
Available on website http://www.wrc.org.za
ISSN 0378-4738 = Water SA Vol. 34 No. 2 April 2008
ISSN 1816-7950 = Water SA (on-line)

199

*  To whom all correspondence should be addressed.
 (90) 246 211 1211; fax: (90) 246 237 0859;
e-mail: dogan@mmf.sdu.edu.tr, adogan@hawaii.edu
Received 24 November 2005; accepted in revised form 25 March 2008.

Prediction of groundwater levels from lake levels 
and climate data using ann approach

Ahmet Dogan1*, Husnu Demirpence1 and Murat Cobaner2

1Department of Civil Engineering, College of Engineering and Architecture, Suleyman Demirel University, Isparta 32260, Turkey 
2Department of Civil Engineering, College of Engineering and Architecture, Cukurova University, Adana 01330, Turkey 

Abstract 

There are many environmental concerns relating to the quality and quantity of surface and groundwater. It is very important 
to estimate the quantity of water by using readily available climate data for managing water resources of the natural environ-
ment. As a case study an artificial neural network (ANN) methodology is developed for estimating the groundwater levels 
(upper Floridan aquifer levels) as a function of monthly averaged precipitation, evaporation, and measured levels of Magnolia 
and Brooklyn Lakes in north-central Florida. Groundwater and surface water are highly interactive in the region due to the 
characteristics of the geological structure, which consists of a sandy surficial aquifer, and a highly transmissive limestone-
confined aquifer known as the Floridan aquifer system (FAS), which are separated by a leaky clayey confining unit.  In a lake 
groundwater system that is typical of many karst lakes in Florida, a large part of the groundwater outflow occurs by means of 
vertical leakage through the underlying confining unit to a deeper highly transmissive upper Floridan aquifer. This provides 
a direct hydraulic connection between the lakes and the aquifer, which creates fast and dynamic surface water/groundwater 
interaction.  Relationships among lake levels, groundwater levels, rainfall, and evapotranspiration were determined using 
ANN-based models and multiple-linear regression (MLR) and multiple-nonlinear regression (MNLR) models. All the models 
were fitted to the monthly data series and their performances were compared. ANN-based models performed better than MLR 
and MNLR models in predicting groundwater levels.
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Introduction

Assessment of the quality and quantity of both surface and 
groundwater is important in hydro-environmental management 
to sustain the natural systems and safe liveable environment on 
and under the earth’s surface.  Groundwater and surface water 
are fundamentally interconnected. This interconnection should 
be well understood to effectively and safely manage the precious 
groundwater and surface-water resources while benefiting from 
them.  Determining groundwater surface-water interactions is 
therefore crucial in water resources planning and management. 
The main factors affecting groundwater/surface water interac-
tion are the climate inputs (rainfall, evaporation demand), the 
surface characteristics of the basin (soil, vegetation and topog-
raphy) and the underlying geological structure, including the 
depth of the groundwater table below the surface.
	 Although parametric statistical rules and deterministic 
models have been the traditional approaches to forecasting 
water resources variables, many recent efforts have shown that 
when explicit information of hydrological sub-processes are 
not needed, such as infiltration, rainfall and runoff, an artificial 
neural network (ANN) model can be more efficient and effec-
tive (Maier and Dandy, 2000). Therefore, the ultimate objective 
of this research was to develop an ANN model for predicting 
groundwater levels from readily available observations without 
needing any information about the hydrological sub-processes. 	

	 An ANN model was developed in which lake levels, rain-
fall, and evapotranspiration data available for north central 
Florida were used as inputs, and the groundwater level around 
the lakes was used as output. The sensitivity of the prediction 
accuracy to the content and length of training data was investi-
gated. The multiple-linear regression (MLR), multiple-nonlinear  
regression (MNLR) and ANN models were fitted to the monthly 
data series and their performances were compared. ANN was 
found to model groundwater levels using limited data better than  
a statistical regression model for different lengths of training 
data.

Description of the study area

The study area is located in the Upper Etonia Creek Basin 
(UECB) of north central Florida which has an area of 446 km2 
and is noted for numerous lakes and karst features (Watson et 
al., 2001) and is part of the lower St. Johns River Basin. It lies 
between 29o37’ and 29o53’ north latitude and 81o51’ and 82o04’ 
west longitude (Sousa, 1997). Figure 1 shows the location of the 
lakes and in downstream order they are: Lowry Lake, Magnolia 
Lake, Lake Brooklyn, and Lake Geneva (Merritt, 2001).

Hydrogeology

The surficial deposits in the study area consist of unconsolidated 
to semi-consolidated sand and clayey sand marl of the Holocene, 
Pleistocene, and Pliocene ages (Clark et al., 1964). The deposits 
are underlain by the Hawthorn Group, a marine deposit of the 
Miocene age that consists of clay, quartz sand, carbonate, and 
phosphate. The Hawthorn Group is underlain by Ocala lime-
stone of the Eocene age.
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	 The groundwater system in the area generally consists of 
three hydrogeological units. The surficial aquifer is the upper-
most water-bearing unit. It occurs in the unconsolidated and 
semi-consolidated deposits, and it is hydraulically connected 
to streams and lakes throughout the basin. The underlying 
Hawthorn Group acts as a leaky confining unit overlying the 
limestone formation (Clark et al., 1964). The upper Floridan 
aquifer occurs in the Ocala limestone, which is part of the Flori
dan aquifer system (FAS), a major aquifer system that under-
lies Florida and is part of the adjacent states (Miller, 1986). 
Many of the lakes in the basin coincide with karst features that 
exist in the underlying limestone formation.  Lake and ground-
water levels in the surficial aquifer generally are higher than 
hydraulic heads in the upper Floridan aquifer and UECB is a 
major recharge area for the underlying upper Floridan aquifer 
(Watson et al., 2001).

Climate

The climate in the study area is classified as humid subtropical. 
The basin lies about 80 km north of the division between the 
tropical climate of the lower latitudes and the subtropical climate 
of the south-eastern United States. The average annual tempera-
ture is approximately 22oC.  The area receives more than half of 
its annual rainfall between June and September.  Precipitation 
in the winter and early spring is typically widespread associ-
ated with frontal activity (Sousa, 1997). Most of the rainfall in 
the summer is in the form of local showers and thunderstorms.  
A notable feature is that the average rainfall for June is about 
double the average rainfall for May (Clark et al., 1964).

Groundwater, surface-water and climate  
interaction

The sources of water for human activities are surface waters, 
which include all the lakes, streams and rivers that eventually 
flow into oceans. These waters are depleted by evapotranspira-
tion and replenished by precipitation as a part of the hydrologi-
cal cycle.  In recent years, because of droughts, the lake levels 
dropped, adversely affecting the fish and fauna of the lakes. In 
the region drinking water supply is obtained from groundwater, 
and therefore there was an increase in public awareness regard-
ing the exact relationship between groundwater pumping, lake 
levels, precipitation and evapotranspiration, and thus to take the 
necessary precautions to protect this vulnerable and valuable 
environment.
	 Groundwater is the major source of drinking and irrigation 
water in Florida. It also interacts closely with streams, sometimes 
discharging water into streams or lakes and sometimes receiving 
water from them. In fact, groundwater can be responsible for 
maintaining the hydrological balance of streams, springs, lakes, 
wetlands, and marshes.
	 If the interaction between groundwater and surface water is 
not well considered, some quantity and quality problems may 
occur in both surface and groundwater resources. An increasing 
quantity of groundwater is being withdrawn to meet the demands 
of a growing population, which may cause some typical threats 
such as overdraft, drawdown and subsidence. Overdraft occurs 
when groundwater is removed faster than recharge can replace 
it. Drawdown lowers the lake levels and dries up the wetland 
areas and even some streams, which are fed by groundwater.  
Subsidence is also one of the dramatic results of over-pumping. 
A basic threat to the quality of the groundwater is contamina-
tion, which may be caused by over- pumping, which results in 
saltwater or brackish water intrusion, or by not protecting the 
natural recharge areas of groundwater basins. Therefore ground-
water recharge areas and surface-water bodies interacting with 
groundwater should be well protected against any kind of con-
tamination.
	 The fluctuation of the lake levels in the study area is a func-
tion of the balance between the inflow and outflow components of 
the lakes. In a lake that interacts with both the surface-water and 
groundwater systems, the inflow components are precipitation, 
surface-water inflow, groundwater inflow, and overland flow, and 
the outflow components are lake evaporation, groundwater out-
flow, and surface-water outflow.  In a lake/groundwater system 
that is typical of karst lakes in Florida, a large part of the ground-
water outflow from lakes occurs by means of vertical leakage 
from the lake through an underlying semi-permeable confining 
unit to a deeper, highly transmissive limestone Floridan aquifer 
system (Watson et al., 2001 and Motz, 1998).
	 The relationship between a lake and groundwater is shown 
below in the water budget equation and in Fig. 2 for a lake such as 
Magnolia Lake in this study. The change in storage over a period 
of time is balanced by the sum of the inflows and outflows that 
occur for a given time period:

															               (1)

where:
 	 ∆S is change in storage
	 P is precipitation 
	 Is is surface-water inflow 
	 R is overland flow into lake 
	 Ig is groundwater inflow from the surficial aquifer 

Figure 1
Location of the study area
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	 E is lake evaporation 
	 Os is surface-water outflow 
	 Og  is groundwater outflow to the surficial aquifer 
	 L is vertical leakage through the confining unit to the under-

lying aquifer.

Groundwater levels around the lake are functions of Ig and Og, 
and L in Eq. (1). To calculate the groundwater levels, first of all, 
the water budget equation (Eq. (1)) needs to be solved, then the 
Ig, Og and L should be substituted in the partial differential form 
of the groundwater flow equation (Dogan and Motz, 2005):

															                   (2)

where:
 	 h is the pressure head of the aquifer 
	 K is the hydraulic conductivity of aquifer in the x-, y-, and 	
	 z-directions 
	 Ss is the specific storage coefficient.

The combined solution of Eqs. (1) and (2) is complex and 
requires the use of numerical models depicting the groundwater/
surface-water interaction. An ANN is an alternative, easy and 
fast way to model the parameters without using any complex 
mathematical model. Measurements of lake levels, groundwa-
ter levels, evapotranspiration and rainfall can be obtained eas-
ily and cost effectively when compared to measurements of the 
soil characteristics, initial soil moisture, infiltration, and other 
groundwater characteristics, which are required for numerical 
models. Therefore, a model that uses only available real-time 
data, i.e. an ANN model, would be more easily applied in the 
operational forecast system. 
	 The ANN method has been successfully applied to civil 
engineering problems such as rainfall-runoff modelling (Tokar 
and Johnson, 1999), streamflow prediction (Chibanga et al., 
2003; Kisi and Cigizoglu, 2007), suspended sediment modelling 
(Tayfur 2002; Kisi 2005), breakwater damage ratio estimation 
(Yagci et al., 2005), prediction of local scour around bridge piers 
(Kambekar and Deo, 2003; Choi and Cheong 2006; Bateni et al., 
2007; Lee et al., 2007), modelling combined open channel flow 
(Yang and Chang, 2005), predicting properties of concrete (Dias 
and Pooliyadda, 2001), forecasting rainfall patterns in space and 
time (French et al., 1992), determining aquifer parameter values 
from normalised drawdown data obtained from pumping tests 
(Aziz and Wang, 1992) and predicting water table elevations in 
subsurface-drained farmlands (Yang et al., 1997).

Artificial neural network (ANN)

In general, the architecture of the multilayer feed-forward neu-
ral network can have many layers where a layer represents a set 
of parallel processing units (or nodes). The three-layer ANN  
(Fig. 3) used in this study contains only one intermediate (hid-
den) layer. A multilayer ANN can have more than one hidden 
layer; however, many experimental results have shown that a 
single hidden layer may be enough for most forecasting prob-
lems. It is the hidden layer nodes that allow the network to detect 
and capture the relevant patterns in the data, and to perform 
complex non-linear mapping between the input and the output 
variables. The sole role of the input layer of nodes is to relay 
the external inputs to the neurons of the hidden layer. Hence the 
number of input nodes corresponds to the number of input vari-
ables. The outputs of the hidden layer are passed to the last (or 
output) layer, which provides the final output of the network. A 
network with very few hidden nodes will have difficulty learn-
ing the data, while a too complex network tends to over-fit the 
training samples and thus has a poor generalisation capability. 
Finding a parsimonious model for accurate prediction is particu-
larly critical since there is no formal method for determining the 
appropriate number of hidden nodes prior to training. A trial-
and-error method commonly used for network design (Tokar 
and Johnson, 1999) is used in this study. 

Back-propagation training 

In the prediction context, multilayer feed-forward neural net-
work training consists of providing input-output examples to 
the network, and minimising the objective function (i.e. error 
function) using either a first-order or a second-order optimisa-
tion method. Training can be formulated as one of minimising 
function of the weight, the sum of the non-linear least squares 
between the observed and the predicted outputs defined by:

															                   (3)

where:
 	 n is the number of patterns (observations) 
	 Yo represents the observed response (target output) 
	 Yp the model response (predicted output).
 
In the back propagation training, minimisation of the error func-
tion E in Eq. (3) is attempted using the steepest descent method 
and computing the gradient of the error function by applying 
the chain rule on the hidden layers of the feed forward neural 
network. Considering a typical multilayer feed forward neural 
network whose hidden layer contains M neurons, the network 
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Figure 2
Water-budged components for a typical lake interacting 

with groundwater

Figure 3
Typical ANN configuration with one hidden layer
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can be formed based on the following equations:

															                   (4)

															                   (5)

where: 
	 netPJ is the weighted inputs into the jth hidden unit 
	 n is the total number of input nodes
	 Wji is the weight from input unit i to the hidden unit j 
	 xpi is a value of the ith input for pattern P, Wjo is the threshold 

(or bias) for neuron j 
	 g (netPJ ) is the jth neuron’s activation function assuming that 

g is a logistic function  

Note that the input units do not perform operation on the infor-
mation but simply pass it onto the hidden nodes. The output unit 
receives a net input of:

															                 (6.a)

															                 (6.b)

where:
 	 M is the number of hidden units
	 Wkj represents the weight connecting the hidden node j to the 

output k 
	 Wko is the threshold value for neuron k 
	 ypk is the kth predicted output 

Recalling that the ultimate goal of the network training is to 
find the set of weights Wji connecting input units i to the hid-
den units j, and Wkj connecting the hidden units j to output k, 
that minimise the objective function (Eq.(3)). Since Eq.(3) is not 
an explicit function of the weights in the hidden layer, the first 
partial derivatives of E in Eq.(3) are evaluated with respect to the 
weights using the chain rule, and the weights are moved in the 
steepest-descent direction. This can be formulated mathemati-
cally as:

															                   (7)

where:
	 η is the learning rate, which scales the step size. The usual 

approach in back propagation training comprises choosing 
η  according to the relation 0< η <1 (Zealand et al., 1999) 

Selection of training and testing set

ANNs are data-intensive and learn the underlying physics of 
the system of interest from the training samples which are basi-
cally the cause-effect samples. Therefore, the number of training 
samples significantly influences a network’s predictive perform-
ance. Increasing the number of training samples provides more 
information about the shape of the solution surface and thus 
increases the potential level of accuracy that can be achieved 
by the network. Having too few data samples will lead to poor 
generalisation by the network. An optimal data set for training 
would be the one that represents the modeling domain and has 
the minimum number of repetitive samples in training (ASCE 
Task Committee, 2000).
	 A training and a test sample are typically required for build-
ing on ANN forecaster. The training sample is used for ANN 
model development and the test sample is adopted for evaluat-

ing the forecasting ability of the model. Sometimes a third one 
called the validation sample is also utilised to avoid the over-
fitting problem. It is common to use one test set for both valida-
tion and testing purposes particularly with small data sets.
	 There is no general rule to the problem of division of the 
data into training and data sets, several factors such as the prob-
lem of structure, the data type and the size of the available data 
should also be considered in making the decision. It is critical to 
have both the training and test sets representative of the popula-
tion or underlying mechanism. This has particular importance 
for time series forecasting problems. Inappropriate separation 
of the training and test sets will affect the selection of optimal 
ANN structure and the evaluation of the forecasting perform-
ance (Zhang et al., 1998).
	 The literature offers little guidance in selecting the size of 
training and the test sample.  Most authors select the ratio of train-
ing data vs. testing data depending on their particular problems. 
Garr et al. (1994) employed a bootstrap re-sampling design method 
to partition the whole sample into 10 independent sub-samples. 
The estimation of the model is implemented using 9 sub-samples 
and then the model is tested with the remaining sub-sample.
	 The accuracy of a particular forecasting problem may be 
also affected by the sample size used in the training and/or test 
set.  Nam and Schaefer (1995) tested the effect of different train-
ing sampling sizes and found that as the training sample size 
increases, the ANN forecaster performs better.

Limitations of ANN

ANN modelling should be used with care and an understand-
ing of  its strength and limitations. ANNs are capable of map-
ping relations within the range of values comprising the training 
space used in the training data set, a problem of interpolation. 
The ability of an ANN to extrapolate is limited when the input 
values in the prediction phase are far from the domain of the 
training data set. In this sense an ANN is not very capable when 
it comes to extrapolation.  
	 An ANN model has a major drawback compared to physi-
cally based models, in that a new input variable that was not used 
in the training phase cannot be introduced to the model in the 
prediction phase, i.e. the number of input variables should be the 
same during the training and prediction phases.  If the scope of 
the problem changes, such as the addition of a new groundwater 
extraction well or a change in the land use, training must be 
repeated with this new information. The weight space in ANN 
cannot remain static after completion of the training. 		
	 If the relationship between the input and output variables is 
very simple or nearly linear there would have been no need for 
using ANN.  In such cases, although an ANN may perform well, 
it is quite possible that it may have a mathematically indetermi-
nate neural network structure (Sha, 2007).
	 The lack of physical concepts and relationships in ANNs can 
sometimes be considered a limitation, while at other times an 
advantage, frequently the source of skeptical attitudes towards 
this methodology.  This aspect can be an advantage when the 
physical relationships between variables cannot be modeled 
mathematically but easily modeled by ANN, yet the physics 
behind the relationships cannot be explained by ANN. 

ANN application for prediction of groundwater 
levels in North Central Florida

The variables monthly variation in Magnolia lake level (MLL), 
in Brooklyn lake level (BLL), rainfall (RF), and evapotranspi
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ration (ET) were selected to describe the physical phenomena of 
the groundwater/surface-water interaction process, in order to 
forecast groundwater levels (GWL) using an ANN.
	 The first critical decision is to determine the appropriate net-
work architecture, that is, the number of layers and the number 
of nodes in each layer. In this study, the input layer has 4 neurons 
representing MLL, BLL, RF, and ET; the output layer has 1 neu-
ron representing GWL.
	 The hidden layer and nodes play very important roles for 
many applications of ANN. It is hidden nodes in the hidden layer 
that allow neural networks to detect the feature, to capture the 
pattern in the data, and to perform complicated non-linear map-
ping between input and output variables. There are few guide-
lines on how many hidden nodes are needed to approximate any 
given function, but it is widely recognised that a single hidden 
layer is often sufficient for an ANN to approximate any complex 
non-linear function with any desired accuracy. Here, the 3-layer 
ANN with 1 hidden layer and the commonly used trial- and-
error method to select the number of hidden nodes were used. 
The trial-and-error procedure started with 2 neurons initially 
and the number of hidden neurons was increased up to 10 with 
step size of one in each trial. For each set of hidden neurons, 
the network was trained in a batch mode to minimise the mean 
square error at the output layer. In this study, the tangent sig-
moid, logarithmic sigmoid and pure linear transfer functions 
were tried as activation functions for hidden and output layer 
neurons to determine the best network model. 
	 Preprocessing of the data is usually required before present-
ing the data samples to the network model when the neurons 
have a transfer function with bounded range. The reasons for 
scaling of the data samples can be described as to initially equal-
ise the importance of variables and to improve interpretability of 
network weights (Goh, 1995). In this study, the data were scaled 
by using the following equation; 

															                   (8)

where:
 	 xmin and xmax denote the minimum and maximum values of 

the overall experimental data 

Different values can be assigned for the scaling factors a  
and b. There are no fixed rules as to which standardisation 
approach should be used in particular circumstances (Dawson 
and Wilby, 1998). The factors a and b were taken as 0.6 and 0.2 
herein, respectively.
	 Data from 364 months (May 1968 to August 1998) were 
used for ANN training and testing. Monthly MLL and BLL 
were obtained from lake level measurements of Magnolia and 
Brooklyn lakes respectively. RF and ET values were obtained 
from the monthly records of Gainesville, FL, 32 km southwest 
of study area. Monthly GWL values were obtained from head 
values measured in the ‘Keystone well’ (SJRWMD identifier 
C-0120) by the Saint Johns River Water Management District 
(SJRWMD). Well C-0120 is located on the eastern shore of Lake 
Brooklyn. Since the selection of training and testing data has a 
potentially large impact on the model accuracy, different lengths 
of training and testing data were assessed in this study. The total 
data set of 364 monthly values was divided into 5 training and 
testing sets. The first consisted of 300 training values (64 test-
ing values), while the others consisted of  250, 200, 150 and 100 
training values, respectively. The range of the the studied vari-
ables is presented in Table 1. 

In this study, the Levenberg-Marquardt optimisation technique 
was employed which is more powerful than the conventional 
gradient descent techniques (Hagan and Menhaj, 1994; Cigi-
zoglu and Kisi, 2005; Alp and Cigizoglu, 2007). The information 
related to the theory and applications of ANNs may be found in 
Rumelhart et al. (1986), Sudheer et al. (2003), Cigizoglu and Kisi 
(2005) and Fang and Wu (2007).

Results and discussion

The observed values of monthly variations in GWL depend on 
MLL, BLL, RF, and ET measurements. Hence, the statistical 
model of multiple linear regression (MLR) and multiple non-lin-
ear regression (MNLR) were employed to estimate the ground-
water levels from the corresponding above measurements and 
to compare them with the ANN results. If GWL is a dependent 
variable, and MLL, BLL, RF, and ET are independent variables, 
then the MLR and MNLR models, respectively, are given by:

	 GWL= a + b1 MLL + b2 BLL + b3 RF + b4 ET + ε	 	     (9)

	 GWL= a x MLL b5 x BLL b6 x RF b7 x ET b8 x ε			     (10)

where:
 	 a, bi are constants
	 ε, the ‘noise’ variable, is a normally distributed random  

variable with a mean equalling zero

The best-fit network for each model was selected based on vari-
ous statistical goodness of fit indices. The goodness of fit sta-
tistics that were used in the selection of the best fit networks 
are mean absolute error (MAE), root mean square error (RMSE) 
and coefficient of determination (R2) expressed as:

															                  (11)

															                  (12)

															                  (13)

where:
	 Subscripts m and s represent the measured and simulated 

outputs, respectively
	 p is total number of events considered 
	 x is mean value of the measured data 

ANN predictions are precise, as R2 value approaches 1 while 
RMSE and MAE approach zero.
	 The values of performance measures for the five  
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models in the training and test-
ing set are shown in Tables 2 
and 3, respectively. In the ANN 
models presented in this study, 
it was observed that the effect 
of the length of training data 
on the network accuracy was 
not as dramatic as the effect of 
the content of the training data. 
Comparing the performance of 
5 ANN models in the training 
phase all the models performed 
in a more or less similar way. 
In the testing phase, the most 
obvious trend is increasing 
MAE with increasing number 
of data in the testing set (i.e. 
a decreasing number of train-
ing data). It is obvious that 
the network’s training ability 
is proportional to the number 
of data in the training phase. 
On the contrary, with less 
training data and more testing 
data, RMSE and MAE values 
become worse in the testing 
phase and they are almost the 
same in the training phase. 
	 From Tables 2 and 3, the 
ANN-1 model has the best 
performance measures in the 
training and testing phases. 
R2 values range from 0.918 to 
0.905, meaning that good pre-
dictions with relatively small 
errors have been achieved in both training and testing phases. 
In ANN-1 model, the minimum RMSE and MAE values are 
obtained (0.250 and 0.184) in the testing phase. The worst pre-
dictions occur in ANN-4 and ANN-5 models in the testing phase 
because of the relatively smaller number of training data.

TABLE 2
MAE, RMSE and R2 statistics for the MLR, MNLR and ANN models for training phase

Model Training 
data 

number

MLR MNLR ANN
MAE (m) RMSE 

(m)
R2 MAE (m) RMSE 

(m)
R2 MAE (m) RMSE 

(m)
R2

1 300 0.285 0.344 0.878 0.292 0.351 0.873 0.232 0.290 0.918
2 250 0.254 0.303 0.845 0.261 0.311 0.841 0.231 0.278 0.870
3 200 0.224 0.267 0.891 0.252 0.305 0.887 0.217 0.260 0.908
4 150 0.247 0.290 0.871 0.438 0.519 0.868 0.220 0.257 0.897
5 100 0.216 0.251 0.766 0.270 0.330 0.749 0.142 0.182 0.878

TABLE 3
MAE, RMSE and R2 statistics for the MLR, MNLR and ANN models for testing phase

Model Testing 
data 

number

MLR MNLR ANN
MAE (m) RMSE 

(m)
R2 MAE (m) RMSE 

(m)
R2 MAE (m) RMSE 

(m)
R2

1 63 0.358 0.423 0.836 0.354 0.420 0.828 0.184 0.250 0.905
2 113 0.459 0.584 0.841 0.459 0.574 0.840 0.283 0.332 0.883
3 163 0.448 0.565 0.852 0.413 0.549 0.854 0.315 0.371 0.909
4 213 0.386 0.493 0.848 0.433 0.599 0.849 0.323 0.394 0.852
5 263 0.378 0.478 0.840 0.876 0.960 0.840 0.400 0.495 0.749

Figure 4
Observed and predicted monthly groundwater levels for MLR-1, 

MNLR-1 and ANN-1 models in the training phase.
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	 Tables 2 and 3 also compare the performance of the ANN 
models with the MLR and MNLR models. In general, the ANN 
models performed better than the MLR and MNLR models. 
Among the MLR and MNLR models, the trained models for the 
300 months resulted in a good degree of correlation between 
the measured and estimated monthly groundwater levels for the 
testing phase. The RMSE obtained from the MNLR-1 model 
was equal to 0.420, which is smaller than the MLR-1 model 
value (0.423). 
	 Comparison of observed and calculated results of MLR-1, 
MNLR-1 and ANN-1 models for monthly groundwater level 
around the lakes in the testing and training phases are shown 
in Figs. 4 and 5, respectively. The ANN-1 model matches the 
observed monthly groundwater levels more closely than the 
MLR-1 and MNLR-1 models, while the 2 regression models tend 
to underestimate high values, and overestimate low values in 
both the training and testing phases. Figure 5 also shows that the 
ANN-1 model, in the testing phase, overestimates the very low 
groundwater level changes and estimates accurately the medium 
groundwater levels. In spite of this, the ANN-1 model tends to 
have no larger deviations from the observed levels than those of 
the MLR-1 and MNLR-1 models. 
	 Time series and scatter plots of the observed vs. predicted 
results of MLR-5, MNLR-5 and ANN-5 models, which have 100 
training data and 263 testing data, are shown in Figs. 6 and 7 for 
the training and testing phases, respectively. As illustrated in 

Fig. 6, the MLR-5 and MNLR-5 
models tend to more deviations 
than those of the ANN-5 model 
during the training phase 
and underestimate for high 
groundwater levels. Although 
the ANN-5 model has larger 
deviations than those of the 
MLR-5 and MNLR-5 models 
during the testing phase (Fig. 
7), the results are subject to 
less systematic error. The 
MLR-5 and MNLR-5 models 
tend to fit the lower ground-
water levels, but overestimate 
the medium and high flows in 
the testing phase. In contrast 
to the training phase, ANN-5 
model performance in the 
testing phase is poor (Fig. 7). 
The decreasing accuracy of 
the ANN-5 model compared 
with that of the ANN-1 model 
can be attributed to the larger 
amount of data used for train-
ing the ANN-1 model.

Conclusions

ANNs are relatively new 
computational tools that have 
found extensive utilisation in 
solving many complex real-
world problems and are very 
attractive due to their remark-
able learning and generali-
sation capabilities even for 
highly non-linear problems. 

	 Monthly variations in the Magnolia and Brooklyn Lakes  
levels, rainfall and evapotranspiration were selected to describe 
the physical phenomena of groundwater/surface water interac-
tion in order to forecast monthly groundwater levels.  The sen-
sitivity of the prediction accuracy to the length of training and 
testing data was investigated. In order to ensure that the network 
has properly mapped input training data to the target output, it 
is essential that the set of patterns presented to the network is 
appropriately selected to cover a good sample of the training 
domain. A well-trained network is one which is able to respond 
to any unseen pattern within an appropriate domain. There are 
no acceptable rules to determine the optimum size of the train-
ing data set. The results show that the networks are not very 
sensitive to the number of training data, but very sensitive to 
the number of testing data. Attempts at reducing training size 
resulted in poor generalisation capabilities in the testing phase. 
	 MLR, MNLR and ANN models were fitted to the monthly 
data series and their respective performances were compared. 
The use of 5 different ANN models with different lengths of 
training and testing data resulted in a better performance to 
model groundwater levels in either the training phase or test-
ing phase in comparison to the MLR and MNLR models, except 
for the last ANN model. This result can be explained by having 
a lower number of minimum and maximum GWL data in the 
training phase than those in the testing phase, since, in the train-
ing phase, the ANN could not learn the pattern of maximum and 

Figure 5
Observed and predicted monthly groundwater levels for MLR-1, MNLR-1 and 

ANN-1 models in the testing phase.
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minimum GWL and performs worse in the testing phase.
	 The validations of the developed networks show that with 
respect to predicting groundwater levels, the ANN model per-
forms better than the conventional statistical MLR and MNLR 
models. The comparison of the results shows that MAE and 
RMSE statistics for ANN-1 model (0.184 and 0.250) are smaller 
than those obtained by MLR (0.354 and 0.420) and MNLR (0.358 
and 0.423) models, respectively. It may be concluded that if the 
length of training data is sufficient, then the ANN performance 
is the best to model the groundwater levels. The ANN model 
can therefore be used as a very good tool to predict groundwater 
levels using easily measurable climate data and lake levels.
	 Although the ANN is a very good tool in hydrologic appli-
cations, it has some limitations compared to a physically based 
hydrologic model.  It can never replace a physically based 
model when considering future simulation scenarios involving 
the addition of new parameters in the model such as ground-
water withdrawals, changes in land use and irrigation patterns, 
etc.  The ANN model in this study is trained without using 
groundwater abstraction information.  Assuming that patterns 
of groundwater abstraction in the training period remain the 
same during the future, this model can estimate GWL reason-
ably well as a function of MLL, BLL, RF, and ET only.  On the 
other hand the ANN cannot estimate GWL for different future 
scenarios of groundwater abstraction scenarios.  In that case, 
the training should be repeated including groundwater abstrac-
tion data in the training data set, which were not available for 

this study.  Unfortunately this is one of the major drawbacks of 
an ANN model. Nonetheless, ANN models are still very attrac-
tive tools to estimate GWL using limited available data, when 
it is not possible to apply a physically based hydrologic model 
due to the unavailability of complete hydrological and hydro-
geological parameters.
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