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ABSTRACT
Cyanobacteria are responsible for many problems in drinking water treatment works (DWTW) because of their ability 
to produce cyanotoxins that potentially can have an adverse effect on consumer health. Therefore, the monitoring of 
cyanobacteria in source waters entering DWTW has become an essential part of drinking water treatment management. 
Managers of DWTW rely heavily on results from physical, chemical and biological water quality analyses, from grab 
samples, for their management decisions. However, results of water quality analyses may be delayed from 3 h to 14 days 
depending on a magnitude of factors such as sampling, distance and accessibility to laboratory, laboratory sample turn-
around times, specific methods used in analyses, etc. Therefore, the benefit to managers and production chemists to be 
able to forecast future events of high cyanobacterial cell concentrations in the source water is evident. During this study, 
physical, chemical and biological water quality data from samples taken from 2000 to 2009 in the Vaal Dam, supplying 
South Africa’s largest bulk drinking water treatment facility, were used to develop models for the prediction of the 
cyanobacterium Microcystis sp. in the source water (real-time prediction together with 7, 14 and 21 days in advance). Water 
quality data from the Vaal Dam from 2010–2012 were used to test these models. The model showing the most promising 
results for incorporation into a ‘Cyanobacterial Incident Management Protocol’ is the one predicting Microcystis sp. 7 days 
in advance. This model showed a square correlation coefficient (R2) of 0.90 when tested with the testing dataset (chosen 
by bootstrapping from the 2000–2009 input dataset) and a R2 of 0.53 when tested with the 3-year ‘unseen’ dataset from 
2010–2012. 

Keywords: cyanobacteria, drinking water treatment works, prediction models, cyanobacterial incident 
management protocol, water safety plan

INTRODUCTION

Algae and cyanobacteria occur naturally in source waters 
worldwide. However, certain species are known to form harm-
ful blooms (Harding and Paxton, 2001), which can cause 
extensive problems in the drinking water treatment industry 
(Knappe et al., 2004; Meriluoto and Codd, 2005; Zoschke et al., 
2011). Cyanobacteria (especially Microcystis sp.) are widely 
responsible for many water treatment problems due to their 
ability to produce organic compounds. These organic com-
pounds include the cyanotoxin microcystin (Conradie and 
Barnard, 2012), which can have an adverse effect on consumer 
health, as well as taste and odour compounds (like geosmin 
and 2methylisoborneol) that decrease consumer confidence in 
drinking water (Zoschke et al., 2011). Therefore, the monitor-
ing of cyanobacteria in source waters entering drinking water 
treatment works (DWTW) has become an essential part of 
drinking water treatment management (Swanepoel et al., 2008). 

Recently Cyanobacterial Incident Management Protocols 
(Du Preez and Van Baalen, 2006; Du Preez et al., 2007) and 
Water Safety Plans (Bartram et al., 2009) have been used 
to manage incidents of, for example, high cyanobacteria 
concentrations in source water destined for drinking water 
purification. In order to fully utilise these management tools 

(protocols and safety plans), managers and production chem-
ists of DWTW, rely heavily on results of physical, chemical and 
biological water quality analyses for their water treatment and 
management decisions. However, results of water quality analy-
ses can be delayed from 3 h to 7 days or longer, depending on 
factors such as sampling, distance and accessibility to laborato-
ries, laboratory sample turnaround times, and specific methods 
used in the analysis, etc. (Swanepoel et al., 2008). Therefore, the 
application value of models that are able to predict the cyano-
bacteria concentration in source waters, a few days or weeks 
in advance, is evident. Such models will enable managers and 
production chemists of DWTW to prepare for a cyanobacteria-
related incident before it occurs. 

Previous studies have demonstrated that highly complex 
ecological time-series data can be successfully probed to 
develop rule sets as prediction tools, by using hybrid evolution-
ary algorithms (HEAs) (Talib et al, 2007; Chan et al., 2007; 
Recknagel et al, 2008; Van Ginkel, 2008; Welk et al, 2008; 
Recknagel et al., 2013 and Recknagel et al., 2014). Ecological 
data is considerably more prone to observational and/or 
measurement noise and the ecological interactions are inher-
ently more complex and nonlinear. In a previous study by Van 
Ginkel et al. (2010), different ecological informatics modelling 
techniques were compared. The rule set discovered by hybrid 
evolutionary algorithms (HEA) proved to be highly applica-
ble to the hypertrophic reservoirs of South Africa. During 
the current study, physical, chemical and biological water 
quality data from samples collected from 2000 to 2009 in the 
Vaal Dam were used to develop models for the prediction of 
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Microcystis  sp. in the source water. The aim of this study was 
to evaluate the suitability of Microcystis sp. prediction models 
in the Vaal Dam (real-time, 7, 14 and 21 days in advance), for 
application to a large bulk drinking water treatment facility 
and possible incorporation into its ‘Cyanobacterial Incident 
Management Protocol’ (Du Preez and Van Baalen, 2006). This 
will enable the DWTW to initiate preventative measures for 
dealing with source water containing high concentrations of 
Microcystis sp. cells, before it even reaches the plant. 

MATERIALS AND METHODS

Study site

The Vaal Dam (Fig. 1) is approximately 150 km south of 
Johannesburg, South Africa. The catchment area of the dam is 
approximately 38 500 km2 with a wall height of 63.4 m above 
the lowest foundation (DWA, 2013b). The Lesotho Highlands 
Water Project pumps water into the system in order to sup-
ply water to the industrial hub of Gauteng. This water is being 
transported from Lesotho via the Liebenbergsvlei and Wilge 
Rivers (LHDP, 2013). The Vaal Dam is classified as mesotrophic, 
according to the classification system used by the South 
African Department of Water Affairs (DWA), where mean total 
phosphate (0.077 mg/L), mean chlorophyll-a concentration 
(14.8 µg/L) and percentage of time where chlorophyll-a is >30 
µg/L (17%) is taken into account (DWA, 2013a). 

From the Vaal Dam, a 20 km long canal supplies water to 
Stations 3 and 4 at the Zuikerbosch DWTW – South Africa’s 
largest bulk drinking water treatment facility (Fig. 1). This 
facility can produce approx. 3 000 ML of drinking water per 
day (depending on demand). Samples for analyses are collected 
at the dam wall (coordinates: X: 28.12059553; Y: −26.88444867); 
the lake behind the dam wall has a surface area of about 
320 km2 and is 47 m deep at full capacity (DWA, 2013b). Results 
from physical, chemical, and biological analyses done by Rand 
Water’s Analytical Services Laboratory on water samples from 
the Vaal Dam supplying the Zuikerbosch DWTW, for the 
period 2000 to 2012, were used in this study (Fig. 1). 

Physical, chemical and biological analyses of water

Sampling and laboratory analyses of samples from the Vaal 
Dam took place once a month. All chemical and biological 
analyses were carried out according to SANAS (South African 
National Accreditation System – affiliated at ILAC), accredited 
standard methods (APHA, 2013). 

The Microcystis sp. counts were performed according to 
the phytoplankton identification and enumeration method 
described by Swanepoel et al. (2008). During sample prepara-
tion, the gas vacuoles of cyanobacteria were pressure-deflated 
using a specially-designed mechanical hammer that exerts a 
pressure of 49.5 kPa on the sample (Walsby, 1971, 1994), which 
is approximately the pressure needed to collapse the gas vacu-
oles of cyanobacteria. The sample was then homogenised at 
13 000 r/min for ±15 s after which 3 mL of sample was pipetted 
into a sedimentation chamber. The sedimentation chambers 
were then centrifuged for 10 min at 3 500 r/min to allow phy-
toplankton cells to settle to the bottom thereof. After settling, 
all phytoplankton cells were identified and enumerated with 
an inverted light microscope, using the technique described by 
Lund et al. (1958) and adapted for Rand Water by Swanepoel 
et al. (2008). One of the eyepieces of the microscope contains 
a Whipple grid to delineate the counting area (called a ‘field’). 

The glass bottoms of the sedimentation chambers were exam-
ined in ‘fields’ covering most parts of the sedimentation cham-
ber, while counting all algal cells inside the grid or ‘field’. The 
original sub-sample volume that was transferred to the sedi-
mentation chamber, the area of the sedimentation chamber, the 
area of a ‘field’ as well as the number of ‘fields’ counted, were 
used to calculate the concentration of individual phytoplank-
ton genera as cells per millilitre (cells/mL).

Statistical analyses

Principal component analysis (PCA) was carried out on the 
input dataset used for the model development in order to 
characterise the water in the dam according to the relationships 
between variables. All physical, chemical and biological vari-
ables were used as concentrations but centred and standardised 
to compensate for unit differences in the PCA. The cyanobac-
teria concentration was the only variable transformed to the 
natural log of the concentrations to reduce the large variability 
in the cyanobacteria counts. The computer package CANOCO, 
Version 4.5 was used (Ter Braak, 1988) to perform the PCA. 
Ordinations were interpreted using the following rationale: 
Parameters are (i) positively correlated with each other if their 
arrows subtend a small angle, (ii) not correlated if their arrows 
are 90°, (iii) negatively correlated if their arrows are directed 
oppositely (180°); (iv) parameters with the longest arrow rela-
tive to an axis have the greatest influence on that axis. 

Square correlation coefficients (R2) and root mean square 
error (RMSE) of the models were tested with (i) 25% of the 
data from the original database (2000 – 2009) that was used 
for training the models (chosen by bootstrapping and called 
the ‘testing database’) and (ii) 3 years of ‘unseen data’ (data not 
used in training the models – 2010–2012), were determined by 
XLSTAT, Version 2009.4.06. 

Hybrid evolutionary algorithms (HEAs)

Evolutionary algorithms (EAs) are adaptive methods used in 
search of suitable representations of models, which recognise 
patterns in data sets. EAs mimic the processes of biological 
evolution, natural selection and genetic variation based on the 
principle of ‘survival of the fittest’ (Welk et al., 2008, from Cao 
et al., 2006). EAs have been designed to discover predictive rule 

Figure 1
Sampling point (n) in the Vaal Dam supplying untreated water to the 

Zuikerbosch Drinking Water Treatment Works (DWTWs)
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correlation coefficient (R2-value) and (iii) visual comparison 
between the predicted and measured data as according to Chan 
et al. (2007) and Bennet et al. (2013).

For applications of the HEAs an initial population of 100 
and a maximum number of generations and repetitive runs of 
80 were chosen, because the database was relatively large and 
80 repetitive runs could take anything from 24 h to 72 h to 
complete. The rule-sets were discovered and optimised using 
a large-scale parallel computational device and relevant soft-
ware developed in the Ecoinformatics and Watershed Ecology 
Laboratory at the University of Adelaide, Australia.

Sensitivity analyses were carried out for the best perform-
ing predictive rule sets as follows: The minimum, maximum 
and median of all input variables used to develop the model 
were determined. A linear range of all the variables used in 
each model (either in the THEN or the ELSE branch) was con-
structed ranging from the minimum (at 0%) to the maximum 
(at 100%) in increments of 5%. To determine the sensitivity of 
the model towards a specific variable, the model was tested by 
substituting all variables with the median thereof, except for 
the variable being tested. The tested variable was substituted 
with the range of values from 0% to 100% on the x-axis and the 
result from the model on the y-axis. The curve with the steepest 
slope (either positive or negative) was identified as the vari-
able towards which the model showed the greatest sensitivity. 
This implies that small changes in a variable towards which the 
model shows a high sensitivity will have a bigger influence on 
the result of the model when compared to a variable towards 
which the model shows a low sensitivity.

RESULTS

Characterisation of Vaal Dam water

A PCA was performed on the same dataset used to develop 
the models (Vaal Dam monthly collected physical, chemical 

sets in complex ecological time-series data by applying genetic 
programming for the optimisation of the rule structures (IF x, 
THEN y, ELSE z) and genetic algorithms for the optimisation 
of parameters of the rule sets (Cao et al., 2006; Recknagel et al., 
2008). For this study a Hybrid EA (HEA) designed for rule dis-
covery in water-quality time-series was applied (Cao et al., 2006). 
Hybridisation was used in order to improve the performance 
of the evolutionary algorithm and to improve the quality of the 
solutions obtained by the algorithm (Grosan and Abraham, 
2007). Improvement of the models was achieved by structure 
optimisation using genetic programming as well as parameter 
optimisation by using genetic algorithms (Welk et al., 2008). 

The HEA was applied for short-time forecasting of 
Microcystis sp. concentrations in the Vaal Dam using physi-
cal data (turbidity, water temperature and Secchi disk depth) 
and chemical data (conductivity, pH, dissolved oxygen, PO4

3−, 
NO3

−, NH4
+, Si, Fe2+, Mn2+, chemical oxygen demand), as well as 

biological data (chlorophyll–a concentration and initial cyano-
bacterium inoculum). Table 1 displays the descriptive statistical 
values of the input data used for the model development.

Because of the fact that samples were only taken once a 
month, and prediction time necessitated date ranges of 7, 14 
and 21 days, the data were linearly interpolated to have cor-
responding results for all variables at a frequency of 360 days 
per year. For the development and first stage of testing of the 
models, 75% of the dataset was used to train the models and 
25% of the dataset was used to test the models. Boot-strapping 
(i.e. random selection) were used to determine which 75% of the 
dataset was to be used as the training dataset and which 25% as 
the testing dataset. Boot-strapping also implies that a different 
75% portion of the data will be used during training for all the 
different models. Fifty different models were developed for each 
set of ‘x input variables = 1 output variable’ chosen beforehand. 
From the 50 models, the best model relating the measured 
data and the predicted data were chosen based on the follow-
ing criteria: (i) root mean square error (RMSE), (ii) the square 

TABLE 1
The descriptive statistical values of the measured data in the Vaal Dam (2000–2009) used as input data for model 

development (n = 165)

Minimum Maximum Average Standard 
deviation

Chlorophyll-a (μg/L) 0.67 194 12.82 17.72

Chemical Oxygen Demand (COD – mg/L) 0.01 34 14.41 4.76

Conductivity (Cond – mS/m) 13.9 35.9 19.87 3.18

Dissolved Oxygen (DO – mg/L) 3.52 22.5 7.95 2.42

Fe2+ (mg/L) 0.022 3.245 0.536 0.56

Mn2+ (mg/L) 0.001 0.078 0.014 0.013

NH2
− (mg/L) 0.002 0.65 0.044 0.074

NO2
− (mg/L) 0.003 1.165 0.058 0.108

NO3
− (mg/L) 0.01 2.94 0.286 0.349

pH 5.83 9.9 7.862 0.578

PO4
3− (mg/L) 0.001 0.37 0.037 0.044

Secchi disk depth (cm) 18 128 32.718 13.748

Si (mg/L) 0.202 17.844 5.416 2.771

Turbidity (Turb – NTU) 8.57 141 55.079 27.400

Water temperature (Temp – °C) 9.33 26 17.762 4.140

Initial Cyanobacteria inoculum (cells/mL) 0 89 626 6 996.003 14 440.55
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and biological data from 2000–2009) in order to characterise 
the water in the dam according to the relationships between 
variables. The results from the PCA included the following 
(i) physical variables: turbidity (Turb), water temperature 
(Temp) and Secchi disk depth (Sec); (ii) chemical variables: dis-
solved oxygen (DO), pH, electrical conductivity (Cond), Fe2+, Si, 
NO3

−, NO2
−, NH4

+, PO4
3−, chemical oxygen demand (COD), and 

(iii) biological variables: chlorophyll-a (Chla) and cyanobacte-
ria (LnCyano). The ranges for these variables are summarised 
in Table 1. The Eigen values from the PCA are displayed in 
Table 2 and the results are represented in Fig. 2. 

From the results in Table 2 and Fig. 2, it is evident that the 
first axis, which accounts for 22% of the variation, mostly explains 
the variation in the nutrients (NO2

−, NO3
−, NH4

+ and PO4
3−) as 

well as chemical oxygen demand (COD), Mn2+ and water temper-
ature (Temp). The second axis, which accounts for an additional 
18% of the variation, mostly explains the variation in turbidity 
(Turb), Secchi disk depth (Sec), Fe2+, Si, pH, electrical conductivity 
(Cond), chlorophyll-a (Chla) and cyanobacteria (LnCyano). 

Nutrients (NH4
+, NO2

−, NO3
− and PO4

3−) together with 
Mn2+ are higher during the colder winter months, since the 
arrows representing them lie in the opposite direction to the 
arrow representing temperature. High turbidity associates 
closely with high pH, high Si, high Fe2+ and high chlorophyll-a 
(Chla), while high cyanobacteria (LnCyano) concentrations 
associate with low conductivity (Cond), low dissolved oxygen 
(DO) and low Secchi disk depth (Sec). The arrow representing 
chlorophyll-a subtends a ±90° angle with water temperature 
(Temp) indicating that high chlorophyll-a concentrations do 
not only occur during summer or winter, but vary through-
out the year in the Vaal Dam. One can therefore deduce that 
the chlorophyll-a level is not solely caused by the presence of 
cyanobacteria, but other phytoplankton as well. Chlorophyll-a 
shows a positive correlation with pH indicating that, during 
periods where algal blooms occur, pH increases, most prob-
ably due to the consumption of CO2 during photosynthesis. 
Chlorophyll-a (Chla) and cyanobacteria (LnCyano) show a 
negative correlation with dissolved oxygen (DO). 

Models and related sensitivity analyses

Real-time Microcystis sp. prediction

For the best model developed for real-time Microcystis sp. 
prediction the IF criterion of the model (Fig. 3) is determined 
by the Fe2+ concentration. The THEN branch of the model 
(Fig. 3a) represents the low-range rule set and shows the great-
est sensitivity towards the initial cyanobacteria inoculum. The 
ELSE branch of the model (Fig. 3b) represents the high-range 
rule set and shows the greatest sensitivity towards the initial 
cyanobacteria inoculum. The other variables used in the model 
(conductivity and Mn2+ in the THEN branch and pH, DO and 
chlorophyll-a, in the ELSE branch) display very little influence 
on the predicted Microcystis sp. concentration.

The comparison, between the measured Microcystis sp. con-
centration and that resulting from the models predicting real-
time Microcystis sp. when using the 25% boot-strapped testing 
dataset (Fig. 4a), shows a R2-value of 0.95 and a root mean 
square error (RMSE) of 4 262.2 cells/mL. When the model was 
tested with 3 years of ‘unseen data’, the correlation showed 
a R2-value of 0.97 and a RMSE of 4 766.6 cells/mL (Fig. 4b), 
indicating that the event prediction of increased Microcystis sp. 
concentration together with the magnitude of the event dis-
played a significant correlation.

Microcystis sp. prediction 7 days in advance

For the best model developed for the prediction 7 days in 
advance the IF criterion of the model is determined by a 
combination of conductivity, PO4

3− and pH (Fig. 5). The 
THEN branch of the model (Fig. 5a) represents the high-
range rule set and shows the greatest sensitivity towards 
the initial cyanobacteria inoculum. The ELSE branch of the 
model (Fig. 5b) represents the low-range rule set and shows 
the greatest sensitivity towards the initial cyanobacteria 
inoculum. The other variables in this model (namely conduc-
tivity and DO), in comparison to the initial cyanobacteria 
concentration, display very little influence on the predicted 
Microcystis sp. concentration.

The comparison, between the measured Microcystis sp. 
concentration and that resulting from the models predicting 
Microcystis sp. 7 days in advance, when using the 25% boot-
strapped testing dataset (Fig. 6a), shows a R2-value of 0.90 and 
a RMSE of 3 135.7 cells/mL. When the model was tested with 
3 years of ‘unseen data’ (Fig. 6b), the model showed a R2-value 
of 0.53 and a RMSE of 44 559 cells/mL. The event prediction 

TABLE 2
Eigen values for the PCA

Axes 1 2 3 4 Total 
variance

Eigen values 0.220 0.177 0.107 0.087 1.000

Cumulative percentage 
variance of data 22.0 39.7 50.5 59.2

Figure 2
Principle component analysis (PCA) performed on physical, chemical and 

biological variables measured in the Vaal Dam from 2000–2009.
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Figure 3
Prediction model and associated sensitivity analyses of real-time 
Microcystis sp. concentration in the Vaal Dam: (a) represents the 

sensitivity analysis of the THEN branch and (b) represents the sensitivity 
analysis of the ELSE branch

Figure 4
(a) Comparison between the measured Microcystis sp. concentration 

and predicted real-time Microcystis sp. concentration in the Vaal Dam 
using 25% (boot-strapped) of the 10-year development dataset .  

(b) Comparison between the measured Microcystis sp. concentration 
and predicted real-time Microcystis sp. concentration using 3 years’ 

‘unseen data’ from the Vaal Dam

of increased Microcystis sp. concentration showed a significant 
correlation; however, it seems that the Microcystis sp. concen-
tration is over-estimated somewhat by the model.

Microcystis sp. prediction 14 days in advance

The IF criterion of the best model developed for the predic-
tion 14 days in advance is determined by the chemical oxy-
gen demand (COD) (Fig. 7). The THEN branch of the model 

(Fig. 7a) represents the high-range rule set and shows the great-
est sensitivity towards the initial cyanobacteria inoculum. The 
ELSE branch of the model (Fig. 7b) represents the low-range 
rule set and shows the greatest sensitivity towards the initial 
cyanobacteria inoculum. The other variables in this model, 
namely dissolved oxygen (DO) and NH4

+ in the THEN branch 
and DO and water temperature (Temp) in the ELSE branch, 
display very little influence on the predicted Microcystis sp. 
concentration.

The comparison between the measured Microcystis sp. con-
centration and that of the results from the models predicting 
Microcystis sp. 14 days in advance, when using the 25% boot-
strapped testing dataset (Fig. 8a), shows a R2-value of 0.79 and 
a RMSE of 4 493.7 cells/mL. When the model was tested with 
3 years of ‘unseen data’ (Fig. 8b), the model showed a R2-value 
of 0.39 and a RMSE of 48 129.6 cells/mL. The event prediction 
of increased Microcystis sp. concentration together with the 
magnitude of the event showed a significant correlation.

Microcystis sp. prediction 21 days in advance

The IF criterion of the best model developed for the prediction 
21 days in advance, is determined by a combination of nutrients 
(PO4

3− and NH4
+) concentrations (Fig. 9). The THEN branch of 

the model (Fig. 9a) represents the low-range rule set and shows 
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the greatest sensitivity towards the initial cyanobacteria inocu-
lum. The ELSE branch of the model (Fig. 9b) represents the 
high-range rule set and shows the greatest sensitivity towards 
the initial cyanobacteria inoculum as well as the Si concentra-
tion, particularly during the lower 10% of the input range. 
The other variables in this model (dissolved oxygen (DO), Si, 
chlorophyll-a, and NO3

− in the THEN branch, and turbidity in 
the ELSE branch), display very little influence on the predicted 
Microcystis sp. concentration.

The comparison between the measured Microcystis sp. con-
centration and that of the results from the models predicting 
Microcystis sp. 21 days in advance, when using the 25% boot-
strapped testing dataset (Fig. 10a), shows a R2-value of 0.74 and 

Figure 5
The 7-day prediction model and associated sensitivity analyses for 
Microcystis sp. concentration in the Vaal Dam: (a) represents the 

sensitivity analysis of the THEN branch and (b) represents the sensitivity 
analysis of the ELSE branch

Figure 6
(a) Comparison between the measured Microcystis sp. concentration and 

predicted 7 days in advance Microcystis sp. concentration in the Vaal 
Dam using 25% (boot-strapped) of the 10-year development dataset . (b) 

Comparison between the measured Microcystis sp. concentration and 
predicted 7 days in advance Microcystis sp. concentration using 3 years’ 

‘unseen data’ from the Vaal Dam

a RMSE of 4 993.6 cells/mL. When the model was tested with 
3 years of ‘unseen data’ (Fig. 10b), the model showed a RMSE 
of 18 493.9 cells/mL and a R2-value of 0.25, which is not a good 
correlation. Neither event prediction nor the magnitude of the 
increased Microcystis sp. concentration demonstrated a signifi-
cant correlation when the 3 years of ‘unseen data’ were tested 
on the model.

Comparison between models

The frequencies of the different input variables used in the 
models to predict Microcystis sp. concentrations are displayed 
in Table 3, ranging from the most frequently included variable 
to that least frequently included in the models. 

The frequency distribution table (Table 3) indicates that the 
initial cyanobacteria concentration and the dissolved oxygen 
concentration were the variables most frequently used in the 
models to predict Microcystis sp. concentrations. Turbidity, and 
nutrients (NH4

+, NO3
− and PO4

3−), as well as Fe2+ and chloro-
phyll-a concentration, were used in 50% of the models. The rest 
of the variables (water temperature, conductivity, pH, Si, Mn2+ 
and COD) were only used in 25% of the models. 
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TABLE 3
Frequency at which input variables were used in models 

to predict Microcystis sp. concentrations

Variable used in models
Number of occurrences in  
Microcystis sp. prediction 

modelss

Frequency 
(%)

Cyanobacteria inoculum 
(Cyano) 4 100

Dissolved oxygen (DO) 4 100

Turbidity (Turb) 2 50

NH4
+ 2 50

PO4
3− 2 50

NO3
− 2 50

Fe2+ 2 50

Chlorophyll-a (Chla) 2 50

pH 2 50

Conductivity (Cond) 2 50

Water temperature (Temp) 1 25

Si 1 25

Mn2+ 1 25

COD 1 25

Figure 7
The 14-day prediction model and associated sensitivity analyses for 

Microcystis sp. concentration in the Vaal Dam: (a) represents the 
sensitivity analysis of the THEN branch and (b) represents the sensitivity 

analysis of the ELSE branch

Figure 8
(a) Comparison between the measured Microcystis sp. concentration 

and predicted 14 days in advance Microcystis sp. concentration in 
the Vaal Dam using 25% (boot-strapped) of the 10-year development 

dataset. (b) Comparison between the measured Microcystis sp. 
concentration and predicted 14 days in advance Microcystis sp. 

concentration using 3 years’ ‘unseen data’ from the Vaal Dam

Table 4 indicates the summary of the statistical and visual 
comparisons between the models tested with (i) the 25% of the 
original dataset chosen as testing dataset by bootstrapping and 
(ii) 3 years of ‘unseen data’ from follow-up years that were not 
used in the model development.

The square correlation coefficients (R2) decrease with 
increasing time prediction and overall the square correlation 
coefficients when testing the models with ‘unseen data’ did 
not correlate as well when compared to tests with the 25% 
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TABLE 4
Summary statistics and comparisons of the Microcystis sp. prediction models tested with (a) 25% bootstrapped results of 

the original dataset and (b) 3 years of ‘unseen data’

Models tested with... Microcystis sp. 
prediction model R2 RMSE Visual inspection:  

Satisfactory event prediction?

(a) 25% of the training dataset 
chosen by boot-strapping

Real time 0.95 2 462.2 ✓

7 days in advance 0.90 3 303.8 ✓

14 days in advance 0.79 4 493.7 ✓

21 days in advance 0.74 4 993.6 ✓

(b) 3 years ‘unseen’ dataset not 
used in the model development

Real time 0.97 4 766.6 ✓

7 days in advance 0.5 44 559.3 ✓

14 days in advance 0.37 48 129.6 ✓

21 days in advance 0.25 18 493.9 ✗

R2 = square correlation coefficient; RMSE = root mean square error

Figure 9
The 21-day prediction model and associated sensitivity analyses for 

Microcystis sp. concentration in the Vaal Dam: (a) represents the 
sensitivity analysis of the THEN branch and (b) represents the sensitivity 

analysis of the ELSE branch

Figure 10
(a) Comparison between the measured Microcystis sp. concentration 

and predicted 21 days in advance Microcystis sp. concentration in 
the Vaal Dam using 25% (boot-strapped) of the 10-year development 

dataset. (b) Comparison between the measured Microcystis sp. 
concentration and predicted 21 days in advance Microcystis sp. 

concentration using 3 years’ ‘unseen data’ from the Vaal Dam

randomly-chosen (bootstrapped) dataset. However, the visual 
inspection of the models showed good event prediction (with 
the exception of the model for 21 days in advance tested with 
the 3-year ‘unseen data’). The RMSE of the models increased 
with increasing prediction time (with the exception of the 
model for 21 days in advance tested with the 3-year ‘unseen 
data’). 
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DISCUSSION

Approximately 40% of the variation in the physical, chemical 
and biological data in the Vaal Dam from 2000–2009 could be 
explained by the first two axes of the two principle component 
analyses (Fig. 2) performed on the dataset used to develop the 
models. The PCA was performed in order to determine which 
of the variables would influence cyanobacteria and most prob-
ably be important as input variables for model development. 
The negative correlation of nutrients (NO2

−, NO3
−, NH4

+ and 
PO4

3−) to temperature (Temp), might be due to large cyanobac-
teria blooms in summer utilising and depleting the nutrients 
causing nutrient concentrations to be higher during winter 
times, when cyanobacteria or other phytoplankton concentra-
tions are lower in the Vaal Dam. Chlorophyll-a and pH cor-
relate positively indicating that increasing photosynthesis will 
inevitably increase the pH as CO2 is removed from the aquatic 
environment. The negative correlation between chlorophyll-a 
and dissolved oxygen is most probably due to temperature since 
the highest levels of DO were observed during winter, although 
it may also be due to aerobic bacterial activity when large 
numbers of phytoplankton cells are decomposed during and 
after blooms. The fact that the arrow representing chlorophyll-a 
subtends a ±90° angle towards the arrow representing tempera-
ture, indicates that high chlorophyll-a concentrations are not 
limited to a specific season (either high or low temperatures) 
but can vary throughout the year. The chemical and biological 
results from the Vaal Dam indicate that it is in a mesotrophic 
state, but chlorophyll-a concentrations as high as 194 µg/L have 
been detected in the Vaal Dam during this period (Table 1).

The variables used by the HEA to predict the Microcystis sp. 
concentration in the Vaal Dam were: the initial cyanobacte-
ria inoculum, dissolved oxygen (DO), turbidity (Turb), NH4

+, 
PO4

3−, NO3
−, Fe2+, chlorophyll-a (Chla), water temperature 

(Temp), conductivity (Cond), Secchi disk depth (Secchi), pH, Si, 
Mn2+, and chemical oxygen demand (in order of most to least 
frequently incorporated into the models – Table 3). The impor-
tance of these variables was also evident in the PCA which 
indicated that the nutrients, especially PO4

3−, NO2
−, NH4

+ and 
NO3

−, could explain the variation in the Microcystis sp. con-
centration and indirectly that of DO, due to photosynthesis 
and temperature. Initial cyanobacteria inoculum and dissolved 
oxygen were incorporated in all of the models predicting 
Microcystis sp. concentration, with the nutrient concentrations 
(NH4

+, PO4
3− or NO3

−) used separately or in combination in 
50% of the models. It should be noted, however, that at least one 
of the nutrients (either NH4

+, PO4
3− or NO3

−) is incorporated in 
all Microcystis sp. models, except the model predicting the real-
time concentration (Fig. 3). The reason for this may be that the 
real-time Microcystis sp. concentration cannot be influenced by 
a change in the nutrient concentration on that day, while the 
future occurrence of Microcystis sp. will inevitably be influ-
enced by the nutrient concentration in the water.

The sensitivity analyses of the models predicting the 
Microcystis sp. concentration indicate that the greatest sensi-
tivity is towards the initial cyanobacteria inoculum, Figs 3a 
and 4b, Fig. 5a and 5b, Figs 7a and 7b as well as Figs 9a and 9b. 
The initial cyanobacteria inoculum will have a large influence 
on the Microcystis sp. concentration, provided that the total 
cyanobacteria inoculum mostly comprises of Microcystis sp. 
cells (as is usually the case in the Vaal Dam). The 21 days in 
advance Microcystis sp. model also shows sensitivity towards 
the Si concentration, particularly during the first 10% of the 
silica input range. Silica might represent a secondary effect 

on Microcystis sp. concentrations, since Si is mostly utilised 
by diatoms in winter (Wetzel, 2001), when cyanobacteria like 
Microcystis sp. are not abundant in the Vaal Dam. 

The models predicting the occurrence of Microcystis sp. 
(Figs 4a, 6a, 8a and 10a) show relatively good square correlation 
coefficients (R2-values range from 0.95 at real-time prediction 
to 0.74 at 21-days prediction) when tested with the 25% boot-
strapped testing dataset from 2000–2009. Although the testing 
with the 3-year ‘unseen data’ (Figs 4b, 6b, 8b and 10b) did not 
show square correlation coefficients as high as when tested 
with the 25% boot-strapped results (R2values range from 0.97 
at real-time prediction to 0.25 at 21-days prediction), it was still 
regarded as a significant correlation (with the exception of the 
model for 21 days in advance). Overall, the square correlation 
coefficients decrease and the RMSE increase with increasing 
prediction times (Table 4), displaying the increase in uncer-
tainty over longer prediction periods. The visual inspection of 
the models was essential in determining the suitability of the 
model for further application (Bennet et al., 2013). 

Currently the Zuikerbosch DWTW managers and produc-
tion chemists are solely reliant on laboratory analyses of cyano-
bacteria cell counts, which (depending on sampling, distance 
and accessibility to laboratory, laboratory sample turn-around 
time and various other facts) may delay results for up to a week 
or even longer (Swanepoel et al., 2008). By the time the results 
become available, consumers might already have been exposed 
to cyanotoxins in their drinking water. With the prediction 
models, the managers and production specialists at DWTW 
can anticipate the occurrence of Microcystis sp. in the source 
water and start preparations before it happens. The models that 
would most probably have the greatest value when incorporated 
into the ‘Cyanobacteria Incident Management Protocol’ of the 
Zuikerbosch DWTW (Du Preez and Van Baalen, 2006) are 
the models predicting the Microcystis sp. 7 days in advance. A 
7-day advance warning gives the plant sufficient time to prepare 
for incidences of high cyanobacteria and their related metabo-
lites (e.g. microcystin) in the source water. 

CONCLUSIONS

The most important variables for predicting of Microcystis sp. 
in the Vaal Dam were shown to be initial cyanobacteria inocu-
lum and dissolved oxygen as they occur in 100% of the models. 
Initial cyanobacteria inoculum will determine how many cells 
are available for further bloom development. Dissolved oxygen 
is probably included due to the significant negative correla-
tion with cyanobacteria which usually blooms during higher 
temperatures. Nutrients (either PO4

3−, NH4
+ or NO3

−) are also 
important in predicting Microcystis sp. concentrations in 
advance (7–21 days). 

The models that most probably would have the greatest 
value when applied at the Zuikerbosch DWTW are the models 
predicting Microcystis sp. 7 days in advance, since those were 
the most accurate. Seven days is sufficient time to prepare for 
treatment of source water containing cyanobacteria and their 
related metabolites. 

It is evident that these predictive models will contribute 
significantly in anticipating and managing high Microcystis sp. 
concentrations in the source water supplying the Zuikerbosch 
DWTW. These models might also have application value to 
recreational water users, where event managers of large and 
small water-sport events can use such models to predict the 
Microcystis sp. concentration in the water whenever recrea-
tional events are planned.
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