, 2021). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Cognition circle of a cognitive radio 

 

According to Bharatula (2014), the paucity of 

electromagnetic spectrum is further due to inadequate access 

techniques rather than non-availability. This has resulted in 

reconsideration of spectrum usage regulation by the 

government including the technology of spectrum access 

itself. Many research have considered overcoming this 

problem (Asuquo et al., 2020; Dhivya, and Murugesh, 2017; 

Zheng and Hua, 2016; Christian et al. 2012; Ghasemi and 

Sousa, 2008), using reactive measures whereas few works 

exist on the use of proactive strategies (Ozturk et al., 2019; 

Devanarayana and Alfa, 2015; Dhivya et al. 2013). With the 

current massive connectivity of mobile devices for IoT-

based applications (Devaraj et al. 2022; Tarek et al. 2020), 

it becomes necessary to deploy appropriate channel 

allocation schemes to ensure fast end-to-end transmission of 

data packets, especially with resource-constrained devices. 

Figure 4 shows a taxonomy of spectrum sensing techniques 

(Robinson and Asuquo, 2018), which is broadly categorized 

into cooperative, non-cooperative, and interference-based 

techniques.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4:  Categories of spectrum sensing techniques 
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While sensing based on channel history affects energy-

efficiency as the same energy needed to operate the device 

is also used for sensing, which eventually drains its battery 

and reduces the device’s lifetime, blind sensing algorithm 

does not permit SU device to learn from the environment 

before taking channel switching decision, whereby any 

instance sensing from the SU may cause undesirable 

interference with the transmission of PUs. Interference-

based sensing attempts to determine the signal-to-

interference ratio (SINR) of the SU and compares it to a 

threshold called interference temperature. If the SINR of any 

SU exceeds this threshold for specific bands, then the SU 

call request will not be admitted into the network. The SU 

will have to adjust or reconfigure its settings in order to 

access available spectrum holes 

Previous studies have presented different approaches for 

spectrum sensing and channel allocation including the use of 

methods like Multi-Attribute Decision Making (MADM), 

Fuzzy Logic (FL), Machine Learning (ML) and 

Evolutionary Algorithms (EA). The following sub-sections 

briefly describe their deployment, strengths, and 

weaknesses.  

However, most of the past works did not explicitly determine 

the bandwidth size considered as whitespace for 

opportunistic access by SUs. Some studies only focus on TV 

bands or combine Wi-Fi and 2G GSM bands, ignoring the 

utilization of 3G UMTS and 4G LTE spectrums for mission-

critical applications especially with the increasing demand 

for IoT-based services. There is need to also consider the 

diverse QoS requirements of the SUs for different 

applications including voice, data, video, streaming, 

chatting, web browsing, and email downloading services.  

 

MADM Approach 

Spectrum allocation in CRN requires the consideration of 

multi-criteria for efficient spectrum decision. Recently, the 

use of MADM approach for spectrum switching decision has 

been common. Giral et al. (2021) evaluated the performance 

of spectral decision algorithms implemented in a multi-user 

environment that allows multiple access and exchange of 

information between users, with experimental spectral 

occupation data. Results indicate that Technique for Order 

Preference by Similarity to Ideal Solution (TOPSIS) method 

outperforms Vise Kriterijumska Optimizacija kompromisno 

Resenja (VIKOR) and Simple Additive Weight (SAW). It 

limitations are that only real power measurements of 2G 

GSM frequency band were considered as input variables 

along with simple energy detection sensing method. Noting 

that continuity of service during handoff with required QoS 

is an important issue in CRN, Driouache et al. (2018) 

proposed a rank average method for the best access network 

selection. The authors deployed two MADM methods of 

TOPSIS and VIKOR, together with Shannon entropy-based 

weights. Results indicate that rank average outperforms 

TOPSIS and VIKOR in terms of throughput, end to end 

delay, packet loss, and significantly reduces the number of 

unnecessary handoffs related to the ping-pong effects. 

Although real-time and background applications such as 

video streaming, Voice over Internet Protocol (VoIP), web 

browsing, and email services were the simulated SU traffic 

types, only Worldwide Interoperability for Microwave 

Access (WiMAX), Wi-Fi, and LTE access networks were 

considered. 

Bernal and Hernández (2017) proposed the design of a 

dynamic decision-making model in cognitive wireless 

networks that allows SUs to opportunely harness the 

spectrum and use channels without affecting the traffic of 

PUs. The results indicate that the Grey Rational Analysis 

(GRA) algorithm in combination with SVM algorithm 

outperforms the one with K-nearest neighbour (K-NN) in 

terms of choosing an available channel, reducing the PU’s 

interference and diminishing the rate of handoffs. The study 

was limited to the 2G GSM frequency band with a sweep 

time of 290ms. Vithalani and Vithalani (2017) proposed the 

combination of TOPSIS and Analytic Hierarchy Process 

(AHP) optimization spectrum selection algorithms based on 

the evaluation of different channels characteristics to obtain 

an optimized solution in selecting the best available 

spectrum to satisfy QoS demands of the SUs, without 

interfering with transmission of the licensed PUs. The study 

presumed a CRN with a maximum of 8 spectrum holes and 

used bandwidth (BW), Signal-to-Noise Ratio (SNR), 

transmission power, and spectrum interference as spectrum 

parameters for the algorithms. Another work by Kumar et al. 

(2017) investigates the task of optimal network selection for 

spectrum handoff decision with MADM methods of SAW, 

TOPSIS, GRA and a cost function to provide wider and 

optimal choice with QoS. The CR preferences are based on 

voice, video and data services. Numerical results show that 

all MADM methods are effective for selecting the optimal 

network for spectrum handoff with a reduced complexity for 

the spectrum handoff decision. The study mainly focused on 

spectrum handoff functionalities while envisaging future CR 

deployments to facilitate the coexistence of CR networks in 

overlapping areas. 

In Salgado et al. (2016), an MADM based on AHP and FL 

was applied to find a channel with the required 

characteristics for continuous communication of SUs in 

CRNs. The authors present a fuzzy algorithm for the 

spectrum decision function and in particular for the selection 

of a backup channel in spectral mobility. The evaluation was 

limited to real experimental data of the spectrum occupancy 

measured in a Wi-Fi network using metrics such as 

accumulative average of failed handoffs, accumulative 

average of performed handoffs and, average of transmission 

bandwidth. The proposed algorithm provides an effective 

frequency channel selection where results show a reduction 

of the rate of channel changes in contrast to the AHP 

selection method. Similarly, Aguilar-Gonzalez et al. (2016) 

proposed an MADM-based spectrum decision in CRNs 

aimed at reducing spectrum handoffs and energy 

consumption during switching to sustain CR user’s battery 

lifetime. Performance evaluation with three MADM 

techniques – SAW, TOPSIS and VIKOR was limited to real 

spectrum measurements of TV bands. To achieve high 

accuracy results, this spectrum decision process was 

simulated by means of a 1000-round Monte Carlo method 

using MATLAB. 
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Hernández et al. (2015b) proposed a proactive channels 

selection scheme based on fuzzy AHP (FAHP) method. The 

selected criteria for choosing the best backup channel are 

probability of channel availability, estimated channel time 

availability, SINR, and bandwidth. These criteria are 

determined by means of a customized Delphi Method and 

using the FAHP technique; the corresponding weight and 

significance is calculated for two applications classified as 

best effort (BE) and real time (RT). The insertion of the 

fuzzy logic in the AHP algorithm allows better handling of 

inaccurate information. The performance evaluation of the 

proposed method was limited to experimental data realized 

at the GSM frequency band.   

It is important to note that while FL-based approaches can 

handle uncertainty, imprecision, and vagueness present in 

radio environment data, other mentioned methods lack the 

capability to learn from historical data and predict future 

outcomes for new unseen data.  

 

ML Approach 

Hernández et al. (2018) proposed the use of the long short-

term memory (LSTM) technique based on the deep learning 

concept in order to reduce the forecasting error present in the 

future estimation of PUs in the GSM and Wi-Fi frequency 

bands. The result shows that LSTM has the capacity to 

significantly improve channel use prediction. However, 

implementation is feasible in CRNs based on centralized 

network topologies only. 

The ability of particle swarm optimization (PSO) technique 

to optimize a neural network modeling of data patterns for 

TV idle channels prediction was proposed by Ojenge et al. 

(2013). However, data were collected only for two hours 

every day (5pm to 7pm) within a period of four weeks. This 

was not sufficient to capture all the various trends associated 

with TV broadcast. Also, identifying the idle channels does 

not depict any spatial or temporal information of the 

expected noise and/or level of interference based on the 

channels history which is vital in selecting the channels to 

be used among the idle channels. Spectrum holes prediction 

using Elman recurrent artificial neural network (ERANN) 

was proposed by Taj and Akil (2011). The work used the 

cyclostationary features of modulated signals to determine 

the presence or absence of primary signals while the input of 

the ERANN consists of time instances. The inputs and the 

target output used in the training of the ERANN and 

prediction were modelled using ideal multivariate time 

series equations, which are often different from real life RF 

traffics where PU signals can be embedded in noise and/ or 

interfering signals. 

ANFIS was used for prediction of transmission rate by 

Hiremath and Patra (2010). This model was designed to 

predict the data rate (6, 12, 24, 36, 48 and 54 Mbps) that can 

be achieved in wireless local area network (WLAN) using a 

802.11a/g configuration as a function of time. The training 

data set was obtained by generating a random data rate with 

an assigned probability of occurrence at a given time 

instance, thus forming a time series. In this study, real world 

RF data was not used. More importantly, the research did not 

take into account the dynamic nature of noise or interference 

level which can affect the predicted data rates. A FL-based 

decision system was modelled for spectrum handoff decision 

in a context characterized by uncertain and heterogeneous 

information by Bayrakdar and Çalhan (2015) and fuzzy logic 

transmit power control for cognitive radio. The proposed 

system was used for the minimization of interference to PU’s 

while ensuring the transmission rate and QoS requirements 

of SU. The researcher did not, however, include any learning 

from past experience or historical data. 

 

Other Spectrum Management Approaches 

Other methods like matching theory, Markovian models, 

evolutionary algorithms, and game theory have also been 

deployed (Zakariya et al 2020; Jasrina et al. 2016; Butun et 

al. 2010) but with inherent limitations. For example, in 

matching theory, the preferences of both users and channels 

are based on the same utility function which primarily 

captures the rate of transmission. The process of finding the 

optimal solution with evolutionary algorithms is quite slow 

and there is always the risk of finding a local minimal and 

not the globally optimal solution. Markovian models are 

suitable for modeling and analyzing time series or sequential 

data. They are not suitable in modeling the dynamic nature 

of CR users for adaptive spectrum access. Finally, in game 

theory, finding the pareto-optimal solution is difficult since 

it is impossible to reallocate spectrum resource so as to make 

any individual’s preference or criterion better off without 

making at least another individual preference or criterion 

worse off. 

Existing literature shows that methods for spectrum 

selection and channel allocation in CRNs for SUs continuous 

communication abound. However, most studies focused on 

the use of MADM and FL methods on TV, GSM, and Wi-Fi 

frequency bands, whereas the present research includes 

currently deployed 3G UMTS and 4G LTE frequency bands 

in its intelligent spectrum management framework. While 

most studies attempt to maximize throughput, reduce delay 

and unnecessary spectrum handoffs, only a few considered 

SINR of the SU in comparison with the interference 

temperature on each spectrum. Furthermore, this study 

considers both RT and NRT applications including 

messaging, VoIP, email downloading, web browsing, and 

streaming services. Realistic spectrum data obtained from 

the switching office of a network operator is used for training 

and evaluating the intelligent models.  

The present study aims to actualize two spectrum 

management functionalities - spectrum sensing and 

spectrum switching decision, by developing a QoS-aware 

framework for accurate spectrum holes prediction, efficient 

selection and optimal allocation of frequency channels to 

SUs. It adopts the interference temperature condition to 

avoid undue interference of SUs with PUs’ activities. SVM 

and ANFIS soft computing techniques are used to implement 

the procedures in a framework that specifies the unused 

bandwidth size considered spectrum holes for the different 

traffic types. The diverse QoS demands from the 

applications of the incoming SU requests are taken into 

consideration before SUs are allocated channels from the 

available frequency bands in the TV, Wi-Fi, 2G, 3G and 4G 

spectrums.  
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The choice of SVM algorithm is necessitated in its ability to 

use appropriate kernel function to define the hyperplane for 

separating linearly, non-separable data. The kernel function 

transforms the input data into the desired output label (idle 

or busy channel) using optimization functions. SVM is prone 

to less over-fitting as this algorithm is more generalized in 

practice. Additionally, ANFIS is a simple learning technique 

that uses fuzzy logic to transform given inputs into a desired 

output through highly interconnected neural network 

processing elements and information connections, which are 

weighted to map the numerical inputs into an output. It 

provides excellent explanation facilities with semantically 

meaningful fuzzy rules. Also, the use of optimization 

routines by ANFIS to adjust parameters can help to reduce 

error measures and improve channel allocation accuracy. 

 

METHODOLOGY  

A QoS-aware proactive approach for spectrum 

switching decision 

Figure 5 shows the proposed QoS-aware framework for 

effective spectrum holes selection and optimal spectrum 

switching decision in CRN. The major components of the 

framework include Radio Environment, Spectrum Database, 

Spectrum Decision Module which splits into spectrum holes 

prediction and channel classification by SVM including 

channel assignment by ANFIS, Spectrum Handoff, 

Spectrum Sharing, and Performance Evaluation. 

The Radio Environment is where spectrum measurements 

and CR user preferences are obtained to help characterize 

channels and determine how best to admit incoming request 

for flexible spectrum usage. At this point, the SINR of the 

incoming SU is estimated along with the current spectrum 

occupancy rate. Such SU and PU parameters along with any 

historical data are stored in the Spectrum Database. 

Available frequency bands for different networks including 

TV, Wi-Fi, 2G, 3G, and 4G constitute the Radio 

Environment.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Proposed QoS-aware framework for spectrum switching decision in CRNs 

 

Information from the Radio Environment through spectrum 

sensing enables detection of unused spectrum bands 

(spectrum holes) showing different characteristics in terms 

of bandwidth size. The Spectrum Decision Module then 

invokes the SVM model to classify available spectrum bands 

into two labels; idle (free) and busy (used). The Spectrum 

Decision Module also characterizes free spectrum bands to 

meet the QoS requirements of SUs. This guarantees that 
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proper spectrum bands from the pool of free spectrums are 

selected for RT and NRT applications. For training the SVM 

model to classify spectrum bands into ‘used’ and ‘free’ 

spectrum classes, five parameters were used, of which one 

served as output parameter. The input parameters are 

probability of channel availability (PCA), average 

availability time (AAT), PU signal (PUS), SU signal-to-

interference-noise ratio (SU_SINR) while channel state 

information (CSI) serves as output, classifying spectrum into 

two labels: ‘free’ and ‘used’. We assume that transmission 

and sensing cannot take place at the same time by the SU to 

avoid interference with PU traffic. Thus, an SU is not 

permitted to transmit during sensing (observation time). Due 

to this hardware restriction, SUs are to sense the spectrum 

periodically with sensing period,𝑇𝑠 and observation time,𝑡𝑠 

in the proactive mode. The periodic spectrum sensing 

ensures that interference is avoided based on interference 

temperature so as to guarantee the efficient use of spectrum 

resource. This enables determination of spectrum utilization 

factor and the continuous monitoring of QoS guarantee of an 

SU’s transmission while enabling spectrum sharing due to 

SU’s admission into the network. Figure 6 illustrates this 

proactive periodic spectrum sensing approach. 

Since SUs are allowed to coexist with the PUs within a given 

frequency band and at a given geographical location, the SU 

transmitting power must be controlled to avoid any harmful 

interference to the PUs. Each SU can transmit along with the 

PU as long as the aggregate interference at the PU’s receiver 

does not exceed a threshold called the interference 

temperature limit. The interference temperature (𝑇𝐼) refers to 

the temperature equivalent of the aggregate radio frequency 

(RF) power at the PU’s receiver antenna per unit bandwidth, 

resulting from both PU and SU transmitters, and noise. It is 

expressed mathematically in Equation (1), and regulated for 

each spectrum band, as follows:  
  

𝑇𝐼(𝑓𝑐 , 𝐵𝑊) =  
𝑃𝐼(𝑓𝑐,𝐵𝑊)

𝐾×𝐵𝑊
    (1) 

 

where, 𝑃𝐼(𝑓𝑐, 𝐵𝑊) is the average interference power in 

Watts centered at frequency 𝑓𝑐, 𝐵𝑊 is the bandwidth in Hz, 

𝐾 is Boltzmann constant in Ws/K while 𝑇𝐼(𝑓𝑐 , 𝐵𝑊) is the 

interference temperature in Kelvin. Therefore, the spectrum 

sensing model is given in Equation (2) as: 
 

𝑦(𝑛) = {
𝑤(𝑛)                   ;    𝑃𝑈 𝑎𝑏𝑠𝑒𝑛𝑡

ℎ × 𝑠(𝑛) +  𝑤(𝑛);    𝑃𝑈 𝑝𝑟𝑒𝑠𝑒𝑛𝑡
  (2) 

 

where, 𝑛 = 1, … , 𝑁 𝑎𝑛𝑑 𝑁 is sample number; 𝑦(𝑛) is the 

SU’s received signal; 𝑠(𝑛) is the PU’s signal;  𝑤(𝑛) is the 

Additive White Gaussian Noise (AWGN); while ℎ is the 

channel gain with value less than 1. However, the channel 

power gain ℎ, is given by: 

ℎ = 10 log10
𝑃𝑟

𝑃𝑡
⁄ (𝑑𝐵)     (3) 

where, 𝑃𝑡 is the transmit power and 𝑃𝑟  is the received power. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Periodic spectrum sensing for SU admission control and QoS monitoring 

 

Measurements from the primary networks at the Radio 

Environment are used by SUs to estimate the channel 

conditions such as the number of available channels (NAC), 

SINR, number of SUs (NSU), and channel switching delay 

(SDE). Consequently, to describe the dynamic nature of the 

CRN, a new parameter, PU activity (PUS), is introduced. It 

is defined as the probability of the PU appearance during the 

SU transmission. After spectrum characterization by SVM, 

the CRN uses ANFIS optimization technique to choose the 

best free spectrum bands for a given SU application. These 

parameters served as inputs to the ANFIS model while 

probability of channel selection (PCS) was the output 

parameter. These premise parameters and their membership 

functions (each having as term: Low, Moderate, High) were 

used by ANFIS inference mechanism and learning algorithm 

to predict the accuracy of selecting best available free 

channels for SU applications in CRN. 

Moreover, the dynamic and adaptive ANFIS model allocates 

idle frequency bands based on the time-varying CRN 

capacity. However, SUs are expected to vacate allocated 

channels and perform spectrum handoff to other free 

spectrum holes once a PU appears to utilize the current band 

or if the SU device re-configuration could not satisfy 

interference temperature condition. The proposed dynamic 

channel allocation adopted is done in a way that minimizes 

incessant spectrum handoff, service quality degradation and 

undesirable ping-pong effect. Thus, this approach facilitates 

seamless SU transmission with desired QoS, fast switching 

decision, higher spectral efficiency, and improved network 

throughput. The performance of the SVM classifier is 

evaluated using the generated confusion matrix that presents 

probability of false alarm and true positive in spectrum holes 

prediction while the ANFIS model is evaluated using the 

root mean square error (RMSE) metric. 
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Spectrum Holes Classification with SVM 

The SVM model is trained to generate a linear separator or 

hyperplane. The training process consists of finding a 

decision function capable of separating the spectrum bands 

making use of the optimization function of Equation (4) 

(Asuquo et al., 2023). Then, given a new vector 𝑥, the class 

in which each spectrum channel belongs is determined. This 

allows the determination of bandwidth size for ranking and 

assignment to SUs based on QoS requirements.  

To further explain space considered spectrum hole in this 

work. Let assume that the frequency band within 1920-1944 

MHz for uplink communication in 3G spectrum is split as 

shown in Figure 7.   It is important to note that ‘1’ indicates 

that the channels are being used and declared ‘busy’ while 

‘0’ indicates that the channels are free and declared ‘idle’. 

However, only idle channels that add up to a difference of 7 

MHz and more are utilized as spectrum holes for assignment 

to RT applications of SUs. Other whitespaces less than 7 

MHz are assigned to NRT applications to avoid undue 

interference with PUs, reduce incessant handoff and 

undesirable ping-pong effect. This accommodates the 

spectrum measurements guidelines for TV frequency bands 

according to the technical details from the IEEE 802.22 

standard (Wang et al. 2010), pointing to the fact that there is 

a functional signal bandwidth of 5.5MHz for a 6MHz TV 

channel while 2G are deployed in blocks as small as 6.8MHz 

to as large as 74.6Mhz. 

 

 

 

 

 

 

 

 

Figure 7: QoS-aware spectrum holes detection 

Ideally, given a dataset with 𝑛 dimensional features and a 

target variable {(𝑋1, 𝑦1), (𝑋2, 𝑦2), … , (𝑋𝑚, 𝑦𝑚); 𝑖 =
1, … , 𝑚}, where, 𝑋𝜖𝑅𝑛, 𝑦𝜖𝑅. The objective of the SVR 

model is to find a function 𝑓(𝑥) with at most 𝜀-deviation 

from the observed target, 𝑦. Since the relationship between 

𝑋 and y is non-linear, a non-linear SVR model formulated as 

a maximization problem is given as follows: 

max {
1

2
∑ (𝛼𝑖 − 𝛼𝑖

∗)(𝛼𝑗 − 𝛼𝑗
∗)〈Φ(𝑋𝑖), Φ(𝑋𝑗)〉

𝑚

𝑖=1,𝑗=1

− 𝜀 ∑(𝛼𝑖 +  𝛼𝑖
∗) + ∑ 𝑦𝑖

𝑚

𝑖

𝑚

𝑖

(𝛼𝑖 − 𝛼𝑖
∗)} 

Such that: 
∑ (𝛼𝑖 + 𝛼𝑖

∗) = 0; 0 ≤𝑚
𝑖=1 𝛼𝑖 , 𝛼𝑖

∗ ≤ 𝐶   (4) 

where, 𝛼𝑖 and 𝛼𝑖
∗ are the model weights, 𝜀 is epsilon, and 𝐶 

is the complexity and number of support vectors. The dot 

product is computed in Equation (5) as:   

(𝜙(𝑥). 𝜙(𝑋𝑖)) = 𝐾(𝑥, 𝑋𝑖)    (5) 

where, 𝜙(𝑋𝑖) and 𝜙(𝑥) are the mapped vectors. The 

𝜙(𝑋𝑖)and 𝜙(𝑋𝑗) mapping functions are computed using 

radial basis function kernel, 𝐾(𝑥, 𝑋𝑖) using Equation (6) as 

follows: 

𝐾(𝑥, 𝑦) =  exp (−
1

2𝜎2 ||𝑥 − 𝑦||2)   (6) 

The output of the SVR algorithm, which is the predicted 

spectrum availability, is obtained as expressed in Equation 

(7). 

𝑦𝑖  = ∑ 𝛼𝑖𝐾(𝑥, 𝑋𝑖) + 𝑏    (7)  

where, 𝑦𝑖  is the predicted spectrum hole,  𝛼𝑖 is the model’s 

weight; 𝑏 is the bias; and 𝐾(𝑥, 𝑋𝑖)is the kernel function. The 

step-wise analysis of the SVR structure used in this work is 

presented in Figure 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: ANFIS structure for channel allocation 

optimization 

 

After splitting each spectrum band into two classes of free 

(idle) and used (busy) channels, the decision hyperplane is 

obtained with the SVM model during network training. 

Cognizance is taken of certain spectrum characteristics such 

as PCA, AAT, PUS, and SU_SINR. The spectrum of 

frequencies with bandwidth size greater than or equals to 7 

MHz are assumed to have the greatest availability 

probability, estimated availability time and a low PUS are 

labelled as channels suitable for supporting the 

transmissions of RT applications (VoIP, streaming), while 

the rest of the points are labelled as channels for the 

transmission of NRT applications (email, messaging, 

downloading). It is expected that SUs admitted by the base 

station during spectrum allocation process are delivered the 

best quality channels first for RT applications, and the 

moderate quality channels to NRT applications. However, if 

the range of frequencies in a category is exhausted, an SU 
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may use the spectrum of the other category, subject to, in the 

worst case, degradation in the QoS. 

 

Channel allocation optimization with ANFIS 

The ranking of the channels with ANFIS model was 

implemented in MATLAB using Takagi-Sugeno inference 

type. Figure 9 describes the structure of the ANFIS scheme. 

The channel characteristics are found in the input layer; the 

membership functions are defined in the next layer (high and 

low for each input); the third and fourth layers calculate the 

rules and establish the Takagi-Sugeno type inference; the 

fifth layer performs the summation of the outputs in order to 

obtain the scores for each channel and determine the ranking. 

The parameters X1, X2, X3, X4 in the ANFIS structure 

denotes NSU, NAC, PUA, and SDE respectively while PCS 

 

.  

 
Figure 8: Structure of SVR Model 

 

Membership functions (MFs) were created for each 

parameter, with defined Universe of Discourse (UoD), 

where three linguistic terms of Low, Moderate, and High 

resulted in 81 fuzzy rules for the inference mechanism. The 

decision was made to work with only three linguistic terms 

in order to limit the amount of computing resources required 

by the system, and thus reduce the algorithm's compilation 

time. The parameter set of the adaptive ANFIS network 

allows fuzzy systems to learn from the data they are 

modelling. In the proposed ANFIS-based channel selection 

model, the number of training epochs, the number of MFs 

and the number of fuzzy rules have to be accurately tuned. 

Mapping of those parameters were done to avoid the system 

over fitting or under fitting the data. To improve the rate of 

convergence, this adjusting was obtained by using the hybrid 

learning algorithm where the least square method (LSM) and 

gradient descent method (GDM) are combined. The lesser 

difference between ANFIS channel selection probability 

output and the desired objective means a better (more 

accurate) ANFIS system. 

Thus, the work aims to reduce the training error where the 

output error is used to adapt the premise parameters by 

means of a standard back-propagation algorithm thereby 

minimizing the RMSE cost function defined as:  
 

RMS𝐸 =  
1

2
∑‖𝑡𝑖 − 𝑎𝑖‖

2
    (8) 

 

where, 𝑡𝑖and 𝑎𝑖 are the target output and the actual output, 

respectively. In Equation (8), the squared error is minimized 

by division by 2 and is called the least squares estimator. 

Therefore, the hybrid learning algorithm is applied directly 

and structured by defining linear and nonlinear parameters 

illustrated at each iteration (epoch), where the GDM updates 

the nonlinear parameters, while the LSM follows to identify 

the linear parameters. 
 

RESULTS AND DISCUSSION 

Experimental Setup 

The widely used IEEE 802.11 Wi-Fi network in a campus 

environment for wireless multimedia services is studied 

along with TV bands in Uyo City, 2G, 3G and 4G networks. 

TV band of 170MHz to 225MHz, Wi-Fi frequency band of 

2.4 GHz to 2.5 GHz, 2G spectrum ranges of 800MHz -

1800MHz, 3G spectrum ranges of 1900MHz to 2025MHz 

and 4G spectrum ranges of 1920MHz - 2600MHz were 

studied.  Each range is divided into a multiple of channels. 

CRNs offer enormous advantages in spectrum band 

utilization such that when a licensed PU is unavailable by 

virtue of time and location, an unlicensed SU can utilize or 

share the spectrum to eliminate wastage in terms of 

bandwidth utilization and revenue generation. 

 

The experiment is conducted in Matrix Laboratory 

(MATLAB) software R2021a version on Intel(R) Core(TM) 

i5-4300U CPU @ 1.90GHz   2.50 G with 8.00GB RAM. The 

study assumes a CRN with a maximum of 80 CR 

transmissions that coexist with 30 PUs in a field of 100 x 100 

𝑚2. PUs operate at the TV, Wi-Fi, 2G, 3G and 4G frequency 

bands for uplink transmissions where SUs are expected to 

opportunistically access the spectrum holes based on the 

interference temperature principle. The interference 

temperature is a threshold for which SUs must handoff to 

another channel if its SINR exceeds this value. The threshold 

is set to 5.1dB while the minimum switching delay is set to 

20ms. 

Channels considered big enough to be used as spectrum 

holes for assignment to incoming RT applications of SUs 

must be equal to or greater than 7 MHz. The rest are assigned 

to NRT applications. This is to ensure efficient spectrum 

allocation by preventing incessant handoff and undesirable 

ping-pong effects where SUs might be advised by the system 

to vacate current spectrum holes once a PU arrives to avoid 

unnecessary interference. Also, it will ensure link-quality is 

maintained between communicating SU pairs. Each channel 

has a two-state status of BUSY and IDLE respectively. A 

time-critical application is considered in this work whereby 

any given data packet whose transmission delay is greater 

than the threshold is considered invalid and must be re-

transmitted. While SVM performs classification to 

determine available spectrum holes, ANFIS optimizes the 

task of best channel assignment to SUs for effective 

spectrum decision and management in CRN. 
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SVM Performance Evaluation 

A dataset of 700 data points, split in the ratio of 7:3 was used 

to train and test the SVM model. Key parameters used 

include probability of channel availability (PCA), average 

availability time (AAT), primary user signal (PUS) and SU 

signal-to-interference ratio (SU SINR). The output is 

spectrum hole prediction, where ‘0’ indicates absence of PU 

(availability of whitespace) and ‘1’ indicates presence of PU 

(non-availability of whitespace). The sample dataset is 

shown in Table 2 while Figure 10 shows the scatter plot 

where blue dots represent ‘0’ and red dots represent ‘1’. 

Results indicates that 49.1% of the spectrum are unoccupied 

by PUs while 50.29% are occupied. 
 

Furthermore, the confusion matrix in Figure 11 indicates the 

predictive performance of the model where the highest 

training accuracy of 98.8% was obtained from Linear SVM 

model, after 10-fold cross validation at 2.413sec. This 

spectrum hole detection result is satisfactory as detection 

probability of 0.9 and false alarm probability of 0.1 are 

recommended. Quadratic, cubic, fine Gaussian, medium 

Gaussian, and coarse Gaussian SVM models yielded 

accuracy of 97.8%, 98.2%, 96.5%, 98.2%, and 98.2% 

respectively. However, with testing data, the confusion 

matrix in Figure 12 shows the Linear SVM classifier 

prediction performance with Recall of 1.0, Precision of 

0.5215, F1-score of 0.6855 and specificity of 0.9901. Since 

Recall refers to sensitivity, which is a measure of correct 

classification in the positive category and specificity is used 

to measure the fraction of negative patterns that are correctly 

classified, SVM produces satisfactory results in the task of 

predicting spectrum holes for timely and accurate channel 

assignment to SU requests. The confusion matrix in Figure 

12 further indicates that no spectrum hole was wrongly 

predicted as available and only one spectrum hole was 

wrongly classified as unavailable. Figure 13 shows a 

graphical illustration of the SVM result, which informs the 

choice of Linear SVM for further experiment while Figure 

14 reveals SINR values of SUs. Only those SUs with SINR 

values less than interference temperature were admitted. 

 

Table 2: Sample Dataset for SVM Model 

PCA AAT PU Signal SU SINR Output 

0.732568007 0.398429225 0.477556782 5.37257041 1 

0.467872767 0.976423146 0.482225991 6.43469645 1 
0.517135412 0.558478157 0.198488311 5.59150028 1 

0.917457271 0.336719311 0.360167618 4.059909627 0 

0.961885404 0.758974112 0.484323599 2.699873409 0 
0.731044041 0.638627795 0.275496135 4.826861025 0 

0.675205513 0.314197354 0.613269125 5.676402172 1 

0.769564548 0.519711713 0.220157895 1.701510081 0 
0.673446419 0.809569192 0.161455987 3.158535137 0 

0.433863743 0.739078305 0.741155148 4.70502875 1 

0.622212212 0.635649802 0.898272493 7.201489251 1 

 

 
Figure 10: Scatter plot of data points indicating free and used 

spectrums  

 

 
Figure 11: SVM training confusion matrix 

 

 
 

Figure 12: SVM testing confusion matrix 

 

 
Figure 13: Comparison of SVM models’ accuracy 

performance 

 

  

 

 

 

 

 

 

 

 

Figure 14: SINR values of SUs 

ANFIS performance evaluation 

For determining the probability of best channel selection, the 

parameters used by the ANFIS model are described in table 

https://dx.doi.org/10.4314/WOJAST.v15i1.141


Open Access article published under the terms of a  

Creative Commons license (CC BY). 

http://wojast.org 

Asuquo et al: A QOS-Aware Framework for Spectrum Characterization 
and Switching Decision in Cognitive Radio Networks 

https://dx.doi.org/10.4314/WOJAST.v15i1.141 

 

World Journal of Applied Science and Technology, Vol. 15 No. 1 (2023) 141 – 153   151 

3, NSU, NAS, PUA, and SDE served as input parameters. 

After data pre-processing to handle missing values and 

ensure data quality, a total of 560 data pairs was used for the 

experiment and split into two for model training and testing 

in the ratio of 7:3. Table 4 shows the sample ANFIS dataset. 

Figure 16 indicates that a training error of 0.0862661 was 

obtained which results to an accuracy of 91.37% at epoch 

50.  However, at epoch 10, ANFIS was able to generalize the 

result. Further experiment reveals that a testing error of 

0.0837601 was obtained which results to an accuracy of 

91.62%. Finally, Figure 17 shows that as the number of 

channels increases, the probability of channel selection also 

increases thereby improving throughput and minimizing 

switching delay. Thus, ANFIS is robust and shows a good 

generalization capability in the tasks of allocating channels 

from the pool of available free spectrums to SU requests. 

This accurate prediction can ensure timely channel 

assignment, minimize delay and enhance overall throughput 

of the cognitive radio network.  
 

Table 3: Simulation parameters for ANFIS Model 
Parameter Description 

FIS type Sugeno 

Inputs/Output 4/1 

Inputs MF type  Gaussian 

Output MF type Linear 

Number of input MFs 12 for all inputs 

Number of fuzzy rules 81 

Number of linear parameters 405 

Number of non-linear parameters 24 

Total number of parameters 429 

Number of nodes 193 

Number of training data pairs 392 

Number of testing data pairs  168 

Number of epochs 50 

Optimization method Hybrid 

Error tolerance 0 
 

Table 4: Sample Data for ANFIS Experiment 

NSU NAS PUA SDE PCS 

31 1 0.33067113 0.032293475 1 

34 0 0.256336771 0.314836976 1 

21 1 0.034459587 0.0065274 0 

11 0 0.290486492 0.357890171 1 

32 2 0.465206556 0.26391198 1 

50 2 0.224778274 0.155482575 0 

52 1 0.038806847 0.070548058 1 

15 2 0.448138173 0.453706191 0 

62 3 0.079910958 0.005004113 1 

 

 

 

 

 

 

 

 

 

Figure 15: ANFIS training window 

Implication of the Results 

Channel assignment is considered a serious availability issue 

in information security, where requested services must be 

delivered to legitimate users. This study is limited to data 

collected from the switching office of a network operator for 

2G, 3G and 4G frequency bands. 

 

 

 

 

 

 

 

 

 

 

Figure 16: Channel selection probability 
 

However, data for TV bands in Uyo city and Wi-Fi spectrum 

occupancy from a previous study (Ekpenyong et al., 2018) 

in a university campus were used. The analysis of the 

spectrum occupancy rate over the five frequency bands (TV, 

Wi-Fi, 2G, 3G, and 4G), specifically at the uplink, verifies 

the high availability of spectral opportunity for selection to 

SUs. This work deployed hybrid intelligent techniques for 

improved spectrum holes detection and efficient channel 

allocation in CRNs.  A recall of 1.0, specificity of 0.9901 

and F1-score of 0.6855 indicates that the Linear SVM model 

can achieve precise spectrum holes detection with minimal 

false alarm which enhances SUs to make prompt switching 

decisions, avoiding frequent spectrum handoff with 

associated ping-pong effect. The accuracy of 91.62% shows 

that ANFIS model was able to effectively handle the 

uncertainty, imprecision and vagueness inherent in the 

measurements from varying channel conditions. This 

indicates a good generalization capability and robustness of 

the model in the task of allocating channels to SUs. The 

proposed framework allows multiple access to diverse 

frequency bands and, when deployed in a multi-user 

environment like healthcare, public safety, disaster relief and 

emergency, can support continuous end-to-end transmission 

of time-critical data packets for analysis and decision 

making.  
 

CONCLUSION 

The increasing number of IoT devices and the associated 

diverse applications accumulate additional pressure on 

network resources including bandwidth availability. Often 

times, IoT devices do send small number of packets to 

update a remote server or a cloud system including remote 

health monitoring applications and smart city systems. 

However, the fixed channel allocation policy obstructs 

access to unutilized spectrum thereby affecting seamless 

connectivity and continuous data transmission. Spectrum 

scarcity problem requires the consideration of adaptive and 

dynamic CR technology to achieve interference-free and on-

demand IoT solutions for a number of applications. This 

work shows that the use of SVM and ANFIS models can 

significantly enhance effective spectrum holes detection and 

optimal channel allocation in CRN thereby supporting SUs 

to opportunistically exploit spectrum holes for RT and NRT 

service demands. Idle channels from the available frequency 

bands in the TV, Wi-Fi, 2G, 3G and 4G spectrums were 

considered for different applications with QoS requirements. 
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With the interference temperature principle and bandwidth 

size limit for spectrum holes access, SUs can leverage on the 

CR technology and easily realize maximal spectrum 

utilization.  

Experimental results indicate that Linear SVM classifier 

outperforms others in the task of classifying spectrum into 

free and busy channels with prediction accuracy of 98.8%. 

Also, the classifier was able to achieve a recall of 1.0 and 

specificity of 0.9901, both of which indicate satisfactory 

performance in predicting available spectrum holes for 

assignment to SUs. Finally, ANFIS result indicates an 

accuracy of 91.6% at epoch 10. This shows that ANFIS has 

a good generalization capability and can be deployed for 

implementation in CRNs for fast spectrum switching 

decision. Secondary IoT devices can effectively utilize 

spectrum resources by successfully transmitting and 

receiving delay-sensitive data packets with minimal 

disruption.  Future works would consider the development 

of a system that integrates this framework into a CRN 

infrastructure for deployment by network operators. Also, 

the channel assignment to requesting SUs shall be network-

assisted.  
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