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Abstract

Uncertainty in input parameters to groundwater flow problems has been recognised as an impediment to designing efficient
groundwater management strategies. The most popular approach to tackling this problem has been through the Monte Carlo
approach. However, this approach is generally too expensive in terms of computer time because of the number of scenarios required
to ensure reliable statistics. Furthermore, solutions obtained through this approach are not necessarily robust. In this paper, it is
shown how groundwater management problems, where input parameters are uncertain can be reformulated as second-order cone
optimisation (SOCO) problems, which are efficiently solved by recently developed interior-point methods. Results for a real-world
case application of a groundwater aquifer found in Kenya are presented.
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Introduction

Theories of groundwater flow are well developed and over the last
three decades, several applications have been made to model
groundwater flow systems. A large number of these works have
been based on deterministic flow simulation, and over the last
decade a considerable volume of literature has been written and
theories developed in the field of stochastic subsurface hydrology.
In reality, many real-world aquifers are characterised by a few
measurement points, which are used to derive the aquifer charac-
teristics. Traditionally, the few measurement points available have
been used for zonation purposes after which the management
problem is solved deterministically. However, recognising the fact
that the material forming aquifers varies enormously spatially, it is
not immediately clear how optimal management strategies de-
signed deterministically perform in an environment of uncertainty.
Having noted that the parameters of the earth material which dictate
the water-flow conditions vary a great deal spatially, one may ask
the questions: Does it make sense to model groundwater systems
deterministically using the sparse data available? How do solutions
based on such an approach perform in a real-world scenario?

Geohydrologists, have for some time now, used the Monte
Carlo approach in an attempt to desensitise the optimal solutions,
thus including some robustness within the optimisation problem.
However, the Monte Carlo approach is generally CPU-intensive
(because of the large number of scenarios which have to be
considered to arrive at a relatively insensitive optimal solution),
hence its main drawback. Recently, some researchers have applied
the multi-stage optimisation approach (in particular a two-stage
optimisation approach) with some promising results (Ndambuki et
al., 2000a; Wagner et al., 1992; Mulvey et al., 1995; Mark et al.,
1999).

In this paper, we transform our stochastic groundwater quantity
management problem into a second-order cone optimisation prob-
lem, which is then solved by some powerful interior-point method.
We first present a general introduction to second-order cone
optimisation (SOCO) problems followed by the formulation of a
second-order cone groundwater quantity management problem.
Subsequently, we present results for a real world case aquifer found
in Laikipia District, Kenya.

Consider a linear optimisation problem (LOP) of the following
form:

xcT minimize (1)

subject to:

mibxa i
T
i ,...,1  , =≤ (2)

0≥x (3)
where:

c, ai∈ Rn; bi ∈ R are the problem parameters; while
x are the optimisation variables.

Assuming that all the problem parameters except ai are accurately
known and that ai is uncertain but lying in ellipsoids ei defined as:

{ }1  ≤+=∈ iiiiii uuaa Pε (4)

where:
P = PT are n x n perturbation matrices;
ai overstrike are the nominal values and  the norm of  ui ensure
convexity.

Then a robust solution of the optimisation problem given by Eqs.
(1) to (3) is as follows:

xcT minimize (5)
subject to:
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An optimisation problem defined by Eqs. (5) to (7), though now
deterministic, has infinitely many constraints and a solution to this
robust optimisation problem is feasible if for all i=1,…m,, the
following holds (see e.g. Ben-Tal and Nemirovsky, 1998):

( )[ ] 1:  ,0P ≤∀≤−+ i
T
iii

T
ii

T
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which can equivalently be reformulated by a single constraint as:

ii

T

i bxxa ≤+ P (9)

Constraints of the form Eq. (9) are referred to as second-order cone
constraints (otherwise known as Lorentz cone or ice-cream cone
constraints). Thus the optimisation problem defined by Eqs. (1) to
(3) can explicitly be written as a second-order cone optimisation
problem as follows:

xcT minimize (10)
subject to:

mibxxa ii

T
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The norm term is the usual Euclidean norm and can be thought of
as a penalty term which introduces some robustness within the
optimisation problem.

SOCO problems can be solved efficiently through the interior-
point methods developed recently (Andersen and Andersen, 1999;
Boyd et al., 1994; Sturm, 1999). A few applications of SOCO
problems have been reported in the literature. They include antenna
array weight design, filter design, grasping force optimisation,
portfolio optimisation, truss design, and equilibrium of systems
with piecewise-linear springs design. From the literature, the
reported applications are basically in the areas of electrical engi-
neering, mechanical engineering, economics, and structural engi-
neering (Ndambuki et al., 2000a,b; Boyd et al., 1994; Lobo et al.,
1998; Ben-Tal and Nemirovsky, 1998; Boyd et al., 1998). To the
best of our knowledge, this is the first time this novel tool has been
applied to a real-world case aquifer.

The study area

The research was conducted within the Ewaso Ng’iro catchment
situated in the central part of Kenya. This area extends from about

0o15′ south of the equator to 10o30′ north and between longitudes
36o15′ east and 39o45′ east. It is the domain formed by the area of
Upper Ewaso Ng’iro Basin, upstream of the confluence of the
Ewaso Ng’iro and Ewaso Narok Rivers and the area south-east of
the confluence. This area, shown in Fig. 1 is wholly underlain by
Precambrian basement rocks and is bounded to the west by the
Laikipia Escarpment and to the south-east and south-west by
the volcanic rocks of the Aberdares (3  999 m) and Mount Kenya
(5 199 m). The rocks from the higher parts of the study area are
mainly volcanic, while in the lower areas, metamorphic rocks of the
basement system predominate.

Discretisation of the model

To delineate the area of interest (regional aquifer system) from the
local aquifers, the whole study area was discretised into 60 x 60
cells each of 1 850 m x 1 850 m. The modelled area of interest is
shown in Fig. 2.

Three main rivers, i.e. Ewaso Ng’iro, Ewaso Narok and Nanyuki,
were also modelled within the area of interest (Fig. 1). Further, four
swamps (Ewaso Narok, Pesi, Rongai Burguret and Suguta Naibor
Swamps) and four perennial springs were included in the model-
ling exercise as well (Fig. 2).

The overall modelling effort was intended to manage the water
resources (especially groundwater) of this area in such a manner so
as to maximise benefits derived without substantially imparting
undesirable consequences on the ecosystem.

Statement of the management problem

Following the exposition on SOCO problems already presented,
the SOCO groundwater management problem was formulated as
follows:
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where:
Nw is the number of pumping wells
Nc is the number of control points
Ze is the number of control points
λj  is daily operational cost in monetary unit (MU) per unit
volume per unit lift in cell j
xj is pumping rate in cell j
rj is the pumping lift in cell j given by (Hj-hj)
Hj is height of ground surface (measured from bottom of
aquifer) at cell j
hj is the head in pumping cell j
ai_overbar j is the mean response at control point i due to
pumping in cell j
bi  is the constraining value at control point i
Rl  is recharge in demand zone l
xj 

min and xj 
max are the minimum and maximum allowable

pumping rates;
Dg is total water demand
l refers to different water demand zones as shown in Fig. 3.

Solution methodology

To solve the above formulated robust single objective SOCO
groundwater quantity problem, the following steps were followed:

• A number of realisations, w, of the uncertain parameter (in our
case, the aquifer transmissivity field) were generated. Each
realisation,w, has different spatial values of transmissivity.
This means that every realisation,w, gives rise to different
responses ai at locations of interest and hence different values
of   mean ai ‘s and Pi.

• Using the groundwater simulation software, MODFLOW
(McDonald and Harbaugh, 1984) and the generated
transmissivity fields, the groundwater aquifer responses, ai, at
all points of interest due to unit pumping rates at all candidate
well locations were determined.

• The nominal values of ai and the perturbations, Pi were com-
puted.

• Using the single objective optimisation software, SeDuMi
(Sturm, 1999), the single objective SOCO problem was solved.

Input data

The following data were used in this research:
Recharge 24.7x103 m3·d-1

Mean (harmonic) transmissivity 6.073 m2·d-1

Current amount of water supplied 6.2 x 103 m3·d-1

Projected global (year 2000) water demand 11.1 x 103 m3·d-1

Projected Zone 1 water demand 2.07 x 103 m3·d-1

Projected Zone 2 water demand 5.13 x 103 m3·d-1

Projected Zone 3 water demand 3.86 x 103 m3·d-1.

Results

The grid size used is big, hence the results should be viewed within
that context. To arrive at a reasonable number of Monte Carlo
realisations to be used in the estimation of the uncertainty ellip-
soids, we carried out an investigation to determine how the optimal
objective value changes as the number of Monte Carlo realisations
were increased. Figure 4 shows how the optimal objective value
changes with the number,Ω, of Monte Carlo realisations consid-
ered. It shows that the optimal objective value changes widely for
number of realisations ranging between 4 and 30. However, for
more than 30 Monte Carlo realisations, the optimal value tends to
stabilise. Thus, it was felt that consideration of 30 Monte Carlo
realisations was a good compromise between CPU time and
solution accuracy.

The results reported in this paper, therefore, were based on 30
realisations of transmissivity fields. These fields were generated
using a mean (harmonic) transmissivity (log10) of 0.7834 and
other parameters shown in Table 1. In total, three cases with the
parameters shown in Table 1 were analysed.

As is evident from Table 2 and Fig. 4 increasing the value of the
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Local demand zones

TABLE 1
Parameters used to generate

transmissivity fields

Standard Correlation
deviation  length/

(log10) field width

Case 1 0.5 0.5
Case 2 1.0 0.5
Case 3 1.5 0.5

Figure 4
Variation of optimal value with number of Monte Carlo

realisations
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standard deviation results in an increase in the cost of
the optimal solution as expected. This is because
increasing the value of standard deviation is equiva-
lent to increasing the volume of the uncertainty ellip-
soids. Thus an optimal solution sought when consid-
ering high magnitudes of uncertainty is likely to be
more costly since such optimal solutions will have to
be robust against higher levels of uncertainty.

Figure 5 shows the present un-optimised pump-
ing strategy, able to supply a total water demand of
6.2 x 103 m3·d-1 (which is about 50% of the required
supply), while Fig. 6 shows the realised optimal
pumping solution. The realised optimal pumping
strategy recommends the mobilisation of a total of
140 pumping wells stressing the aquifer at rates
higher than the minimum permissible rates. Thus for
the groundwater aquifer to satisfy the projected water
demand of 11.1x 103 m3·d-1, an additional 56 boreholes
will have to be rejuvenated.

Comparison of Fig. 5 with Fig. 6 shows that the
optimised strategy has phased out some of the active
pumping wells within the present un-optimised strat-
egy, an indication that such pumping wells were not
optimally placed during the initial phases of aquifer
exploitation.

Conlusions

Because it is virtually impossible to resolve the uncer-
tainty in groundwater aquifer material properties
(transmissivity) to such a detail, which would quan-
tify the use of deterministic optimisation approaches,
water managers need robust solutions which do not
change with small changes in the input transmissivity
values. In this paper, we have shown how groundwater
quantity optimisation problems whose transmissivity
values are uncertain can conveniently be reformu-
lated as second-order cone optimisation problems,
which are amenable to solution through interior-point
methods. Moreover, we have proposed a solution
methodology to such problems and its suitability is
clearly shown through a real-world case optimisation
problem.

An outstanding feature of this approach is that
one is able to circumvent the shortfalls of the popular
Monte Carlo approach through consideration of only
a few realisations of the uncertain transmissivity field
in order to estimate the sizes and shapes of the
uncertainty ellipsoids. This leads to significant saving
in terms of CPU time, hence allowing optimisation
problems of high dimensions to be solved within a
relatively shorter time. An extra added advantage
(though not discussed in this paper) is the versatility
of the approach. This is borne out by the ease with
which one can increase or decrease the robustness of
the optimal solution by either scaling up or scaling
down the uncertainty ellipsoids at very little extra
effort in terms of CPU time.

References

ANDERSEN ED and ANDERSEN KD (1999) Exploiting
parallel hardware to solve optimization problems. SIAM
News 32 (4).

TABLE 2
Optimal objective values for
the cases shown in Table 1

Objective
value (MU)

Case 1 1.23
Case 2 1.62
Case 3 3.52

0.00 20000.00 40000.00 60000.00 80000.00 100000.00
0.00

10000.00

20000.00

30000.00

40000.00

50000.00

60000.00

70000.00

80000.00

90000.00

100000.00

110000.00

0.00 20000.00 40000.00 60000.00 80000.00 100000.00
0.00

10000.00

20000.00

30000.00

40000.00

50000.00

60000.00

70000.00

80000.00

90000.00

100000.00

110000.00

Figure 5
Un-optimised strategy

Figure 6
Optimised strategy corresponding to Case 1 of Table 1



ISSN 0378-4738 = Water SA Vol. 29 No. 4 October 2003 363Available on website http://www.wrc.org.za

BEN-TAL A and NEMIROVSKI A (1998) Convex Optimization in
Engineering. Technion-Israel Institute of Technology.

BOYD S, CRUSIUS G and HANSSON A (1998) Control applications of
non-linear convex programming. J. Process Control 8 (5-6) 313-324.

BOYD S, VANDENBERGHE L and GRANT M (1994) Efficient convex
optimization for engineering design. In: Proc. IFAC Symposium on
Robust Control Design. Rio de Janeiro, Brazil.

LOBO MS, VANDENBERGHE L, BOYD S and LEBRET H (1998)
Applications of second-order cone programming. Linear Algebra and
its Applications 284 193-228.

MARK W, MORTON DP and WOOD RK (1999) Monte Carlo bounding
techniques for determining solution quality in stochastic programs.
Oper. Res. Lett. 24 47-56.

MCDONALD MG and HARBAUGH AW (1994) A Modular Three-
Dimensional Finite Difference Ground-Water Flow Model. Scientific
Publications Co.

MULVEY JM, VANDERBEI RJ, ZENIOS SA (1995) Robust optimiza-
tion of large-scale systems. Oper. Res. 43 (2) 264-281.

NDAMBUKI JM, OTIENO FAO, STOET CBM and VELING EJM
(2000a) Groundwater management under uncertainty: A multi-objec-
tive approach. Water SA 26 (1) 35-42.

NDAMBUKI JM, STOET CBM, VELING EJM and TERLAKY T
(2000b) Robust groundwater management through second order cone
programming (SOCP). In: Oliver Sililo et al. (eds.) Groundwater: Past
Achievements and Future Challenges. 413-417.

STURM JF (1999) Using SeDuMi 1.02, A Matlab Toolbox for Optimiza-
tion over Symmetric Cones. In: Potra F, Roos C, Terlaky T (eds.)
Optimization Methods and Software. Vol. 11-12 Special Issue on
Interior Point Methods. 625-654.

WAGNER JM, SHAMIR U and NEMATI HR (1992) Groundwater qua-
lity management under uncertainty: Stochastic programming
approaches and the value of information. Water Resour. Res. 28 (5)
1233-1246.



ISSN 0378-4738 = Water SA Vol. 29 No. 4 October 2003364 Available on website http://www.wrc.org.za


