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Abstract

Use of the index-flood method at ungauged sites requires methods for estimation of the index-flood parameter at these sites. This
study attempts to relate the mean annual flood to site characteristics of catchments in KwaZulu-Natal, South Africa.
 The ordinary, weighted and generalised least square methods for estimating model parameters are compared and found to perform
equally well, with preference given to the generalised least square model.  A separation of KwaZulu-Natal (KZN) into two regions
was found to improve predictive ability of the models in the western and north-western parts of the study area. The study also
revealed problems with the estimation of the mean annual flood in the coastal areas of the study region.

Introduction

Design flood estimation in South Africa is generally based on
empirical and deterministic models such as the rational method,
unit hydrograph and the SCS model (Alexander, 1990). While
direct statistical analysis and regional techniques are described and
advocated by Alexander (1990), little effort has been devoted to the
development of regional estimation techniques. The use of regional
flood frequency analysis has two advantages compared with
traditional at-site analysis. Firstly, the reliability of the estimated
design events increases due to the inclusion of additional spatial
information. Secondly, the design events can be estimated at
ungauged sites, i.e. sites where no measurements of floods exist, as
shown by Hosking and Wallis (1997). A popular and widely used
regional method is the index-flood method as described, inter alia,
by Stedinger et al. (1993) and Hosking and Wallis (1997). To use
the index-flood method for estimation at ungauged sites, a
relationship, based on regression models, between the index-flood,
which is often the mean annual flood (MAF), and the corresponding
catchment characteristics has to be developed. However, the
reliability of the design event estimated at an ungauged site is
significantly lower than the corresponding estimate at a gauged
site. This prompted the NERC (1975) to recommend that a gauging
weir should be constructed as soon as the need for flood estimates
at a particular site was foreseen. This was further supported by
Hebson and Cunnane (1987) who showed that estimates of MAF at
ungauged sites are less precise than estimates at sites with even only
one year of available data.

Previous attempts to develop regression models in South
Africa have been reported by van Bladeren (1993), Mkhandi and
Kachroo (1997) and Meigh et al. (1997). All three studies used
explained variance (R2) to quantify model performance. Both van
Bladeren (1993) and Mkhandi and Kachroo (1997) modelled MAF
as a function of catchment area (AREA) based on drainage regions

as defined by DWAF (1990). In his study, van Bladeren (1993)
focused only on KZN, which he further subdivided into seven
subregions and obtained R2-values in the range 0f 0.84 to 0.96.
Mkhandi and Kachroo (1997) divided KZN into two regions
representing drainage region S, T and U and drainage region V
respectively. The model for region S, T and U obtained an R2 value
of 0.727, and for drainage region V an R2 value of 0.707. Meigh et
al. (1997) developed a general regression model for South Africa
and Botswana relating MAF to AREA and mean annual precipitation
(MAP). They divided the considered catchments into two groups
based on AREA as  AREA > 1 250 km2 and AREA < 1 250 km2 and
reported R2 values of 0.542 and 0.593 respectively. These results
indicate that a grouping of catchments based on geographical
location rather than catchment area is preferable. In all three studies
the lack of other easily accessible catchment characteristics other
than AREA was reported as a barrier towards improved model
development and performance.

The index-flood method

The key assumption underlying the index-flood method is that
annual maximum series (AMS) of floods from different sites are
identically distributed except for a scale parameter, termed the
index-flood. In this study the MAF is defined as the index-flood.
The method requires identification of homogeneous regions in
which the key assumption is valid. The T-year event (X

T
) at any site

within the homogeneous region can be estimated as:

   (1)
where:

µ
i

 = MAF at site i
z

T
 = (1-1/T) quantile in the regional frequency distribution

of normalised AMS.

The regional growth curve z
T
 describes the relationship between the

normalised flood magnitude and the corresponding exceedance
probability and is considered constant within a homogeneous
region. Kjeldsen et al. (2000) recommended using either the
General Normal (GNO), the Pearson Type 3 (P3) or the General
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Pareto (GPA) distributions as regional distributions of the normalised
AMS for floods in the west and north-western parts of the KZN
province of South Africa. In this study the GNO distribution has
been adopted and its statistical properties are summarised in
Appendix A. No suitable distribution was identified for the coastal
and midlands area of KZN and, therefore, even though it can be
characterised as homogeneous, further research is required before
the index-flood method can be applied in this region.

When estimating the T-year event at an ungauged site, the
index-flood parameter µ

i
 is unknown, but the regional growth

curve z
T
 will be known. Hence, the problem of estimating design

floods at ungauged sites is reduced to the estimation of the MAF at
the site under consideration. A widely used approach for estimation
of the index-flood parameter is through the use of a non-linear
relationship between the index-flood parameter and a number of
site characteristics as shown, for example, by NERC (1975),
Stedinger et al. (1993) and Hosking and Wallis (1997). The non-
linear model is linearised through a log-transformation:

   (2)

where:
µ

i
= MAF at site i, and

b
j

= model parameters , j = 0,...p, and
A

j
= site characteristics j = 1,...p, and

η
i

= error term.

Stedinger and Tasker (1985) compared ordinary least square (OLS),
weighted least square (WLS) and the general least square (GLS)
methods for estimating the parameters in Eq. (2) and found that
GLS and WLS performed better than the OLS when the basic
assumptions (independent and homoscedastic residuals) of the
OLS are violated. Estimation based on GLS provides more accurate
estimation of both model parameters and model error than the OLS
method. The WLS method performs closely to the GLS method for
modest inter-site correlation.

The GLS regression model

The assumption behind the OLS method is that the model residuals
are independent and homoscedastic. The WLS method is an
extension of the OLS allowing the residuals to be heteroscedastic,
which is often the case in hydrology where the MAF will be
estimated from AMS of different record length.  The GLS method
extends the WLS by allowing the residuals to be cross-correlated,
which is also to be expected when AMS from a confined geographical
region are analysed.

Consider the assumed log-linear relationship between µ
i 
and

the site characteristics as defined in Eq. (3):

  (3)

where:
θ

i
= logarithm of µ

i
 at site i = 1,...,N

b
j

= model parameters, j = 0,..., p
L

ki
= logarithm of catchment property k = 1,..., p at site i

δ
i

= model error due to lack of fit of regression model.

The properties of the model error are given as:

   (4)

where  θδ
2
 
 is model error variance. Next, consider the MAF at site

i. The estimator θ
i 
of θ

i 
is subject to sampling error so that:

   (5)
where:

   (6)

In Eq. (6) σεi
2 is the sampling error variance of θ

i 
at site i, and ρεij

is the inter-site correlation due to concurrent observations at site i
and j. When ρεij 

= 0, i.e. neglecting inter-site correlation, the GLS
method reduces to the WLS model. If it is assumed that the at-site
sampling error variance is considered constant at all sites, WLS is
reduced to OLS (Stedinger and Tasker, 1985). The total errors (η

i
)

consists of a model error due to lack of fit of the regression model
and a sampling error due to the use of θ

i
 instead of θ

i
, i.e.:

   (7)

The elements of the covariance matrix G of the total error as
defined in Eq. (7) are given as:

   (8)

The multiple linear regression equation can be expressed on matrix
form as:

U = BX + H    (9)

where:

 (10)

The GLS estimator of the model parameter matrix B is obtained
from:

        (11)
where σδ

2 is found by solving

         (12)

The solution of Eqs. (11) and (12) requires an iterative procedure
where Eq. (12) is solved for σδ

2 using, for example, ordinary
bisection. According to Stedinger and Tasker (1985) it can happen
that no positive value of σδ

2 can solve Eq.(12), in which case the
difference between U and XB is explained by the sampling error
alone.

Application of the GLS method requires estimation of the
sampling error covariance matrix. Estimation of  σεi

2 is complicated
by the fact that it should be independent of θ (Stedinger and Tasker,
1985). Madsen and Rosbjerg (1997) presented an appropriate
estimator as:

  (13)

where:

θ
i

^

^

^

H = (η
1
, η

2
, ....η

n
)T
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C
v

= coefficient of variation of non-log-transformed AMS
at site i, and

  (14)

Furthermore, the inter-site correlation ρεij 
between ln[µ

i
] and ln[µ

j
]

can be estimated as the correlation between concurrent observations
at site i and j, ρ

ij
, as:

  (15)

as shown by Stedinger (1983) and Madsen and Rosbjerg (1997).
Once the model parameters have been estimated, predicted

values of θ
i
 and the corresponding predictive variance can be

estimated as:

  (16)

where:
x

i
T = the i-th row in X, and

= the covariance matrix of the estimated
parameters.

Hence, the total predictive variance in Eq. (16) is the sum of the
model error variance and the sampling uncertainty of the estimated
regression model parameters. As µ

i
 = exp[θ

i
], the following

expressions are valid for the prediction of MAF

  (17)

which can be calculated based on Eq. (16).

Data utilised

The data utilised were the MAFs from 29 relatively unregulated
rivers within KZN. These 29 catchments were divided into two
regions based on an index of monthly rainfall concentration (CONC),
as shown in Fig. 1. Region 1 represents the coastal and midlands
area of KZN and consists of 12 catchments. Region 2 covers the
western and north-western parts of KZN and consists of 17
catchments. The AMS from Region 1 all have high coefficients of

variation and coefficients of skew and all include high outliers.
For each station a number of catchment characteristics was

obtained, as shown in Table 1. These constitute a subset of the
characteristics listed by Alexander (1990) as being of importance
to flood hydrology. Furthermore, the selection was based on the
assumption that they should be easily accessible from readily
available maps in electronic form from Schulze (1997) and derived
using a 200 m × 200 m DEM and GIS. Gravelious’ compactness
coefficient (GCC) was estimated as

  (18)

where P is the perimeter of the catchment [m], and AREA is the
catchment area [m2].

Inter-site correlation

The GLS method requires estimates of the inter-site correlation.
Tasker and Stedinger (1989) found that using sample estimates of
ρ

ij 
can lead to singular covariance matrix G that cannot be inverted

as required in Eq. (12). They recommend relating the inter-site
correlation between site i and j to the distance d

ij
 between the two

gauging weirs as:

  (19)

Figure 2 shows the observed and estimated inter-site correlation
when using:

• all catchments
• only those in Region 1 and
• only those in Region 2.

The figure clearly indicates the existence of inter-site correlation.
Significant correlation-distance relationships are evident in Region
2 when using all catchments, whereas the correlation appears to be
relatively constant in Region 1. Alternatively, the inter-site
correlation can be assumed to be constant and equal to the average
inter-site correlation as  ρ

ij 
= ρ for i ≠ j. Both approaches were

adopted in this study, with GLS1 using regional constant inter-site
correlation and GLS2 using ρ

ij 
from Eq. (19) to estimate inter-site

correlation.

TABLE 1
Catchment characteristics

Characteristics Notation

Catchment area [km2] AREA
Mean annual precipitation [mm] MAP
Rainfall concentration [%] CONC
Mean catchment slope [%] MCS
Infiltration capacity [m·m-1] * SOIL
Mean altitude [m] ALT
Gravelious’ compactness coeff. [-] GCC

* Equal to the FC1 parameter in the ACRU model
(Schulze, 1995)

Figure 1 (left)
Study area and location of gauging weirs

measuring relatively  unregulated streamflows
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Applications

The regression models for prediction of MAF were estimated using
OLS, WLS, GLS1 and GLS2 using

• all 29 catchments,
• the 12 catchments in Region 1 and
• the 17 catchments in Region 2.

Based on the previous studies by Meigh et al. (1997) and Mkhandi
and Kachroo (1997) and similar studies from other parts of the
world, e.g. NERC (1975), AREA is the single most important
variable and should always be included in the models. In a similar
study of MAF from New Zealand, Rosbjerg and Kjeldsen (2000)
found that combining AREA with MAP as AREA*MAP gave
significantly better results than using AREA alone. Different
combinations of AREA and AREA*MAP with other catchment
properties, as shown in Table 1, were tested in order to identify the
best combination of independent variables. According to Bowerman
and O’Connell (1990), minimum prediction variance is a better
criterion for comparing regression models than the coefficient of
determination R2. Hence, the model with the lowest average
prediction variance σθ

2  was chosen, where:

  (20)

with M being the number of catchments included in the analysis and
σθi

2
 
calculated through Eq. (16). The selected regression equations

estimated using OLS, WLS, GLS1 and GLS2 to the three regions,
the model error variance, the average sampling error variance and
the average prediction variance  σθ

2 are shown in Table 2.
Different combinations of catchment characteristics were found

to give models with the lowest predictive variance in each of the
three tested regions. Using all catchments, the MAF is best predicted
using only AREA. In Region 1 both MAP*AREA and CONC
should be used. Finally, in Region 2 AREA and GCC gave the
lowest average prediction variance. Addition of MAP in Region 2
gave a lower model error, but the average prediction variance
increased and, hence, MAP was omitted.

Smaller model error variance was obtained when the models
were estimated for Regions 1 and 2 rather than using all catchments,
especially in Region 2, whereas only a small improvement was
observed in Region 1. Based on the average predictive variance as
calculated through Eqs. (17) and (20), it would be preferable to use
all catchments when estimating MAF in Region 1, but only data
from Region 2 should be used when estimating MAF in Region 2.
A separation according to AREA as suggested by Meigh et al.
(1997) did not improve the average prediction variance and, hence,
was not used.

The use of all gauging stations to improve model prediction in
Region 1 should be viewed with some caution and is more likely to
be an indication that the current model type is inappropriate to
model MAF in that region.

For all three regions the WLS method gives the lowest values
of model error variance, average sampling error variance and,
hence, the lowest average total prediction error variance.
Correspondingly, the OLS method gives the highest model error
variance and total average prediction error variance in all three
regions, but not the highest average sampling error variance in
Region 1, as it does in the other two regions. Also in Region 1 the
GLS2 method performs worse than the GLS1 method with the
opposite in the other two regions.

In all three regions, the model parameters estimated using OLS,

Region 1
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Figure 2
Correlation-distance relationship for  a) all catchments,
b) Region 1 and   c) Region 2 estimated using Eq. (18)

WLS and GLS1 appear to be of similar magnitude compared to the
parameters obtained through the GLS2 method.

Interestingly, the biggest difference between model parameters
estimated using GLS1 and GLS2 is observed in Region 1 where the
correlation-distance relationship appears least significant.

To compare the results from this study with similar OLS
models reported in the literature by van Bladeren (1993), Mkhandi
and Kachroo (1997) and Meigh et al. (1997),the R2 statistic was
calculated for the OLS models.



ISSN 0378-4738 = Water SA Vol. 27 No. 3 July 2001 319Available on website http://www.wrc.org.za

 Using all catchments, a R2 value of 0.707 was obtained, which is
similar to the results obtained by Mkhandi and Kachroo (1997).
Dividing the catchments into Regions 1 and 2 significantly enhances
the modelling of MAF, with an R2 value of 0.814 in Region 1 and
a R2 value of 0.841 in Region 2. The R2 values obtained by van
Bladeren (1993) for the coastal area of KZN, ranging from R2 =
0.91 to 0.94, are larger than the values found for this study.
However, significantly better results were obtained in the western
north-western parts of KZN in this study with R2 = 0.841 compared
to R2 = 0.66 found by Van Bladeren (1993).

As mentioned previously, estimates of the index-flood parameter
at ungauged sites using regression models are not as reliable as
estimates based on available observed data. To illustrate the
precision of estimation at ungauged sites compared to estimation at
gauged sites, Fig. 3 shows the X

T
-T relationship at each of the 17

sites in Region 2 estimated using the index-flood method, as
defined by Eq. (1), with the GNO distribution as the regional flood
frequency distribution for two different situations:

• at gauged sites, where µ
i
 is estimated through available site data

and the regional growth curve is estimated using all available
data, including the at-site data,

• at ungauged sites using a hidden station approach, where data
from the site under consideration were removed and the µ

i
 is

estimated using the GLS2 method of the remaining catchments.

The regional growth curve for Region 2 as estimated by Kjeldsen
et al. (2000), adopting the GNO distribution, is given:

  (21)

^

^

TABLE 2
Results of regression analyses using the log-linear model

Model type Regression model Model Sampling Predictive
error  error variance

All 29 catchments

OLS 0.2769 0.2960 0.5729

WLS 0.2396 0.2588 0.4984

GLS1 0.2542 0.2883 0.5425

GLS2 0.2477 0.2812 0.5289

Region 1

OLS 0.2627 0.3283 0.5910

WLS 0.2284 0.2945 0.5229

GLS1 0.2308 0.3364 0.5672

GLS2 0.2325 0.3396 0.5721

Region 2

OLS 0.1340 0.1576 0.2916

WLS 0.1140 0.1377 0.2517

GLS1 0.1213 0.1525 0.2738

GLS2 0.1164 0.1467 0.2631
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Figure 3
Probability plots comparing estimation at gauged and ungauged sites in  Region 2
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Figure 3 (continued)

where Φ is the cumulative distribution function for the standard
normal distribution.

In the hidden area approach, the exclusion of the at-site data
will also have an effect on the regional growth curve. However, this
effect is negligible compared to the effect on the index-flood
parameter. For most sites the estimation at ungauged sites appears
to give acceptable estimates of the index flood parameter, except
for site V3H005. This particular site has low unit runoff compared
to the other catchments in the region. Further studies should
investigate the cause of this low runoff response and if additional
catchment characteristics will improve the modelling results.

Discussion and conclusions

This study investigated the use of log-linear models for predicting
MAF from catchment characteristics, and the use of OLS, WLS,
GLS1 and GLS2 respectively for the estimation of model para-
meters.

The separation of all catchments into the two regions
significantly improved the predictive ability in Region 2. In Region
1, where the sampling variability of the MAF is high, the predictive
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ability decreased compared to using all catchments, illustrating the
high degree of sampling variability in the AMS of floods from this
region. In Region 2 the models developed in this study performed
better than previously reported models.

The model parameters estimated using OLS, WLS and GLS1
varied only little, with GLS2 giving different sets of parameters.
The GLS2 may be used with the most confidence, as the fundamental
conditions of the OLS method, homoscedastic and independent
observations, are seriously violated. In all regions the two
contributions to the total prediction variance are of similar
magnitude, with the average sampling error variance contributing
slightly more than the model error variance. Hence, improvement
of the equations obtained in this study can be obtained through a
reduction of both components by:

• reduction of average sampling error variance by identification
and inclusion of more catchments and

• reduction of model error variance through improved equations,
e.g. by inclusion of other catchment characteristics.

Based on the results from this paper we conclude that the index-
flood method should not be applied to Region 1 before the
fundamental modelling problems have been solved.
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Appendix A

The General Normal (GNO) distribution, also known as the three
parameter log-normal (LN3) distribution, has a long and proven
record in hydrology. According to Hosking and Wallis (1997) the
probability density function (pdf) of GNO can be expressed as:

  (A1)

and the corresponding cdf:

  (A2)

where:
Φ = the cdf of the standard normal distribution

The p-th fractile of GNO, x
p
 = F-1(p), is calculated as:

  (A3)

The three parameters ζ (location), (scale) α and k (shape) can be
estimated using Method of L-Moments as presented by Hosking
and Wallis (1997). First, estimate k as:

  (A4)

by inserting sample L-Skew for τ
3
. The E

i
 and F

i
 coefficients are

shown in Table A1. Next, α and k are estimated as:

  (A5)
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        (A6)

by inserting the first and second order sample L-moments and the
estimated k from Eq. (A4) instead of λ1, λ2 and k respectively.

Table A1
Coefficients for estimation of k

(Hosking and Wallis, 1997)

E
0
 = 2.0466534

E
1
 = -3.6544371 F

1
 = -2.0182173

E
2
 = 1.8396733 F

2
 = 1.2420401

E
3
 = -0.20360244 F

3
 = -0.21741801


