Optimisation of soybean peroxidase treatment of 2,4-dichlorophenol

K Kennedy*, K Alemany and M Warith
Dept of Civil Engineering University of Ottawa, Ottawa, Canada

Abstract

In the presence of hydrogen peroxide (H$_2$O$_2$), peroxidase enzymes (PE) catalyse the oxidation of various chlorinated phenols to free radicals, which then combine to form insoluble polymers that precipitate out of solution. This study systematically characterises the treatment of 2,4-dichlorophenol (2,4-DCP) using soybean peroxidase (SBP) as an oxidising catalyst. The effects of pH, SBP concentration, polyethylene glycol (PEG) additive and initial chlorophenol concentration on 2,4-DCP treatments are reported. Optimum pH for removal of 2,4-DCP without PEG was pH 8.2. The pH operating range of SBP was from 2.5 to 9.4 which is wider than reported for horseradish peroxidase (HRP). A general equation is presented that describes the units of SBP required (without PEG) to treat a given amount of 2,4-DCP at the optimum pH of 8.2. Addition of PEG increased the effectiveness of SBP by factors of 10 and 50 for PEG-3350 and PEG-8000 respectively. A new pH optimum of 6.2 was also found when SBP was used with PEG. Batch and semi-batch enzyme delivery has also been identified as a crucial parameter for the SBP treatment process. The most effective addition scheme was based on five equal concentrations of SBP and H$_2$O$_2$ over 15 min and 30 min intervals respectively compared to a single batch addition. This protocol was the most effective as it took advantage of limiting the amount of SBP and H$_2$O$_2$ available at each step. This reduces the possible chance of SBP inactivation by excessive H$_2$O$_2$ when using a single batch concentration. Average 2,4-DCP removals achieved were 83.5%, 75.5% and 71.5% for 100, 200 and 300 mg/l, 2,4-DCP concentrations respectively compared to 62%, 52% and 58% for the single batch addition control.

Introduction

In the presence of hydrogen peroxide (H$_2$O$_2$), peroxidase enzymes (PE) catalyse the oxidative polymerisation of phenols, anilines and other aromatics to insoluble oligomers (Dunford and Stillman, 1976). These insoluble oligomers can then be removed through a simple sedimentation or filtration system (Klibanov et al., 1980,1983; Dordick et al., 1980). The kinetics of the peroxidase cycle has been previously described (Dunford and Stillman, 1976; Banci 1997). To date, the majority of the experiments performed have used horseradish peroxidase (HRP) in the treatment of wastewater contaminated with phenols, cresols and chlorinated phenols (Aitken, 1993). However, researchers are currently studying PE from various sources in an effort to study the characteristics of the process and to test the validity of other PE sources (Aitken, 1993). Recently, peroxidase from soybean has been suggested as an alternative to horseradish peroxidase (HRP). A general equation is presented that describes the units of SBP required (without PEG) to treat a given amount of 2,4-DCP at the optimum pH of 8.2. Addition of PEG increased the effectiveness of SBP by factors of 10 and 50 for PEG-3350 and PEG-8000 respectively. A new pH optimum of 6.2 was also found when SBP was used with PEG. Batch and semi-batch enzyme delivery has also been identified as a crucial parameter for the SBP treatment process. The most effective addition scheme was based on five equal concentrations of SBP and H$_2$O$_2$ over 15 min and 30 min intervals respectively compared to a single batch addition. This protocol was the most effective as it took advantage of limiting the amount of SBP and H$_2$O$_2$ available at each step. This reduces the possible chance of SBP inactivation by excessive H$_2$O$_2$ when using a single batch concentration. Average 2,4-DCP removals achieved were 83.5%, 75.5% and 71.5% for 100, 200 and 300 mg/l, 2,4-DCP concentrations respectively compared to 62%, 52% and 58% for the single batch addition control.

While application of SBP is still in its infancy, exploratory studies have been reported. Taylor et al. (1996) provided a limited comparison of HRP and microbial peroxidase to SBP for treatment of phenols and reported that SBP was an effective alternative. This work was followed by two reports that studied the removal of a variety of phenols from wastewater using SBP and a comparative cost analysis of phenols treated individually and separately by SBP, HRP and microbial peroxidase (Taylor et al., 1996,1998, Caza et al., 1999). McEldoon and Dordick (1996) reported that SBP demonstrated unusually high thermal stability that could expand its industrial applications. Recently studies by Wright and Nicell (1999) and Kinsley and Nicell (2000) have also compared the benefits of using SBP over HRP for treatment of phenols as well as demonstrating the benefits of polyethylene glycol (PEG) for the protection of SBP activity.

The SBP treatment process is still in the experimental stage so researchers are continually studying and optimising treatment efficiency while studying other characteristics of the process. The influence of pH, initial chlorophenol concentration, type of chlorophenol, application of protective additives mode of addition and temperature are all factors that influence the applicability of this technology (Al-Kassim et al., 1993a b, 1994a, 1994b, 1995; Caza et al., 1999). It is hypothesised that the particulate that forms and precipitates out of solution, entraps the SBP and thereby renders it inactive. To prevent such entrapment, high-molecular mass additives such as PEG can be used to bind with the forming polymers and prevent the PE from becoming entrapped (Wright and Nicell, 1999 and Kinsley and Nicell, 2000). It has been reported that PEG with a molecular mass less than 1,000 is ineffective at protecting HRP when treating phenol and that PEG with a molecular mass of 7,500 (PEG-7500) is more efficient than PEG-1000 (Nakamoto and Machida, 1992). Other researchers have continued this research using PEG-3350 (Wu et al., 1993; Ibrahim et al., 1997). However, there is no supporting documentation that suggests that PEG-3350 is more suitable than PEG-7500. A recent study has shown that SBP in the presence of PEG with higher molecular masses than 7,500 can achieve better efficiency in the removal of phenol from solution (Kinsley and Nicell, 2000).

The effect of pH on HRP catalysing phenol in the presence of PEG has been documented (Bewtra et al., 1995; Dec and Bollag, 1994a,b). The effect of pH on HRP catalysing different chlorinated
phenols without an additive present has also been reported and the
results indicate that the optimum pH of the reaction is not only
dependent on the enzyme in question, but it is also dependent on
the substrate involved (Dec and Bollag, 1990). Recent studies using
SBP have accepted the optimum pH conditions determined for
HRP (pH 6.5) as being optimum for SBP (Kinsley and Nicell,
2000). While this certainly may be the case, studies have not been
performed to support this assumption. In this study the effect of a
range of pHs without PEG and a range of PEGs with various
molecular weights on SBP treatment of 2,4 dichlorophenol (2,4-
DCP) is reported.

The effects of reactor set-up and mode of operation have been
described for HRP (Nicell et al., 1993) but information is limited
for SBP (Al-Kassim et al., 1994a). By controlling the amount of
enzyme and/or H$_2$O$_2$ available to the reaction by adding the SBP
for SBP (Al-Kassim et al., 1994a). By controlling the amount of
described for HRP (Nicell et al., 1993) but information is limited
for SBP (Al-Kassim et al., 1994a). By controlling the amount of
and/or H$_2$O$_2$ available to the reaction by adding the SBP
and/or the H$_2$O$_2$ in a semi-batch mode, there is the possibility of
limiting the amount of SBP inactivation that may occur.

This study focuses on SBP and a comprehensive evaluation of
optimum conditions including temperature, pH, enzyme
concentration, substrate concentration, additive concentration (PEG)
and molecular mass as well as mode of SBP application for
treatment of 2,4-DCP.

Materials and methods

Soybean peroxidase, catalase 30% w/w, 2,4-DCP, polyethylene
glycol (PEG) and H$_2$O$_2$ were purchased from Sigma Chemicals and
stored at 4°C. Activity of the SBP enzyme was 70 units/mg solid
(one unit decomposes 1.0 µmole of purpuragallin per min at pH 7.0
and 25°C) and the SBP had a Reinheitszahl (RZ) value of 1.3. The
RZ value is a measure of heme content in the enzyme (Sigma,
1998). Catalase had an activity of 21 000 units/mg solid (one unit
decomposes 1.0 µmole of H$_2$O$_2$ per min at pH 7.0 and 25°C).

A primary stock solution containing 1,000 mg/l of 2,4-DCP
was prepared using Milli-Q water. The final solution was transferred
to a 125 ml glass bottle with a Teflon cap, and stored at 4°C.
Secondary solutions containing 125 mg/l of 2,4-DCP were prepared
at specific pH’s. Secondary solutions with a pH of between 9.0 and
7.2 were buffered using a Tris/HCl buffer and solutions with a pH
of between 7.0 and 2.6 were prepared using dibasic sodium
phosphate (DSP)/citric acid buffer (Gomori, 1955).

SBP stock solutions containing 50 units/ml of SBP were made
up with Milli-Q water and kept at 4°C in the dark to reduce any
degradation of the enzyme and were removed only to make
dilutions for experiments. Secondary SBP solutions were prepared
by diluting the primary SBP stock with Milli-Q water to the desired
final concentrations.

Primary stock solutions of 50 g/l of PEG of various molecular
masses were prepared by dissolving PEG in Milli-Q water. This
mixture was diluted to the desired concentration in the secondary
enzyme stock solutions.

Batch tests

Batch experiments were performed in 30 ml flat bottom clear glass
vials with Teflon caps, with a final solution volume of 25 ml. The
final reaction solutions were comprised of two parts:

- 20 ml of buffered 2,4-DCP solution
- 5 ml of enzyme solution (with or without PEG)

H$_2$O$_2$ was added to the 25 ml solution to give an equivalent 1:1
molar ratio with the 2,4-DCP, in order to activate the SBP enzyme.

Samples were placed on a covered shaker set to 50 r/min for 3 h to
ensure good mixing and to prevent light from decomposing the
H$_2$O$_2$. Cooper and Nicell (1996) reported that 3 h was sufficient
time to allow the reaction to go to completion. The 1:1 ratio of
H$_2$O$_2$:2,4-DCP was reported to be the optimum concentration ratio
(Nicell et al., 1992). However, this was verified with a time-
dependent test in this study. Less H$_2$O$_2$ would be a limiting
condition whereas, excessive H$_2$O$_2$ concentrations lead to the
deactivation of the enzymes due to the formation of Compound III,
an enzymatic state in which the enzyme does not recover and is
considered to be deactivated (Arnau et al., 1990). After 3 h the
reaction was halted by the addition of catalase in a 1:1 molar
equivalent ratio with the substrate to decompose the H$_2$O$_2$. A 1 ml
sample was drawn from the solution and filtered through a 2 µm
GV13 millipore filter for high pressure liquid chromatography
(HPLC) analysis. Experimental conditions used throughout the
experiments (unless noted) are summarised in Table 1.

Reuse of SBP by applying additional substrate

Batch experiments were also performed to determine if SBP
maintains its activity (i.e. be reused) when additional 2,4-DCP
substrate is added at 1 h intervals. Experiments were performed
at pH 6.2, room temperature SBP = 0.01 units/ml; PEG-8000 = 1.0
g/l; 2.4-DCP = 100 mg/l and H$_2$O$_2$ = 1:1 molar ratio with substrate.
After 1 h, a sample was drawn for HPLC analysis and an additional
20 ml of substrate (2.5 mg 2,4-DCP) was added to the mixture along
with a new concentration of H$_2$O$_2$. After 1 h, this step was repeated.
After 3 h a sample was drawn but no further substrate was added.
A final sample was drawn after 5 h for analysis. This entire process
was performed in duplicate (Test #1 and Test #2).

Mode of SBP, and H$_2$O$_2$ application

These experiments examined the effect of different modes of SBP,
and H$_2$O$_2$ addition as a method of enhancing SBP removal of 2,4-
DCP. Six tests were performed at pH 6.2 and 22°C and consisted of
applying the same total amount of SBP and H$_2$O$_2$ in various batch
and semi-batch combinations to three different initial 2,4-DCP
concentrations; 100, 200 and 300 mg/l in the presence of 0.1 g/l of
PEG-8000. The first test evaluated batch addition of SBP and H$_2$O$_2$
using 0.0025 units SBP/ml. This enzyme concentration was selected

<table>
<thead>
<tr>
<th>Experimental variable</th>
<th>Experimental conditions used unless otherwise stated</th>
<th>Range of variable tested during various experiments</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-DCP</td>
<td>100 mg/l</td>
<td>100 - 511 mg/l</td>
</tr>
<tr>
<td>SBP</td>
<td>0.01 units/ml</td>
<td>0.0005 - 10.0 units/ml</td>
</tr>
<tr>
<td>PEG*</td>
<td>N/A</td>
<td>0.002 - 2 mg/l</td>
</tr>
<tr>
<td>Time</td>
<td>3 h</td>
<td>1 min - 72 h</td>
</tr>
<tr>
<td>Temperature</td>
<td>22°C</td>
<td>4°C; 22°C</td>
</tr>
<tr>
<td>H$_2$O$_2$</td>
<td>0.613mM</td>
<td>N/A</td>
</tr>
<tr>
<td>Tris Buffer</td>
<td>pH 8.2</td>
<td>pH 7.2 - 9.2</td>
</tr>
<tr>
<td>Citrate-phosphate buffer</td>
<td>pH 6.2</td>
<td>pH 2.5 - 7.2</td>
</tr>
</tbody>
</table>

*PEG-1000, PEG-3350, PEG-8000
since it gave only partial 2,4-DCP treatment under standard conditions of addition. Table 2 shows the various semi-batch addition schemes examined.

HPLC analysis

Samples were analysed for residual chlorinated phenols using a Hewlett Packard (model 1090) HPLC with a Hypersil-ODS reverse phase C18 column maintained at 40°C. The mobile phase was an isocratic mixture of HPLC grade methanol (60%) and 0.05 M sodium acetate (40%) pH 4.7 maintained at a flow rate of 0.3 ml/min. Chlorophenols were detected using a diode array detector set at a wavelength of 280 nm. The 2,4-DCP detection limit was 0.4 mg/l. In cases where no peak was detected, the detection limit was assumed.

Results and discussion

Time and temperature of reaction results

Complete removal of 100 mg/l 2,4-DCP to the detection limit occurred in approximately 1 min at 22°C and pH of either 6.2 or 7.2 when treated with 1 unit/ml of SBP. A similar time-dependent test at pH 6.2 and 4°C followed a first-order reaction that required 20 min to achieve 95% removal of 2,4-DCP and approximately 3 h to achieve 99.6% 2,4-DCP removal (Fig. 1). The average first-order reaction rate constant for these conditions at pH 6.2 and 4°C was estimated to be 8 mg/unit·min. The rate at which SBP reacts is significantly slower at lower temperatures. Comparison of the relative SBP reaction rates at 4°C and 22°C indicates that SBP is faster by a factor of about 20 at the higher temperature. This can be significant when determining the hydraulic retention time (HRT) of a treatment process and concomitant reactor size. It is also important if considering enzyme applications for treatment of groundwater that is typically colder than 22°C.

SBP treated 2,4-DCP solutions exhibited a visual discolouration. Within seconds of injecting the H₂O₂, a milky cloud formed which became more widespread. Eventually the cloud intensified to the point where visible particles could be observed. After 3 h, these particles settled to the bottom of the reaction vessel. The 3 h time frame is important from a practical operational point of view. While 2,4-DCP removals in excess of 95% may be reported in the first few minutes of the reaction based on HPLC analysis of filtered samples, a lag time is required for the particulate to form, precipitate and settle out. Practically, this process will be affected by mixing

Table 2

<table>
<thead>
<tr>
<th>Time (hours)</th>
<th>#1</th>
<th>#2a</th>
<th>#2b</th>
<th>#3a</th>
<th>#3b</th>
<th>#4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No enzyme</td>
<td>All SBP, All H₂O₂</td>
<td>1/5 SBP, All H₂O₂</td>
<td>1/5 SBP, All H₂O₂</td>
<td>1/5 SBP, All H₂O₂</td>
<td>1/5 SBP, All H₂O₂</td>
</tr>
<tr>
<td>0.15</td>
<td>1/5 SBP</td>
<td>1/5 SBP, All H₂O₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.30</td>
<td>1/5 SBP</td>
<td>1/5 SBP, All H₂O₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.45</td>
<td>1/5 SBP</td>
<td>1/5 SBP, All H₂O₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>1/5 SBP</td>
<td>1/5 SBP, All H₂O₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.15</td>
<td>1/5 SBP</td>
<td>1/5 SBP, All H₂O₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.30</td>
<td>1/5 SBP</td>
<td>1/5 SBP, All H₂O₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.45</td>
<td>1/5 SBP</td>
<td>1/5 SBP, All H₂O₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>1/5 SBP</td>
<td>1/5 SBP, All H₂O₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.30</td>
<td>1/5 SBP</td>
<td>1/5 SBP, All H₂O₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.00</td>
<td>Sample</td>
<td>Sample</td>
<td>Sample</td>
<td>Sample</td>
<td>Sample</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1
Removal of 100 mg/l of 2,4-DCP using 1 unit SBP/ml (no PEG) at 4°C
intensity. It has been postulated that the particulate is responsible for entrapping the active enzyme within its structure thereby rendering the enzyme inactive (Kinsley and Nicell, 2000, Nakamoto and Machida, 1992).

These time-dependent tests indicated that greater than 99% removal of 2,4-DCP from aqueous solution was possible at pH 6.2 and 7.2 at 22°C using 1.0 unit/ml of SBP. This SBP concentration and concomitant efficiency served as a benchmark for future tests and comparisons in this study.

Influence of pH and SBP enzyme concentration

Batch SBP experiments were conducted to determine the optimum and sub-optimum pH ranges in which 2,4-DCP can be removed from aqueous solution and additionally to determine the effective range of enzyme concentration without PEG present. Using HRP, Dec and Bollag (1990) and Bewtra et al. (1995) determined the optimum pH for removing 2,4-DCP to be 6.5 with a working range of 3 to 10. In this study, tests were performed for pH values from 2.5 to 9.4 and for SBP concentrations between 0.01 and 9 units/ml. The data from each pH range (3.1 to 9.4) were fit to a polynomial using Statistica. The square of the correlation coefficient R² for each best-fit curve ranged from 0.9026 to 0.9896. Figure 2 shows the family of curves that depict the residual 2,4-DCP remaining as a function of pH and SBP concentration in the absence of PEG. The minimum amount of SBP required to remove 2,4-DCP for each pH can be determined from the plot.

A similar graph to Fig. 2 was produced for phenol removal by HRP that demonstrated catalytic ability from pH 4 to 10 (Bewtra et al. 1995). The results obtained in this experiment indicate that SBP can function in more extreme acidic conditions than HRP. Even at pH of 2.5, 1 unit/ml of SBP removed nearly 90% of the 2,4-DCP. Several other important observations relating to the effects of pH were made. The optimum pH for SBP treatment of 2,4-DCP is approximately 8.2 which is different than the optimum pH ~ 6.5 reported by Dec and Bollag (1990) for HRP. For SBP a pH slightly greater than 8.2, severely affected 2,4-DCP removal efficiency at low SBP concentrations. However, at higher SBP concentrations 1 to 7 units/ml 85% 2,4-DCP removal can still be achieved at pH 9.4. It has been speculated that peroxidase enzyme is susceptible to denaturing in slightly basic solutions. As the pH decreased and became more acidic there was a gradual loss of SBP efficiency compared to the sudden change at pHs above 8.2. Therefore, in an acidic environment it can be speculated that the SBP enzyme is denaturing but not as quickly as in a basic solution.

Table 3 shows the minimum amount of SBP required to remove 50% and >99% of 100 mg/l of 2,4-DCP at various pHs in the absence of PEG. Empirical Eqs. (1) and (2) were the best fit to the experimental data and can be used to determine the SBP requirements for 50% or >99% 2,4-DCP removal at any pH in the range tested.

Varying 2,4-DCP and SBP enzyme concentrations

Using the optimum pH 8.2, batch experiments (no additive) were performed using initial 2,4-DCP concentrations ranging from 55 mg/l to 511 mg/l to determine the relation between substrate concentration and 2,4-DCP removal efficiency per unit of SBP enzyme. Previous experiments (discussed above), indicated that the minimum amount of SBP required at pH 8.2 for greater than 99% removal of 100 mg/l, 2,4-DCP was 0.01 units/ml. Consequently, SBP concentrations of less than 0.1 units/ml were used so that incomplete 2,4-DCP removal should occur.

The results of the six data sets are shown in Fig 3. Each curve represents the concentration of 2,4-DCP remaining for the given amount of SBP used in units/ml. The curves approach linearity (R² values between 0.988 and 0.999) and for each specific enzyme concentration, approximately the same amount of 2,4-DCP was removed no matter what the initial 2,4-DCP concentration. The slopes of each data set (final - initial 2,4-DCP concentration) divided by the amount of SBP used in units/ml represents the concentration of 2,4-DCP remaining for the given pH. Table 3 shows the minimum amount of SBP required to remove >99% of 100 mg/l of 2,4-DCP (no PEG) for each pH and SBP concentration in the absence of PEG. Empirical Eqs. (1) and (2) were the best fit to the experimental data and can be used to determine the SBP requirements for 50% or >99% 2,4-DCP removal at any pH in the range tested.

Using the optimum pH 8.2, batch experiments (no additive) were performed using initial 2,4-DCP concentrations ranging from 55 mg/l to 511 mg/l to determine the relation between substrate concentration and 2,4-DCP removal efficiency per unit of SBP enzyme. Previous experiments (discussed above), indicated that the minimum amount of SBP required at pH 8.2 for greater than 99% removal of 100 mg/l, 2,4-DCP was 0.01 units/ml. Consequently, SBP concentrations of less than 0.1 units/ml were used so that incomplete 2,4-DCP removal should occur.

The results of the six data sets are shown in Fig 3. Each curve represents the concentration of 2,4-DCP remaining for the given amount of SBP used in units/ml. The curves approach linearity (R² values between 0.988 and 0.999) and for each specific enzyme concentration, approximately the same amount of 2,4-DCP was removed no matter what the initial 2,4-DCP concentration. The slopes of each data set (final - initial 2,4-DCP concentration) divided by the amount of SBP used in units/ml represents the concentration of 2,4-DCP remaining for the given pH. Table 3 shows the minimum amount of SBP required to remove >99% of 100 mg/l of 2,4-DCP (no PEG) for each pH and SBP concentration in the absence of PEG. Empirical Eqs. (1) and (2) were the best fit to the experimental data and can be used to determine the SBP requirements for 50% or >99% 2,4-DCP removal at any pH in the range tested.

Varying 2,4-DCP and SBP enzyme concentrations

Using the optimum pH 8.2, batch experiments (no additive) were performed using initial 2,4-DCP concentrations ranging from 55 mg/l to 511 mg/l to determine the relation between substrate concentration and 2,4-DCP removal efficiency per unit of SBP enzyme. Previous experiments (discussed above), indicated that the minimum amount of SBP required at pH 8.2 for greater than 99% removal of 100 mg/l, 2,4-DCP was 0.01 units/ml. Consequently, SBP concentrations of less than 0.1 units/ml were used so that incomplete 2,4-DCP removal should occur.
concentrations tested are well above the half saturation concentration (\(K_s\)) of SBP.

\[
\text{SBP (units)} = \frac{\text{2,4-DCP (mg)}}{1.7}
\]

\((3)\)

Influence of PEG concentration, molecular mass and pH

Further batch experiments were conducted to characterise the SBP reaction for removal of 2,4-DCP in the presence of the protective additive, PEG. The exact mechanism of enzyme protection afforded by PEG is not fully understood. It was hypothesised that, when dissolved into solution with the substrate, PEG offers the free radicals that form a binding site to attach to rather than to another free radical. However, it is not clear how radicals attaching to other radicals decrease enzyme activity (Wu et al., 1993; Ibrahim et al., 1997).

Using PEG-3350 and PEG-8000 the effect of pH on SBP activity was evaluated. The optimum pH for removal of 2,4-DCP for SBP in the presence of PEG-3350 is shown in Fig. 4. Addition of PEG-3350 resulted in little to no improvement (and even worse removal at low acidic pH) for pH 2.5, 3.1, 4.1, 8.6, and 9.2. Marked improvement was observed between pH 5.1 and 8.2. The optimum was pH 6.2, greater than 99% removal of the 2,4-DCP using 0.01 units/ml of SBP with a PEG-3350 concentration of 1.2 g/l. This result was about a 10-fold improvement when compared to tests without PEG. Fig. 4 also shows that with increasing PEG-3350 concentration, the removal of 2,4-DCP increases for certain pHs. A 3rd degree polynomial was fit to all the data (best fit to data) to produce the contour plot shown in Fig. 5 which shows the relationship between pH, PEG-3350 concentration and 2,4-DCP removal. The contour plot shows that increasing the concentration of PEG-3350 can improve the 2,4-DCP removal efficiency by about a factor of 10 near the optimum, pH 6.2. Similar trends and pH optimum of 6.2 related to the effect of PEG-8000 concentration were observed (not shown). However, 2,4-DCP removals were higher at lower SBP concentrations by a factor of about 5-10 than those obtained with PEG-3350.

The results of PEG molecular mass and initial phenol concentration experiments on 2,4-DCP removal (pH 6.2) are shown in Fig. 6. PEG-1000’s ineffectiveness to improve SBP efficiency for 2,4-DCP removal was confirmed. However, PEG-3350 (Fig. 6) showed a significant increase in enzyme efficiency when compared to the control (no PEG). With the highest concentration of PEG-3350 additive used (2 g/l) greater than 95% removal for all three initial 2,4-DCP concentrations was observed. However, at lower PEG-3350 concentrations, less efficient 2,4-DCP removal was observed. Using PEG-8000, the results indicated a significant increase in 2,4-DCP removal at lower SBP concentration by a factor of about 100 compared to SBP treatment of 2,4-DCP without PEG. Greater than 95% removal was achieved for every concentration of PEG-8000 tested (Fig. 6c). These results indicate that not only can greater 2,4-DCP removal be achieved using PEG-8000 at lower enzyme concentration but that it can be done using a lower concentration of PEG. This is important when considering the effects of residual PEG in water, since as the molecular mass of PEG increases, it becomes more recalcitrant (Kinsley and Nicell, 2000). Therefore, there is a tradeoff between the beneficial effects of high molecular mass PEG on SBP reactions and the negative effects of residual PEG in the environment. Kinsley and Nicell (2000) also reported on the effects of PEG on the removal of phenol using SBP. Kinsley and Nicell (2000) reported that when using 0.2 units/ml of PEG to treat 1 mM phenol in the presence of 100 mg/l of PEG-3350, PEG-8000 and PEG-35000 SBP removed approx. 50%, 84% and 98% of the phenol respectively. Therefore by doubling the molecular mass from 3350 to 8000, the removal efficiency was increased by 34%. By increasing the molecular mass by a factor of ten to 35 000 (4.4 times higher than 8000), the removal increased by 48% which is only 14% more than PEG-35000. Kinsley and Nicell (2000) also studied residual PEG remaining in solution and determined that COD increases rapidly with increasing PEG molecular mass. They recommended that optimum PEG concentrations should be determined in order to minimise residual PEG. Wu et al. (1993, 1998) also addressed the use and fate of PEG when applied for the protection of HRP treating phenol. Based on environmental concerns, increasing the molecular mass but achieving only marginally better enzyme efficiency, the use of PEG-35000 may not be justified in terms of treating residual PEG in the environment. Further investigations with high molecular mass PEG are needed.

Additional batch tests were carried out to determine the degree of improvement that could be obtained by decreasing the concentration of SBP below 0.01 units/ml (0.0005, 0.001 and 0.005 units/ml) at various concentrations of PEG-8000 (0, 0.2, 1.0 and 2.0 g/l) using initial 2,4-DCP concentrations of 100 mg/l or 300 mg/l. When no PEG was added, there was no removal of 2,4-DCP. When PEG-8000 was used, there was a significant increase in 2,4-DCP removal for all SBP concentrations. Figure 7 shows that a SBP concentration of 0.01 units/ml can successfully treat up to 300 mg/l of 2,4-DCP (pH 6.2) using various concentrations of PEG-8000. Applying 0.005 units of SBP/ml of 2,4-DCP resulted in removals between 85 to 95% and 70 to 85% for initial 2,4-DCP concentration of 100 or 300 mg/l, respectively.

Decreasing the SBP concentration proportionally decreased the maximum enzyme efficiency. For example, using 0.0005 units SBP/ml, 100 mg 2,4-DCP/l and various concentrations of PEG-8000, up to 30% removal of 2,4-DCP was obtained. Likewise, when treating 300 mg/l 2,4-DCP with 0.001 units SBP/ml, 35% removal of 2,4-DCP was attained and when using 0.005 units SBP/ml, up to 80% removal was achieved. A general observation to note is that for both initial 2,4-DCP concentrations at higher SBP concentrations the per cent removal using 2.0 g/l of PEG-8000 is only approximately 10% greater then the removal using 0.2 g/l PEG-8000 indicating that a tenfold increase in PEG-8000 concentration results only in a slight increase in 2,4-DCP removal.
PEG 3350 conc of 0.1 g/l

% 2,4-DCP Remaining

PEG = 0 g/l
Avg for PEG = 0.1 g/l

Figure 4

Effect of pH on removal of 100 mg/l 2,4-DCP using 0.01 units SBP/m l at various concentrations of PEG-3350

PEG 3350 conc of 0.002 g/l

% 2,4-DCP Remaining

PEG = 0 g/l
Avg for PEG = 0.002 g/l

PEG 3350 conc of 0.02 g/l

% 2,4-DCP Remaining

PEG = 0 g/l
Avg for PEG = 0.02 g/l

PEG 3350 conc of 0.4 g/l

% 2,4-DCP Remaining

PEG = 0 g/l
Avg for PEG = 0.4 g/l

PEG 3350 conc of 0.8 g/l

% 2,4-DCP Remaining

PEG = 0 g/l
Avg for PEG = 0.8 g/l

PEG 3350 conc of 1.2 g/l

% 2,4-DCP Remaining

PEG = 0 g/l
Avg for PEG = 1.2 g/l

efficiency. These encouraging results indicate that the SBP treatment process for 2,4-DCP removal can be optimised by controlling the SBP concentration, the PEG concentration and the substrate concentration. The results also tend to indicate that multiple semi-batch additions of small amounts of enzyme could increase removal efficiency by controlling the amount of SBP in the reaction at any time and thereby reducing the chance of enzyme inactivation.

Influence of SBP concentration

Further tests were conducted at different pHs (3.2, 5.2 and 6.2), various concentrations of PEG-8000 (0, 0.2, 1.0 and 2.0 g/l) to determine the effect of SBP concentrations on 2,4-DCP removal.

Figure 8a shows improved 2,4-DCP removal by SBP compared to the control (no PEG) even in acidic conditions (pH 3.2). Though the increase in 2,4-DCP removal is not as good as under more optimum pH, it does require 25% less SBP (0.75 units/ml) with PEG-8000 to achieve >99% 2,4-DCP
removal than it does without PEG (1.0 units/ml). Using the same SBP concentration with no PEG, only 90% removal is achieved. It is important to note that the same 2,4-DCP removal efficiencies (pH 3.2) were observed when adding 0.2 or 2.0 g/l of PEG-8000. Excess residual PEG remaining (2.0 g/l PEG-8000) could be discharged to the environment and could have a negative effect.

At pH 5.2 (Fig. 8b), a significant increase in removal efficiency occurs in the presence of PEG-8000 at low SBP concentrations. In the presence of PEG-8000, only 0.025 units/ml of SBP are required to achieve >99% 2,4-DCP removal. Approximately ten times that amount of SBP (0.25 units/ml) is required to attain >99% removal without PEG-8000. For comparison, using 0.05 units/ml SBP without PEG present, removed only 60% (compared to >99% with PEG-8000). Again there was not a large advantage to using 2 g/l PEG-8000 over 0.2 g/l in terms of 2,4-DCP removal.

At pH 6.2 (Fig. 8c), similar results to pH 5.2 were obtained but at lower SBP concentrations. What was significant was the extent of 2,4-DCP removal achieved with and without PEG-8000 at SBP concentrations of 0.005-0.01 units/ml. With any concentration of PEG-8000, 2,4-DCP removal was >88% while without PEG, there was only 5 to 11% 2,4-DCP removal. Under more optimum pH conditions less PEG-8000 was required to achieve the same level of enzyme efficiency.

Reuse of SBP by semi-batch 2,4-DCP addition

Figure 9 shows duplicate results of semi-batch 2,4-DCP additions that indicate that multiple use of SBP is possible. The amount of 2,4-DCP removed from the mixture after 1 h was between 90 to 98%. A second chlorophenol spike injected at 1 h achieved 34 to 45% removal of the remaining 2,4-DCP. After the third 2,4-DCP addition at 2 h only 8 to 13% of the 2,4-DCP was removed and it was concluded that SBP activity terminated. The decrease in activity may be explained by the kinetics of the reaction. If
substrate is limited as it was in this case (first h), excessive H₂O₂ may be present in solution and the enzyme may follow the inactivation path to P-670 or Compound III. Therefore, reversing the process and limiting the enzyme or H₂O₂ instead of the substrate may be more efficient in optimising the reaction. This was studied in the final set of tests.

Mode of SBP, and H₂O₂ application

Based on the experimental plan outlined in Table 2 the results in terms of 2,4-DCP removal efficiency are summarised in Table 4 (no PEG present). The schemes that were least to most efficient in terms of 2,4-DCP removal were as follows: #4 (least efficient), #1, #2a, #2b, #3a and #3b (most efficient). Method #4, used a semi-batch addition of 1/5 the total SBP and a full concentration of H₂O₂ every 30 min. Ideally, splitting up the SBP concentration should improve the reaction efficiency, however, it was counteracted by too much H₂O₂. As previously discussed, such conditions create what is called the suicide mechanism. Excessive amounts of H₂O₂ compared to substrate availability cause the enzyme to become catalytically inactivated as SBP follows the inactivation path to P-670 or Compound III. It is clear that in this case, excessive H₂O₂ is preventing the reaction from achieving the batch test benchmark results.

The remaining schemes achieved better results than the control (single batch addition) test #1. Test #2a and #2b produced relatively similar results. Scheme 2 was based on distributing the SBP concentration over five equal time intervals (#2a – 15 min, #2b – 30 min. intervals) while using a single initial batch concentration of H₂O₂ to initiate the reaction. The most effective addition schemes were #3a and #3b that were based on five equal concentrations of SBP and H₂O₂ over 15 min and 30 min intervals respectively. This protocol was the most effective as it took advantage of limiting the amount of SBP and H₂O₂ available at each step. This reduces the possible chance of SBP inactivation by...
excessive H$_2$O$_2$ when using a single batch concentration. Average 2,4-DCP removals achieved were 83.5%, 75.5% and 71.5% for 100, 200 and 300 mg/l, respectively compared to 62%, 52% and 58% for the single batch addition control.

Conclusions

Time and temperature are important factors to be quantified when applying SBP for treatment of 2,4-DCP. The rate at which SBP removed 2,4-DCP at room temperature compared to 4°C was about 20 times faster. Practically, it is important to realise that conversion precedes precipitation and that a lag phase exists. While 2,4-DCP removal in excess of 95% may be reported in the first few minutes based on filtered HPLC analysis, time is required for the particulate to form, precipitate and settle out. The optimum pH for SBP treatment of 2,4-DCP with and without PEG was determined to be approximately pH 6.2 and pH 8.2 respectively. The operating range was from pH 2.5 to 9.4. At the optimum pH of 8.2 (without PEG), the removal efficiency of various initial concentrations of 2,4-DCP (50-500 mg/l) is zero order within the SBP range of 0.001 to 0.1 units/ml and can be summarised by stating that 1.77 mg of 2,4-DCP is removed per unit of SBP activity. In the presence of the additive PEG-3350 and PEG-8000, 2,4-DCP removal efficiency of SBP increases by factor of 10 and 50 respectively compared to no PEG addition. PEG-8000 as a protective additive for SBP treatment of 2,4-DCP was successfully demonstrated. By using optimum pH conditions, PEG-8000 concentration and SBP concentration can be optimised coincidentally to minimise the amount of SBP needed while simultaneously limiting the residual PEG that might be released to the environment. Substrate addition strategies indicate that SBP enzyme can be reused.

Batch and semi-batch enzyme delivery has also been identified as a crucial parameter for the SBP treatment process. The most effective addition scheme was based on five equal concentrations of SBP and H$_2$O$_2$ over 15 min and 30 min intervals respectively compared to a single batch addition. This protocol was the most effective as it took advantage of limiting the amount of SBP and H$_2$O$_2$ available at each step. This reduces the possible chance of SBP inactivation by excessive H$_2$O$_2$ when using a single batch addition control.

References

DEC J and BOLLAG JM (1994b) Use of plant material for the decontamination of water polluted with phenols. Biotechnol. and

