Measurement of pH, alkalinity and acidity in ultra-soft waters

Lahav O¹, Morgan BE² and Loewenthal RE²

¹Faculty of Agricultural Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
²Department of Civil Engineering, University of Cape Town, Rondebosch 7700, South Africa

Abstract

Conventional characterisation of low alkalinity waters via pH measurement and titration of total alkalinity to a prescribed end-point invariably leads to large errors. These errors result from instability of the pH probe and an unknown titration end-point. In this paper two indirect methods (termed the “double Gran function” and the “blend” method) for the characterisation of such waters are evaluated critically. A blend composed of the raw water, sodium chloride (to increase conductivity), and standard bicarbonate (to increase buffering capacity) was titrated with standard strong acid in two pH regions: 6.3 < pH < 7.0, and 3.5 < pH < 4.0. In both methods, total alkalinity was determined using the latter set of points, and the first Gran function. In the double Gran function method the upper set of titration points was used to determine CO₂ acidity using the second Gran Function. In the “blend” method, equilibrium chemistry data were used to calculate total acidity for each point based on the known total alkalinity, pH reading, temperature and ionic strength. The two methods gave excellent results (in terms of both repetition and accuracy) as compared to characterisation based on total alkalinity and inorganic carbon analysis. A detailed procedure for the execution of the two approaches is given in an appendix.

Introduction

Natural terrestrial waters on the eastern seaboard region of all the continents in the southern hemisphere have low alkalinity and hardness and are usually slightly acidic; incidents of such waters arise also in most of the northern hemisphere continents.

In South Africa such waters occur from just south of Durban to Cape Town. These waters are corrosive to metals and aggressive to cement materials. Consequently, stabilisation is required prior to application. Currently most laboratories measure Alkalinity by titration to a fixed end-point (i.e. to a colorimetric or pH end-point) [The term Alkalinity is used here to define the proton-accepting capacity with respect to carbonic acid as reference point]. For low Alkalinity waters, this is unsatisfactory because of the difference between the true titration end-point and that used (or reflected by the indicator used). For these waters Standard Methods (1998) propose an approximate method based on titration to an arbitrary end-point (anywhere between 4.3 and 4.7). However, this results in large relative errors.

Less often used is a Gran titration (Gran, 1952). The method is accurate, easily effected and independent of a titration end-point.

Alkalinity measurement problem

The problem of pH instability in low Alkalinity waters can be invariably leads to large errors. These errors result from instability of the pH probe and an unknown titration end-point. In this paper two indirect methods (termed the “double Gran function” and the “blend” method) for the characterisation of such waters are evaluated critically. A blend composed of the raw water, sodium chloride (to increase conductivity), and standard bicarbonate (to increase buffering capacity) was titrated with standard strong acid in two pH regions: 6.3 < pH < 7.0, and 3.5 < pH < 4.0. In both methods, total alkalinity was determined using the latter set of points, and the first Gran function. In the double Gran function method the upper set of titration points was used to determine CO₂ acidity using the second Gran Function. In the “blend” method, equilibrium chemistry data were used to calculate total acidity for each point based on the known total alkalinity, pH reading, temperature and ionic strength. The two methods gave excellent results (in terms of both repetition and accuracy) as compared to characterisation based on total alkalinity and inorganic carbon analysis. A detailed procedure for the execution of the two approaches is given in an appendix.

pH measurement problems

The problem of pH instability in low Alkalinity waters can be partially resolved using glass and reference pH electrodes specifically designed for these waters. However, these are expensive and fragile and most laboratories are not equipped with them. It should be noted, however, that even with these electrodes measurements are still not necessarily reliable as discussed below.

Characterisation of the carbonate system (i.e. the weak acid system controlling pH) in terrestrial waters requires measuring any two independent parameters for this system in water (in addition to temperature and ionic strength). The independent parameters available include Alkalinity, Acidity, CO₂ acidity, total dissolved inorganic carbon (C₃), and pH [The terms Acidity and CO₂ acidity are used here to define the proton-donating capacity with respect to CO₂ and HCO₃ as reference species respectively]. Recognizing that Alkalinity can be measured accurately using a Gran titration,
and that (i) Acidity cannot be measured directly (Loewenthal and Marais, 1976), (ii) measurement of C \textsubscript{T} requires an expensive inorganic carbon analyser, and (iii) pH measurement is impractical for reasons described above, measurement of the remaining parameter, i.e. CO\textsubscript{2} acidity also should be considered. Standard Methods (1998) proposes titration to pH 8.3 using a standardised base, but does not propose a method for CO\textsubscript{2} acidity measurement in very poorly buffered waters where the problem of pH measurement arises. Such consideration is effected in this paper and shown to be acceptable, provided that sodium chloride and standard bicarbonate are added to the test solution.

In this paper, an in-depth investigation is effected into the various means of characterising low-alkalinity waters. The methods investigated include:

- Direct characterisation via measurement of Alkalinity (using Gran function) and pH using various probes available on the market.
- Indirect characterisation where a blend of sample, standard bicarbonate solution and sodium chloride is used. Characterisation of the blend is then effected via:
 - Measurement of Alkalinity using the first Gran function and CO\textsubscript{2} acidity using the second Gran function. From these analyses, the characteristics of the raw water are determined.
 - Measurement of Alkalinity (as above) and measurement of pH of the blend after addition of standard acid to adjust to a well-buffered zone (6.3<pH<7.0). From these analyses, the characteristics of the raw water are determined.

Before dealing with these methods, it is necessary to review briefly the capacity parameters for the carbonate system (i.e. various forms of alkalinity and acidity) and their interactions with pH via equilibrium equations.

\textbf{Theory}

\textbf{System parameters}

pH in natural terrestrial waters is governed principally by the carbonate system. Equilibrium relationships for this system in water are:

\begin{align*}
[H^{+}][\text{HCO}_3^{-}]/[\text{H}_2\text{CO}_3] &= K_1 \\
[H^{+}][\text{CO}_3^{2-}]/[\text{HCO}_3^{-}] &= K_2 \\
[H^{+}]/[\text{OH}^{-}] &= K_w
\end{align*}

where:

- \([x]\) = activity of species \(x\);
- \([x]\) = molarity of species \(x\);
- \(K_1, K_2\) = thermodynamic equilibrium constants adjusted for Debye-Huckel affects;
- \([\text{H}_2\text{CO}_3]\) = \([\text{H}_2\text{CO}_3] + [\text{CO}_2(aq)]\).

The three equations above include five weak acid parameters – this observation forms the basis for the need to measure two independent parameters in order to characterise a water. In addition to the above equilibrium equations, a number of proton balance (alkalinity and acidity) equations and a mass balance equation for the dissolved carbonate species can be developed in terms of weak acid species concentrations, giving:

Alkalinity = \(2[\text{CO}_3^{2-}] + [\text{HCO}_3^{-}] + [\text{OH}^{-}] - [H^{+}]\) (4)

\(\text{CO}_2\) acidity = \(2[H_2\text{CO}_3] - 2[\text{CO}_3^{2-}] + [H^{+}] - [\text{OH}^{-}]\) - \(\text{CO}_2\) alkalinity

Acidity = \(2[H_2\text{CO}_3] + [\text{HCO}_3^{-}] + [H^{+}] - [\text{OH}^{-}]\)

Total inorganic carbon = \(C_T = [H_2\text{CO}_3] + [\text{HCO}_3^{-}] + [\text{CO}_3^{2-}]\)

These mass and capacity parameters are interdependent as follows:

\begin{align*}
\text{Alkalinity} + \text{Acidity} &= 2C_T \\
\text{Alkalinity} + \text{CO}_2\text{ acidity} &= C_T
\end{align*}

Clearly, each equation incorporates an extra parameter so that the initial problem remains unchanged, that is, two independent parameters need to be measured.

Usually \((H^+)\) can be measured via operational pH observation (i.e. the pH value measured relative to National Bureau of Standards buffer solutions). The remaining parameter is obtained by considering various alkalinity and acidity capacity parameters applicable to the system. Of these capacity parameters, Alkalinity and \(\text{CO}_2\text{ acidity} \) normally are considered to be easily measurable via strong acid/base titration to a prescribed end-point (about 4.5 and 8.3 respectively) with minimal error involved.

\textbf{Measurement of Alkalinity and \(\text{CO}_2\text{ acidity} \) using Gran titrations}

Gran (1952) showed that functions can be formulated for alkalimetric and acidimetric titrations and used for determining the various capacity parameters independent of a titration end-point. Detailed formulation of these functions is set out in \textit{Appendix A}.

In brief, determination of Alkalinity is effected from standard strong acid titration data in a pH region below the \(\text{H}_2\text{CO}_3\) equivalence point. The appropriate Gran function, \(F_{1x}\), in this region being:

\[F_{1x} = -10^{−pH} \cdot (V_e + V_x) = C_a \cdot (V_e − V_x)\] (10)

where:

- \(V_e\) = the unknown volume of standard strong acid to be added to reach the \(\text{HCO}_3^{-}\) equivalence point (mL);
- \(V_x\) = the volume of standard strong acid added to a point \(x\) with pH equal to \(pH_x\) (mL);
- \(C_a\) = concentration of standard strong acid (mol/L);
- \(V_x\) = volume of sample analysed (mL).

Values for \(F_{1x}\) are obtained by inserting titration data in the region \(3.5 < pH < 4\) in the left-hand side of Eq. (10), i.e. Plotting \(F_{1x}\) vs. \(pH_x\) gives a linear relationship and its extrapolation to \(F_{1x}=0\) (i.e. where the line intercepts with the vertical axis) gives the value of \(V_x\). The desired Alkalinity is thus determined as:

\[\text{Total alk.} = \frac{V_e \cdot C_a}{V_x}\] (11)

Determination of \(\text{CO}_2\text{ acidity} \) is effected from titration data in the region \(6 < pH < 7\). The appropriate Gran function, \(F_{2x}\), in this region is:

\[F_{2x} = 10^{−pH} \cdot (V_e − V_x) = −K_1(V_e − V_x)\] (12)

where:

- \(V_e\) = the unknown volume of standard strong acid/base to be added to reach the \(\text{HCO}_3^{-}\) equivalence point (mL).

Values for \(F_{2x}\) are obtained by inserting titration data into the left-
hand-side term of Eq. (12), after \(V_e \) has been determined via the first Gran function. Inspection of the right-hand-side term shows that a plot of \(F_1x \) vs. \(V_e \) is linear and extrapolation to \(F_1x = 0 \) (i.e. where the line intercepts with the vertical axis) gives \(V_e \), that is the volume of strong acid/base to reach the HCO\(_3^-\) equivalence point. The desired CO\(_2\) acidity is determined as:

\[
CO_2\ \text{acidity}_{\text{measured}} = \frac{V_e \cdot C_a}{V_t}
\]

(13)

It should be noted that for low alkalinity waters, the second Gran function is not useful because of pH instability. In order to obtain stable pH observations one may increase both \(C_a \) (to increase buffer capacity) and ionic strength (to increase conductivity). Increase in \(C_a \) can be effected by addition of a standard bicarbonate solution, termed “a spike” in this paper. The standard bicarbonate solution is designed as an equivalent bicarbonate solution in equilibrium with the air, i.e. Alkalinity = Acidity, and CO\(_2\) acidity = 0 (this is designed as an equivalent bicarbonate solution in equilibrium with the air). For low alkalinity waters originating from the southern coast of South Africa (Port Elizabeth and Knysna), the Alkalinity = Acidity = 57.5 mg as CaCO\(_3\) or 1.15 mmol/l. This standard solution remains unchanged with time enabling a long usage period. The modified Gran functions for the blend of sample and standard bicarbonate are as below (the full development of these functions is given in Appendix A):

\[
F_{1x} = 10^{-pH_t} \cdot (V_e + V_n + V_s) = C_a \cdot (V_e - V_t)
\]

(14)

\[
F_{2x} = 10^{-pH_t} \cdot (V_e - V_t) = -K_a' \cdot (V_e - V_s)
\]

(15)

where:

\(V_n \) = volume of spike added to the sample (ml).

From a measurement standpoint, \(V_e \) and \(V_n \) are obtained as before from strong acid titration data in the relevant pH regions. Note that the \(V_e \) and \(V_n \) data determined above refer to those for the blend of raw water sample and bicarbonate spike. The raw water Alkalinity and Acidity values are then determined using Eqs. (8) and (9) and simple stoichiometric considerations giving:

\[
\text{Alkalinity raw} = \{\text{Alkalinity blend} \cdot (V_n + V_e) - V_n \cdot \text{spike}_{\text{alk}}\} / V_e
\]

(16)

\[
\text{Acidity raw} = \{\text{Acidity blend} \cdot (V_n + V_e) - V_n \cdot \text{spike}_{\text{acid}}\} / V_e
\]

(17)

\(\text{spike}_{\text{alk}} = \text{spike}_{\text{acid}} = 57.5 \text{mg/l as CaCO}_3 \) (standard bicarbonate solution).

With the above basic considerations in mind, it is possible to evaluate critically the various methods for characterising low-alkalinity waters in the laboratory. Note that determination of \(V_e \) (to calculate CO\(_2\) acidity) is effected by extrapolation of data based on pH measurements in the region 6 < pH < 7. It will be shown that this extrapolation is sensitive to small pH uncertainties. This arises due to the extremely large extrapolation of a plot in which the slope of the regression line is six orders of magnitude greater than the \(V_e \) value. Nevertheless, recognising that CO\(_2\) acidity of these waters is usually very low (< 3 mg/l as CaCO\(_3\)), even an error of 50% in this determination has a relatively minor effect on Acidity. This is important, because the chemical dosing to be applied to the water in the treatment works is based on Acidity value and not CO\(_2\) acidity.

Alternatively, the data points can be used individually and the drawback of extrapolation is circumvented. This constitutes the second indirect option of characterisation described in the introduction.

It is to be noted that characterisation via a double Gran function leads to measurement of two capacity parameters – an approach which is independent of factors affecting potentiometric observations and equilibrium constants such as temperature, pressure, and ionic strength. In contrast, the second approach utilises pH measurements directly (on a sample modified to allow stable pH readings), and depends on all factors affecting equilibrium constants.

Materials and methods

Acidity and Alkalinity measurements were carried out on two low-alkalinity waters originating from the southern coast of South Africa (Port Elizabeth and Knysna). The water samples were initially processed for humic acids removal using Fe\(_2\)(SO\(_4\))\(_3\) and NaOH and their pH was set at approximately pH 6 prior to characterisation.

Standard bicarbonate and hydrochloric acid solutions and standardisation of these is described in detail in Appendix B.

Inorganic carbon was measured by means of a Shimadzu TOC – 5000A analyser.

Instruments used: Metrohm digital titrator 715, Metrohm pH meter 744 with combined electrode 6.0228.000, Schott pH meter model CG816 with Orion reference electrode model 90-01 and glass electrode Ag/AgCl 9101SC. Calibration of pH was effected with pH 4 and pH 7 NBS buffers.

Results and discussion

Two low-alkalinity water samples (from Knysna and Port Elizabeth) were used to assess three methods of characterisation. These were:

a) Alkalinity and pH measurement of the raw water sample.

b) Alkalinity and CO\(_2\) acidity measurements (effected via Gran functions) for a blend of the raw water, standard bicarbonate solution, and sodium chloride.

c) Alkalinity measurement and pH measurement (in the region 6.3 < pH < 7.0) effected on the blend described in (b) above. Note that the pH – strong acid titration data used to effect the analysis for CO\(_2\) acidity determination in (b) above, are used also in this approach.

Characterisation via Alkalinity and pH measurements on the raw water

Determination of Alkalinity for the two samples was effected via the first Gran function (Eq. (14)). The results of these are listed in Table 2.

pH measurement of the raw samples was attempted using a “general purpose” combined electrode (Metrohm, 6.0228.000), and a specialised glass electrode plus a rapid-flow reference electrode (Orion, model Ag/AgCl9101SC and 90-01 respectively), recommended for pH measurement in low-conductivity waters. Neither probe gave stable pH observations for the two samples analysed (Fig. 1). Consequently, this option was abandoned.

The observed drift in pH probably reflects the broad spectrum of pH data reported by various analytical laboratories for the Port Elizabeth water samples sent to them for analysis (Table 1).

Alkalinity and CO\(_2\) acidity measurement via Gran functions (the double Gran function method)

Samples of the two waters to be analysed were each blended with standard bicarbonate solution (see Appendix B) in the volumetric
The solutions were then titrated with standard acid (for a selection of blending ratio and titration information, see Appendix B) to obtain four pH data points in the region $6.3 < \text{pH} < 7.0$ (to be used with the second Gran function), and another 5 points in the region $3.5 < \text{pH} < 4.0$ (to be used with the first Gran function).

The raw titration data (in duplicate, for each water sample) are listed in Table 3. Excellent repeatability was obtained between the duplicates (normally within ± 0.01 pH units).

Alkalinity and CO$_2$ acidity results calculated from these data via the first and second Gran functions (and the accuracy of the linear regressions) are listed in Table 4.

Figures 2 and 3 show plots of the first and the second Gran functions for a blended sample of the Knysna water. In all cases, linearity was excellent (with $R^2 > 99.7\%$). Comparing Acidity determined for repetitions (i.e. precision), the values determined are close in terms of concentrations, i.e. 4.33 and 5.15 mg/l as CaCO$_3$ for Knysna, and 4.31 and 4.01 mg/l as CaCO$_3$ for Port Elizabeth. In order to assess accuracy of the method, results were compared with Acidity determined from observed Alkalinity and

Table 1: pH and Alkalinity results measured by commercial analytical laboratories (Port Elizabeth water)

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>pH</th>
<th>Alkalinity (mg/l as CaCO$_3$)</th>
<th>Calculated Acidity* (mg/l as CaCO$_3$)</th>
<th>“True” Alkalinity (via Gran titration) (mg/l as CaCO$_3$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.0</td>
<td>2.0</td>
<td>10.9</td>
<td>Alkalinity = 2.80</td>
</tr>
<tr>
<td>2</td>
<td>5.9</td>
<td>4.0</td>
<td>13.3</td>
<td>Acidity = 5.78</td>
</tr>
<tr>
<td>3</td>
<td>6.9</td>
<td>2.0</td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5.43</td>
<td>2.8</td>
<td>105.2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6.1</td>
<td>2.8</td>
<td>4.3</td>
<td></td>
</tr>
</tbody>
</table>

* calculated @ 25 °C, EC = 10 ms/m

Table 2: Raw water Alkalinity measured via first Gran function (average of triplicates)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Alkalinity (mg/l as CaCO$_3$)</th>
<th>Average linear regression (R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knysna</td>
<td>1.13 ± 0.05</td>
<td>0.9998</td>
</tr>
<tr>
<td>Port Elizabeth</td>
<td>2.80 ± 0.04</td>
<td>0.9999</td>
</tr>
</tbody>
</table>

Table 3: Raw titration data (in duplicate)

<table>
<thead>
<tr>
<th>Standard acid addition (mL)</th>
<th>pH 1</th>
<th>pH 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knysna</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.485</td>
<td>6.93</td>
<td>6.91</td>
</tr>
<tr>
<td>2.905</td>
<td>6.71</td>
<td>6.71</td>
</tr>
<tr>
<td>4.025</td>
<td>6.55</td>
<td>6.56</td>
</tr>
<tr>
<td>5.485</td>
<td>6.36</td>
<td>6.37</td>
</tr>
<tr>
<td>Port Elizabeth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.845</td>
<td>6.78</td>
<td>6.78</td>
</tr>
<tr>
<td>3.015</td>
<td>6.57</td>
<td>6.57</td>
</tr>
<tr>
<td>4.025</td>
<td>6.40</td>
<td>6.39</td>
</tr>
<tr>
<td>5.140</td>
<td>6.22</td>
<td>6.21</td>
</tr>
<tr>
<td>18.790</td>
<td>3.96</td>
<td>3.95</td>
</tr>
<tr>
<td>21.350</td>
<td>3.86</td>
<td>3.85</td>
</tr>
<tr>
<td>23.700</td>
<td>3.79</td>
<td>3.79</td>
</tr>
<tr>
<td>27.260</td>
<td>3.70</td>
<td>3.70</td>
</tr>
<tr>
<td>32.600</td>
<td>3.61</td>
<td>3.61</td>
</tr>
</tbody>
</table>
C_T obtained from a total inorganic carbon analyser. Again, Acidity results are very close (i.e. 4.87 mg/l as CaCO₃ from Alkalinity and C_T data vs. 4.33 and 5.15 for Knysna, and 5.78 mg/l as CaCO₃ versus 4.31 and 4.01 for Port Elizabeth).

As previously noted, determination of CO₂ acidity is extremely sensitive to small differences in pH (which result in very small differences in the slope of the regression curve) and as such may create large errors in utilising the second Gran function because of the large extrapolation involved. This phenomenon is shown for the titration results obtained from the blend effected for Knysna water, Sample 1. For this sample, four pH observations were effected in the pH region used for CO₂ acidity determination. The sensitivity of the second Gran function was then assessed as follows: accepting that the four data points did not give 100% linearity, the data were grouped into four sets of three-point data combinations on which Gran analyses were effected. Referring to these analyses in Table 5, CO₂ acidity varies from 1.30 to 1.80 mg/l as CaCO₃ compared with 1.62 mg/l as CaCO₃ obtained from 4 points. Although the percentage differences appear large, Acidity values calculated from these vary only between 3.70 to 4.69 mg/l respectively, and the pH value of the raw water calculated from these Acidity data (and Alkalinity of 1.13 mg/l as CaCO₃) gives 6.32 and 6.19 respectively.

Alkalinity and pH observations using a bicarbonate blend (The “blend” method)

Samples of the two waters were created as in (b) above, and titrated with standard acid to obtain pH titration data in the regions 6.3 < pH < 7.0 and 3.5 < pH < 4.0 (i.e. exactly the same experimental data as in (b) above were utilised here). However, the titration data are now analysed differently. In a particular titration, the Alkalinity (in the form of V_e of the blend derived from the first Gran function) is used together with the various pH titration data to calculate Acidity. In this calculation, in addition to the titration data one will

Table 4

<table>
<thead>
<tr>
<th>Sample</th>
<th>Alkalinity – blend (mg/l as CaCO<sub>3</sub>) (in brackets – R<sup>2</sup>)</th>
<th>CO<sub>2</sub> acidity – raw water (mg/l as CaCO<sub>3</sub>) (in brackets – R<sup>2</sup>)</th>
<th>Acidity – raw water (mg/l as CaCO<sub>3</sub>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knysna 1</td>
<td>12.61 (0.9995)</td>
<td>1.62 (0.9986)</td>
<td>4.33</td>
</tr>
<tr>
<td>Knysna 2</td>
<td>12.63 (0.9999)</td>
<td>2.03 (0.9967)</td>
<td>5.15</td>
</tr>
<tr>
<td>Port Elizabeth 1</td>
<td>10.58 (0.9998)</td>
<td>0.75 (0.9980)</td>
<td>4.31</td>
</tr>
<tr>
<td>Port Elizabeth 2</td>
<td>10.26 (0.9995)</td>
<td>0.61 (0.9971)</td>
<td>4.01</td>
</tr>
</tbody>
</table>

Table 5

<table>
<thead>
<tr>
<th>Points combination</th>
<th>V<sub>e</sub> (ml)</th>
<th>CO<sub>2</sub> acid (blend) (mg/l as CaCO<sub>3</sub>)</th>
<th>CO<sub>2</sub> acid (raw water) (mg/l as CaCO<sub>3</sub>)</th>
<th>R<sup>2</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Four points</td>
<td>1.31</td>
<td>1.295</td>
<td>1.62</td>
<td>0.9986</td>
</tr>
<tr>
<td>Points 1, 2, 3</td>
<td>1.45</td>
<td>1.44</td>
<td>1.80</td>
<td>0.9985</td>
</tr>
<tr>
<td>Points 2, 3, 4</td>
<td>1.05</td>
<td>1.04</td>
<td>1.30</td>
<td>1</td>
</tr>
<tr>
<td>Points 1, 3, 4</td>
<td>1.37</td>
<td>1.36</td>
<td>1.70</td>
<td>0.9995</td>
</tr>
<tr>
<td>Points 1, 2, 4</td>
<td>1.31</td>
<td>1.29</td>
<td>1.62 ± 0.19</td>
<td>0.9987</td>
</tr>
</tbody>
</table>

Figures

Figure 2
First Gran function regression curve for Knysna water blend, Sample 1 (Ve=12.794 ml, R²=0.9995)

Figure 3
Second Gran function regression curve for Knysna water blend, Sample 1 (Ve=1.307 ml, R²=0.9986)
also use equilibrium constants adjusted for temperature and ionic strength effects. Results of this calculation are listed in Table 6. Referring to Table 6, for each pH value in a particular titration one can calculate an Acidity value (and CO₂ acidity value). Acidity results for each titration point together with the average and standard deviation for the duplicates of the two waters are given in Table 7. Comparing these Acidity results with those determined using the double Gran function and results obtained from the inorganic carbon analyser, the results are very similar (i.e. an accuracy of approximately ±1 mg/l as CaCO₃).

Conclusions

- Conventional characterisation of low alkalinity waters, i.e. via pH measurement and Alkalinity measurement via titration to a prescribed end-point invariably leads to large errors due to instability of the pH probes and an unknown titration end-point. This problem was highlighted by the large variability in results obtained from commercial analytical laboratories for a given sample of water, and by the inability to obtain stable pH readings in such waters even with specialised probes (see Fig. 1).

- Full characterisation of terrestrial waters requires a reliable measurement of at least two independent parameters. Recognising that Alkalinity can be accurately measured using a Gran titration, and that:
 - Acidity cannot be measured directly;
 - measurement of C₅ requires an expensive inorganic carbon analyser; and
 - pH measurement is impractical for reasons described above;

 direct and indirect measurement of CO₂ acidity through a second Gran function, as well as indirect Acidity measurement were considered.

- Regarding direct CO₂ acidity measurement, it was concluded that the second Gran function is not applicable because of pH instability. In order to obtain stable pH observations one may

Table 6

<table>
<thead>
<tr>
<th>Sample</th>
<th>Vₑ (m³)</th>
<th>pHₑ</th>
<th>Alkalinity,¹ (blend) (mg/l as CaCO₃)</th>
<th>Acidity,² (blend) (mg/l as CaCO₃)</th>
<th>Acidity raw² (mg/l as CaCO₃)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knysna 1</td>
<td>1.485</td>
<td>6.93</td>
<td>10.84</td>
<td>16.22</td>
<td>4.66</td>
</tr>
<tr>
<td>(Sample to bicarbonate ratio: 4 to 1)</td>
<td>2.905</td>
<td>6.71</td>
<td>9.22</td>
<td>16.81</td>
<td>4.26</td>
</tr>
<tr>
<td>Knysna 2</td>
<td>1.485</td>
<td>6.91</td>
<td>10.85</td>
<td>16.50</td>
<td>5.02</td>
</tr>
<tr>
<td>(Sample to bicarbonate ratio: 4 to 1)</td>
<td>2.905</td>
<td>6.71</td>
<td>9.23</td>
<td>16.84</td>
<td>4.30</td>
</tr>
<tr>
<td>PE 1</td>
<td>1.845</td>
<td>6.78</td>
<td>8.43</td>
<td>13.81</td>
<td>5.90</td>
</tr>
<tr>
<td>(Sample to bicarbonate ratio: 6.78 to 1)</td>
<td>3.015</td>
<td>6.57</td>
<td>7.16</td>
<td>14.60</td>
<td>5.90</td>
</tr>
<tr>
<td>PE 2</td>
<td>1.845</td>
<td>6.78</td>
<td>8.12</td>
<td>13.30</td>
<td>5.29</td>
</tr>
<tr>
<td>(Sample to bicarbonate ratio: 6.78 to 1)</td>
<td>3.015</td>
<td>6.57</td>
<td>6.85</td>
<td>13.97</td>
<td>5.14</td>
</tr>
</tbody>
</table>

¹ Alkalinity = (Vₑ - Vₓ)Cₐ/(Vₑ + Vₓ), Cₐ in this calculation = 0.000992 M, Ve (blend) = 12.74, 12.754, 10.866, and 10.358 m³ for the four samples respectively.
² Acidity was calculated using STASOFT, with TDS = 1000 mg/l for all samples, temperature = 23 °C and 25 °C for Knysna and Port Elizabeth respectively.
³ Acidity raw = [(Vs + Vₓ)*Acidity₁ Vₓ - 57.5 - Vₓ*0.000992*50000]/Vs

Table 7

<table>
<thead>
<tr>
<th>Sample</th>
<th>Acidity via “blend” method (mg/l as CaCO₃)</th>
<th>Acidity via double Gran function method (mg/l as CaCO₃)</th>
<th>Acidity via inorganic carbon analyzer (mg/l as CaCO₃)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knysna 1</td>
<td>4.41 ± 0.18</td>
<td>4.33</td>
<td>4.87</td>
</tr>
<tr>
<td>Knysna 2</td>
<td>4.36 ± 0.44</td>
<td>5.15</td>
<td>4.87</td>
</tr>
<tr>
<td>PE 1</td>
<td>4.19 ± 0.40</td>
<td>4.31</td>
<td>5.78</td>
</tr>
<tr>
<td>PE 2</td>
<td>5.45 ± 0.32</td>
<td>4.01</td>
<td>5.78</td>
</tr>
</tbody>
</table>
increase both C_a (to increase buffer capacity) and ionic strength (to increase conductivity). Increase in C_a was effected by addition of a standard bicarbonate solution, termed in this paper “spike”.

Two indirect characterisation methods were assessed with regard to the blended sample: Measurement of Alkalinity using the first Gran function and CO$_2$ acidity using the second Gran function (termed the “double Gran function” method); and measurement of Alkalinity (as above) and measurement of pH of the blend after addition of standard acid to adjust the solution into a well-buffered zone (6.3<pH<7.0) (termed the “blend” method). From these analyses, the characteristics of the raw waters were determined.

- The CO$_2$ acidity and Acidity results obtained from the two methods were very similar to each other and also similar to the Acidity results calculated using Alkalinity and C_a measurement obtained using an inorganic carbon analyser. Acidity values for all three methods fell between 4.33 and 5.15 mg/l as CaCO$_3$ for the Knysna sample (Alkalinity $= 1.13$ mg/l as CaCO$_3$), and between 4.01 to 6.19 for the Port Elizabeth sample (Alkalinity $= 2.8$ mg/l as CaCO$_3$).
- The Double Gran function method was found to be sensitive to small pH differences (although the linear regression was in all cases above 99.7%) due to an extremely large extrapolation involved in the calculation of V_e. Nevertheless, sensitivity tests showed that this phenomenon, although resulting in relatively large fluctuation in the CO$_2$ acidity result, has only a small affect on the Acidity value.
- It would appear that use of either of the two indirect methods will reduce the errors involved in characterisation of low Alkalinity waters and, consequently, improve control of water treatment plants dealing with these waters.
- It is recommended that soft waters be characterised via Alkalinity and either CO$_2$ acidity or Acidity measurement. pH is then determined from equilibrium considerations. In this regard, any of various computer programs can be used. In this research, STASOFT4 (Loewenthal and Morrison, 2000) was utilised.
- A detailed procedure to facilitate the execution of the two approaches is presented in Appendix B.

Acknowledgements

The writers would like to thank Mr. Sarel Pieterse and Mr. Ian Morrison from Cape Town’s City Council for their indispensable assistance in this research.

References

Available on website http://www.wrc.org.za

Appendix A

Development of modified Gran functions for the ‘spiked’ sample

Appendix B

Development of modified first Gran function for Alkalinity of spiked sample

Total alkalinity is measured via addition of standard acid to a volume of sample (V_s) to which V_h ml of standard bicarbonate has been added (i.e. “blend”). At any point in the titration, after V_h ml of standard acid has been added, the Alkalinity of the blend can be represented as follows:

$$\text{Alkalinity}_i = \frac{(V_s \cdot C_a - V_h \cdot C_{\text{alk}})}{(V_s + V_h + V_e)}$$

where:

- alkalinity_i = concentration of alkalinity after the addition of V_h ml of standard strong acid (mol/l)
- V_s = the unknown volume of standard strong acid to be added to the alkalimetric end point of the blend (ml)
- V_h = volume of bicarbonate spike added (ml)
- V_{alk} = the volume of standard strong acid added to a point with pH equal to pH$_i$ (ml)
- C_a = concentration of standard strong acid (mol/l)
- V_e = volume of raw water sample analysed (ml)

Alternatively Alkalinity can be written in terms of weak acid species concentration. Equating this with Eq. (1) gives:

$$\text{Alkalinity}_i = \left(\text{HCO}_3^-\right) + 2\left(\text{CO}_3^{2-}\right) + \left(\text{OH}^-\right) - \left(\text{H}^+\right)$$

\[
= (V_s \cdot C_a - V_h \cdot C_{\text{alk}})/(V_s + V_h + V_e)
\]

where $[y]$ indicates concentration of species y after addition of x ml of standard acid.

In the pH region of the titration where pH<4, the species CO$_3^{2-}$ and OH$^-$ are negligible and Eq. (2) reduces to:

$$\text{Alkalinity}_i = -\left[H^+\right] = (V_s \cdot C_a - V_h \cdot C_{\text{alk}})/(V_s + V_h + V_e)$$

Rearranging terms gives:

$$-10^{-\text{pH}_i} (V_s + V_h + V_e) = C_a \cdot (V_s - V_e)$$

which is defined as the first Gran function F_1. Values for F_1 are then determined from the left-hand side of Eq. 4, i.e.

$$F_1 = -10^{-\text{pH}_i} (V_s + V_h + V_e)$$

Plotting F_1 vs. V_s gives a linear relationship which interception with the vertical axis (i.e. where F_1 equals zero) gives the value of V_e for the blend. The Alkalinity of the original water is thus calculated using Eq. (5):

$$\text{Alkalinity}_{\text{original}} = \frac{V_s \cdot C_a - V_h \cdot \text{spike}_{\text{alk}}}{V_s}$$

where:

- spike$_{\text{alk}}$ = Alkalinity of standardised HCO$_3^-$ solution (1.15 mmol/l)

Development of modified second Gran function for CO$_2$ acidity for the ‘spiked’ sample

Recognising that the CO$_2$ acidity of the standardised bicarbonate solution is zero and following the procedure set out above, the total CO$_2$ acidity equation can be written as follows:

$$\text{CO}_2 \text{ acidity} = \frac{(V_s \cdot C_a - V_h \cdot \text{spike}_{\text{alk}})}{(V_s + V_h + V_e)}$$
\[CO_{2} \text{acid} = \left\{ \begin{array}{l} H2CO_3^- \times [CO_3^{2-}] \times [OH^-] \times [H^+] \\ \text{where:} \\
\text{CO}_2 \text{ acidity} = \text{CO}_2 \text{ alkalinity} \end{array} \right. \]

\[= (V_f \times C_o - V_e \times C_o) / (V_f + V_e + V_H) \]

(6)

Acknowledging that CO₂ acid = - CO₂ alkalinity, Eq. (6) can be rewritten as follows:

\[CO_{2,alk} = \{ [H_2CO_3^-] + [CO_3^{2-}] + [OH^-] - [H^+] \} \]

\[= -(V_f \times C_o - V_e \times C_o) / (V_f + V_e + V_H) \]

(7)

In the pH range between 7 and 6, Eqs. (2) and (7) are respectively reduced to:

\[\text{Alkalinity} = [HCO_3^-] = (V_f \times C_o - V_e \times C_o) / (V_f + V_e + V_H) \]

(8)

\[CO_{2,alk} = -[H_2CO_3^-] = -(V_f \times C_o - V_e \times C_o) / (V_f + V_e + V_H) \]

(9)

Recognising that \([HCO_3^-] / [H_2CO_3^-] = K_1 / (H^+) \), dividing Eqs. (8) and (9) yields:

\[\frac{\text{Alkalinity}}{CO_{2,alk}} = \frac{[HCO_3^-]}{[H_2CO_3^-]} = \frac{V_f \times C_o - V_e \times C_o}{V_f \times C_o - V_e \times C_o} = \frac{K_1}{(H^+)} \]

(10)

Rearranging gives the desired equation for CO₂ alkalinity:

\[F_{2x} = 10^{-(pH)_x} \times (V_f - V_e) = -K_{1} \times (V_f - V_e) \]

(11)

where \(F_{2x} \) is the second Gran function used for determining CO₂ acidity as follows:

Plotting \(F_{2x} \) vs. \(V_e \) gives a linear relationship the interception of which with the vertical axis (i.e. where \(F_{2x} \) equals zero) gives the value of \(V_f \) (in this calculation \(V_f \) will appear as a negative value due to the representation of CO₂ acidity as -CO₂ alkalinity).

The CO₂ acidity of the original water is thus calculated using Eq. (12) (note that CO₂ acidity of the standard bicarbonate solution is zero):

\[CO_{2} \text{ acid (mol/L)} = \frac{V_f \times C_o}{V_f} \]

(12)

Note that another interesting feature of the second Gran function is that the slope of the curve represents the apparent equilibrium constant \(K_1 \).

Appendix B

Procedure for execution of the “double Gran function” and “blend” methods

Apparatus

1. pH probe and reference electrode: general purpose combined electrodes cannot be used. In the work reported here an Orion glass electrode and an Orion rapid flow reference electrode were used (see Materials and methods). However, one can also use any specialised combined electrode available on the market for use with low conductivity waters.

2. Titration apparatus: a micro-burette can be used for the strong acid titration, but rather use an automatic titrator with accuracy of at least ± 0.01 ml.

3. Magnetic stirrer: any magnetic stirrer with slow and smooth stirring.

Reagents

1. Standard hydrochloric acid: dilute 0.198 mF concentrated HCl (32%) in 2 l with distilled or deionised water. Add 2 g NaCl. Standardise against 20 ml 0.005 N Na₂CO₃ solution by titrating to 4 points at pH values in the region 3.5 < pH < 4. Execute a first Gran function calculation (see The double Gran method below) to calculate the accurate standard acid concentration (Na₂CO₃ concentration is 250 mg/l as CaCO₃).

2. Standard bicarbonate solution: dissolve 96.5 mg NaHCO₃ in 1 l distilled or deionised water. Verify Alkalinity of solution by titrating should be very close to 57.5 mg/l as CaCO₃. If necessary, correct value to 57.5 mg/l, by either diluting with distilled water or by the addition of NaHCO₃.

3. NaCl can be added to the blend either as powder or as a 250 g/l aqueous solution.

Procedure

1. Titrate the raw sample to get 4 to 5 points between pH 4 and 3.5. Analyse Alkalinity using the first Gran function (see The double Gran method below).

2. Prepare the blended sample according to the following table:

<table>
<thead>
<tr>
<th>If Alkalinity of raw sample mg/l as CaCO₃</th>
<th>Use raw sample (ml)</th>
<th>Standard bicarbonate (ml)</th>
<th>NaCl (250 g/l) (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 - 2</td>
<td>45</td>
<td>5</td>
<td>0.18</td>
</tr>
<tr>
<td>2 – 10</td>
<td>40</td>
<td>10</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Note: the purpose of the bicarbonate to raw sample ratio is to effect pH readings with a minimal C T of approximately 10 mg/l as CaCO₃ while not camouflaging the original pH acidity value. NaCl is added to maintain a Total dissolved solids (TDS) concentration of approximately 1 g/l throughout the titration.

3. Record the temperature of the blend solution.

4. Titrate the blend as follows: 4 points evenly distributed between pH 7.0 to pH 6.3. Stir very slowly (to minimise CO₂ exchange with air), and allow the pH to stabilise for at least 40 s before...
further addition of acid. After completion of the upper pH region, add acid to reach a pH below 4 and additional volume for another 4 to 5 points down to around pH 3.5. The mixing speed at this stage can be slightly increased as the lower Gran function is not affected by CO₂ loss or gain.

Calculations

The double Gran method

1. First Gran function: using the data from the lower pH region, set up the following table (note that if NaCl is added to the sample as powder V_{NaCl} = 0 as developed in Appendix A):

<table>
<thead>
<tr>
<th>Point</th>
<th>pH</th>
<th>(F_{x} = 10^{x} \cdot \left[p\left(V_{x} + V_{H} + V_{s} + V_{NaCl}\right) \right])</th>
<th>(V_{x}) (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Using Excel, plot \(F_{x} \) (X axis) versus \(V_{x} \) (Y axis), and draw a linear regression curve. The constant of the linear regression formula (i.e. where \(F_{x} = 0 \)) constitutes \(V_{e} \). R² of the regression line should be greater than 0.999.

 Alkalinity of blend (mg/l as CaCO₃)

 \[= V_{e} \cdot C_{s} \cdot 50 \, 000 / (V_{s} + V_{H} + V_{NaCl}) \]

 where:
 - \(V_{e} \) = linear regression constant (mL).
 - \(C_{s} \) = standard acid concentration (mol/L).
 - \(V_{s} \) = raw water volume in blend (mL).
 - \(V_{H} \) = bicarbonate volume in blend (mL).
 - \(V_{NaCl} \) = volume of NaCl 250 g/l solution (mL).

 Note: For a raw water Alkalinity (No 1 under Procedure), \(V_{H} \) and \(V_{NaCl} \) = 0.

3. Second Gran function: using the data from the upper pH region, and \(V_{x} \) from 2 above, set up the following table:

<table>
<thead>
<tr>
<th>Point</th>
<th>pH</th>
<th>(F_{x} = 10^{x} \cdot (V_{x} - V_{e}))</th>
<th>(V_{x})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Using Excel, plot \(F_{x} \) (X axis) vs. \(V_{x} \) (Y axis), and draw a linear regression curve. The constant of the curve (multiplied by -1) constitutes \(V_{f} \). \(R^{2} \) of the regression curve in this case should be greater than 0.996.

Calculation of CO₂ acidity of the raw water is based on the fact that CO₂ acidity of the bicarbonate (and the NaCl solution) solution is zero. Hence:

 CO₂ acidity (raw) (mg/l as CaCO₃)

 \[= (V_{e} \cdot C_{s} \cdot 50 \, 000) / V_{e} \]

 Acidity (raw) (mg/l as CaCO₃)

 \[= [\text{CO₂ acidity (raw)} + \text{Alkalinity (raw)}] \times 2 - \text{Alkalinity (raw)} \]

The blend method

1. Calculate \(V_{e} \) of the blend using the first Gran function as in No 1 under *The double Gran method*.

2. For each individual titration point, carry out the following calculation (given in a tabular format):

<table>
<thead>
<tr>
<th>Point</th>
<th>(V_{e}) (mL)</th>
<th>pH</th>
<th>Alkalinity (blend) (mg/l as CaCO₃)</th>
<th>Acidity (blend) (mg/l as CaCO₃)</th>
<th>Acidity (mg/l as CaCO₃)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 - Alkalinity = \((V_{s} + V_{H} + V_{NaCl} + V_{x}) \cdot \text{Alkalinity (blend)} - V_{H} \cdot 57.5 - V_{x} \cdot C_{s} \cdot 50 \, 000) / V_{e}

 - Acidity raw = \([V_{s} + V_{H} + V_{NaCl} + V_{x}] \cdot \text{Acidity (blend)} - V_{H} \cdot 57.5 - V_{x} \cdot C_{s} \cdot 50 \, 000) / V_{e}

3. The average of the four points should be reported as the result accompanied by the corresponding standard deviation (e.g., 4.0 ± 0.2 mg/l as CaCO₃).