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Abstract

Most universally accepted feed-forward error back-propagation artificial neural network models, supported by batch- and
pattern-learning, daily, weekly, ten-daily and monthly sediment yield  were developed for the Vamsadhara River basin of
India. The fast gradient descent optimisation technique improved with variable learning rate (α) and momentum term (β)
was used for optimisation. In the process of optimisation and updating of weights, criteria adopted to terminate the process
of learning was selected as a per-decided high number of iteration and the other is the generalisation of model through cross-
validation. In all cases of model formulation, the data were normalised with the maximum value of the variable of the series
individually. The pattern-learned models were found superior to batch-learned models. High numbers of iterations adopted
for model development were found to reduce the value of the objective function, but with model’s over-learning and that
is reflected? Unclear what is meant by an increase and decrease of the performance in calibration and cross-validation,
respectively. The generalised pattern- learned models for different time scales were compared with linear transfer function
models and it was found that the pattern-learned models developed with generalisation through cross-validation were
superior in general, except weekly for the study area.
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Introduction

Since the 1930s, numerous linear and non-linear hydrological models
have been developed to simulate and forecast various hydrological
processes and variables. The suggested models have continuously
been improved by introducing new tools to effectively simulate the
processes. The developed models in the area of hydrology can
broadly be classified into regression models, stochastic models,
conceptual or parametric models and system models.

Regression models are either regression or correlation based, and
correlate the input(s) and output(s) of a process in the form of linear
or non-linear relationship, which estimate the constants of regres-
sion models. Few universally acceptable hydrological models that
have been developed in this category are the USLE, MUSLE and
Elwell models. The stochastic models normally extract the statis-
tical properties of time series and propagate these properties during
prediction. Such models normally require a long time series and their
extrapolation properties are poor. Some of the widely used stochastic
models in hydrological studies are auto-regressive, auto-regressive
moving average, auto-regressive integrated moving average, seasonal
auto-regressive integrated moving average, etc. The conceptual
models are designed to approximate within their structure the
general internal physical subprocesses. The models usually incor-
porate simplified forms of physical laws or a series of physical laws
to represent the transformation of input to output. These laws are
generally linear or non-linear, time variant or time invariant, lumped
or distributed, casual or non-casual and dynamic or memory less.
Among the most widely used conceptual models in the field of
hydrology are the Sacramento Soil Moisture Accounting (SAS-

SMA) model of the U.S. National Weather Service, HEC of U.S.
Army Corps of Engineers and the Stanford Watershed Model and
System Hydrologic European (SHE) model.

Artificial neural network (ANN) is a new soft computing
technique composed of densely interconnected processing nodes
which has the ability to extract and store the information from the
few patterns (data) in training through learning. ANN architecture
parallels in processing with that designed to process the information
in neuro-computing (Vemuri, 1992). The model is easy to develop;
yields satisfactory results when applied to complex systems poorly
defined or implicitly understood; and more tolerant to variable,
incomplete or ambiguous input data. Hydrologic applications of
ANN include the modelling of daily rainfall-runoff-sediment yield
process, snow-rainfall process, assessment of stream’s ecological
and hydrological responses to climate change, rainfall-runoff fore-
casting, ground water quality prediction and ground water remediation.
ASCE (2000a;b), Jagadeesh (2000), Tokar (2000), Rajurkar (2002)
among others provided a good overview of the ANN application to
rainfall-runoff simulation and prediction. Imrie (2000) improved the
generalisation by adding a guidance system to the cascade correlation
learning architecture and extrapolation properties using an activa-
tion function. Wilby (2003) was able to interpret the internal
behaviour of an ANN-based rainfall-runoff model. To this end, he
deleted all the nodes other than the hidden nodes and compared with
the state variables and internal fluxes. Danh (1999) and Elshorbagy
(2000) proposed feed-forward error back- propagation artificial
neural network (BPANN) models for runoff forecasting using fixed
stopping criterion and independent variables, respectively, and
compared them for performance with the available conceptual
models. The works of Thirumalaiah (2000), Xu (2002), Birikundavyi
(2002), Shivakumar (2002), Cigizoglu (2003), and Xiong (2002)
among others are notable for real time forecasting of runoff. Other
ANN applications include derivation of unit hydrograph (Lange,
1998). Only a few studies (Tayfur, 2002; Nagy, 2002; Cigizoglu
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2004) focused on ANN-event based sediment yield modelling and
sediment concentration.

The fast gradient descent optimisation is probably the most
widely used supervised algorithm applied in multilayer feed-
forward artificial neural network to optimise the error function and
therefore it is adopted in the present study. In model building, the
convergence of error is normally linked with a pre-decided tolerance
value, such as a minimum error, minimum error gradient or a high level
of iteration. The use of a pre-decided tolerance value to stop
convergence may under- or over-learn the model (Fu, 1996). The
cross-validation which improves the generalisation of network and
obviates the under- or over-learning, however, requires intensive
computations and demands large data set and computer memory.
Therefore, it is in order to develop the generalised batch- and pattern-
learned BPANN-based sediment yield models considering high level
of iteration and cross-validation as criteria to terminate the process
of learning, which forms the objective of this paper. These models
are simultaneously subjected to network pruning to achieve parsi-
mony, and compared with linear transfer function (LTF) models
using daily, weekly, ten-daily, and monthly data of Vamsadhara
River basin in India.

Linear transfer function model

The linear transfer functions (LTFs) are the time-dependent regres-
sion models with simple mathematics, requiring minimum input,
little computation, and yielding the results of desired accuracy
(Johnston, 1972). For a lumped linear system, the two or more time-
dependent observations are linked as:

St = ∑
=

p

1j
aj . St-j + ∑

=
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where:
         St is a dependent observation
         Rt and Qt are independent observations
         p, q and r are the time responses
         aj, bj and cj  are parameters associated with the jth variable.

The least square method can be used to solve the set of t linear
equations for parameters. Representing [a1, a2,…, ap, b1, b2,…,bq, c1,
c2,…,cr]

T as Ĥ , the variance of the time response {var. ( Ĥ )} is given
as (Johnston, 1972):

Var ( Ĥ ) = [A T A]-1 σ2   (2)
where:

A is the input matrix and σ2 is the variance of error term (et)
expressed as:

σ2 = (t – p – q - r)-1 ∑
=

t

1j
ej

2   (3)

The Var ( Ĥ ) helps avoid the parsimonious selection of time
responses by comparing the respective standard error associated
with each parameter as follows:

Ĥ > )ĤVar(   (4)

For parsimonious selection of time responses, the initially selected
time response value is increased one by one and if the resulting Ĥ
is less than the respective standard error { )ĤVar( }, the parameter
value is decreased. The obtained time response value represents the
number of successive past events of the variable affecting output
(Johnston, 1972).

Artificial neural network

In a multilayer back propagation artificial neural network (BPANN),
the nodes of input layer receive the input data, process it and pass
the output to the nodes of subsequent hidden layer(s), and from last
hidden layer to the output layer. The structure of the system with
nodes in input, hidden and output layers can be represented by j,
i, and k, where j varies from 1 to j, i from 1 to i, and k from 1 to k.
A particular structure for j=2, i=4 and k=1 is shown in Fig. 1.

      Connecting weights 

  Input                     Output 

       

 Nodes in Nodes in Nodes in 
input layer hidden layer output layer 

 j=1 to j i=1 to i k=1 to k 
 

Figure 1
Structure (2, 4,1) and notations of a multilayer BPANN

In a feed-forward BPANN scheme, nodes of the input layer receive
the normalised data set (input). The weighted sum corresponding
to each node of the next layer is calculated and passed to the next
layer usually through a sigmoid activation function. The error (E)
calculated at the output is propagated back to hidden layer(s) and
finally to input layer by updating the weights of interconnection.
The error (E) is defined as:

E = 2
1 ∑

k

1
[d(k) – O(k)]

2   (5)

where:
d(k) is the observed output at the kth node of the output layer
O(k) is the estimated  output at the kth node of the output layer

The updating of weights in all iterations is carried out using the
following equation:

W(ij) n+1 = W(ij) n + ∆W(ij) n   (6)

The speed of convergence is increased normally by introducing a
momentum term β and the effect of previous weight change as:

W(ij) n+1  = W(ij) n + ∆W(ij) n  + β[W(ij) n - W(ij) n-1]   (7)

The change in weights (∆W) in the direction of negative gradient is
given by:

∆W(ij) = - α 
(ij)W

E
∂
∂

 (8)

where:
α is the learning rate such that 0 < α < 1 and governs the rate
of change of weights.

The model parsimony can be achieved through an A information
criterion (AIC) (Akaike, 1974), B information criterion (BIC)
(Rissanen, 1978) or by the pruning of network (Karnin, 1990). AIC
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Figure 2
Index map of Vamsadhara

River basin showing
hydrological details

and BIC criteria utilises root mean square error (RMSE) statistic
which is penalised for having more numbers of free parameters for
deciding the number of free parameters (Xu, 2002). In pruning,
Karnin (1990) suggested to use the sensitivity of error Se(ij) with
respect to weight W(ij) for elimination of the respective weight
without excessive calculations. Se(ij) is defined as:

Se(ij)  (9)

Finally the sensitivity of the error with respect to weight reduces
to:

Se(ij) = 
(ij)(ij)

f

(ij)
f2

(ij)it

1 WW
W.W

i−
∆∑ α (10)

where:
           i and f indicate the initial and final values of weights

Since the weight update is available for each iteration during learning,
the determination of the summation of squared of change in weight
∆W(ij)

2 to estimate the sensitivity of error function is the only extra
computation required. A low sensitivity suggests the respective
weight to be in sensitive and pruning of the corresponding
node?unclear. Suggest: “insensitive and pruning of the correspond-
ing node is recommended”. The generalisation of model can be
checked using the available statistical evaluation criteria: root mean
square error (RMSE), correlation coefficient (CC), and coefficient
of efficiency (CE) (Nash and Sutcliffe, 1970). Here, it is noted that
in cross-validation, the model is trained on training data set and for
every iteration the model is simultaneously verified on another data
set through statistical evaluation criteria. The training is continued
until the performance evaluation criteria show improvement in both
training and verification. The method monitors the generalised
performance and stops the process of learning when there is no more

improvement in training and its performance in first verification.
Since in this method the performance of the developed model is
checked in all iterations, the level of accuracy is not fixed in the
beginning of model formulation.

Study area and data

The selected Vamsadhara River basin up to Kashinagar (area  =
7  820 km2) (Fig. 2) is located between Mahanadi and Godavari River
basins of India. The basin is narrow and highly undulated. The daily
rainfall data (mm), runoff (m3/s), and suspended sediment yield
(kg/s) of the active period (June 1 to October 31) for years 1984 to
89 and 1992 to 95 were available. The weighted average rainfall is
computed with the rainfall values of 1 to 6 rain-gauge stations
(Fig. 2) with Theissen weights as 0.2640, 0.1835, 0.2696, 0.1096,
0.1509 and 0.0224, respectively.

The collected daily rainfall (mm), runoff (m3/s) and sediment
yield (kg/s) of the active period for all the years were subjected to
pre-analysis and formulation of the database for different time units,
i.e. weekly, ten-daily and monthly. The yearly weighted average
rainfall, runoff, sediment yield, runoff-rainfall ratios and the sedi-
ment-runoff ratios (sediment concentration) for the active monsoon
period is shown in Table 1.

It can be seen that the runoff-rainfall ratio in the first four years
varied in between 0.10 to 0.23 and for subsequent six years it varied
in between 0.20 to 0.43. It indicates that the catchment behaviour
to infiltration and other losses has changed and runoff corresponding
to rainfall has increased in years 1988 to 1995. The weighted average
rainfall and runoff indicated no specific trend and correlation
between them.

The sediment concentration was found to be decreasing with
time (Table 1). The change in sediment concentration indicates that
the catchment is improving with time in respect of soil conservation.
The main reason for this could be the regular Jhum cultivation
practices being adopted by the tribes of these areas. On the other
hand, it also reflected that the data are not exactly from one
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homogenous population.
Since the sediment concentration is found to be fast decreasing

over the years,  a sediment model developed with the data of 1984,
1985, 1986, 1987 and verified on years 1988, 1989, 1992, 1993 and
1994 to 1995 may therefore over-estimate for these years.

The daily data of the active period of monsoon (June 1st to
October 31st) of water years were used to determine weekly, ten-
daily and monthly data. The weekly data consisted of weekly
summation starting from June 1st to October 31st.  The last six days
of October were not used in the weekly data. The ten-daily data were
the summation of days 1 to 10, 11 to 20 and 21 to 30 or 29/31 days
of each month. The monthly data were the summation of data of all
the days of the month. Thus the data for four different time bases
(daily, weekly, ten-daily and monthly) comprise 153 d or 21 weeks
or 15 ten-dailies or 5 months and were used for the development of
respective simulation and forecasting models.

Model development

The development of daily, ten-daily, and monthly rainfall-runoff-
sediment yield (RQS) models based on the above described LTF and
multilayer BPANN approaches utilises the above data of 1984 to
87, and their generalisation/verification on the data of 1988 to 89 and
1992 to 95, as follows.

LTF models

Linear transfer function (LTF) models were developed with an
initial selection of time response for the input variables as twice time
units. The response of the respective variable was increased by one,
if estimated Ĥ was greater than the respective value of the standard

error of the variance of Ĥ  as { )ĤVar( }, otherwise the time

TABLE 1
Summary of annual hydrological data of Vamsadhara River basin along with statistical

summary of data

Year Weighted Runoff Sediment Runoff Runoff- Sediment
average yield rainfall yield
rainfall ratio runoff

 ratio
(sediment
concen-
tration)

(mm) (m3/s) (kg/s)  (mm)  (kg/m3)

1984 965.2 13 245.2 28 917.2 146.3 0.15 2.18
1985 1 079.6 17 195.9 29 802.3 190.0 0.18 1.73
1986 971.7 20 519.6 36 233.0 226.7 0.23 1.77
1987 715.8 6 506.6 12 230.4 71.9 0.10 1.88
1988 1 053.7 25 454.9 42 742.8 281.2 0.27 1.68
1989 1 074.2 19 789.9 30 699.6 218.7 0.20 1.55
1992 1 028.7 40 017.2 62 668.2 442.1 0.43 1.57
1993 773.3 15 005.5 20 177.2 165.8 0.21 1.34
1994 1 142.3 31 896.4 33 675.8 352.4 0.31 1.06
1995 1 010.6 34 237.4 30 291.5 378.3 0.37 0.88

Maximum 1 142.3 40 017.2 62 668.2 442.1 0.43 2.18
Minimum 715.8 6506.6 12 230.4 71.9 0.10 0.88
Mean 981.5 22 386.9 32 743.8 247.3 0.25 1.56
Standard deviation 136.1 10 427.1 13 419.3 115.2 0.10 0.39
Skewness -1.2 0.3 1.0 0.3 0.57 -0.44

TABLE 2
Performance evaluation of LTF sediment yield models for Vamsadhara River basin for

different time scales

Model and                   Calibration period,          Verification period,          Verification period,
structure                         (1984 to 1987) (1988 to 1989) (1992 to 1995)

RMSE CC CE      RMSE CC CE       RMSE CC CE
(Abs.) (%) (%)      (Abs.) (%) (%)       (Abs.) (%) (%)

Daily (2,1,1) 199 87.1 71.2 228 78.8 53.2 308 85.0 57.4
Weekly (1,1,0) 766 90.8 77.7 1018 74.2 45.3 1433 87.4 63.6
Ten-daily (1,1,0) 833 93.5 83.0 1315 76.9 54.4 1828 87.1 63.8
Monthly (1,1,0) 1404 94.0 85.9 2800 68.6 45.3 3988 83.4 51.3
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response was decreased. The model was re-developed after each
change in time response and finally the chosen LTF models satis-
fying the criterion were reported through Eqs. (11) to (14).

St  =  8.629*Rt  + 3.636*Rt –1 + 1.617*Qt  + 0.053*St–1
— Daily   (11)

St  =  12.800*Rt + 1.371*Qt — Weekly   (12)
St  = 13.240*Rt + 1.265*Qt — Ten-daily   (13)
St  = 12.280*Rt + 1.158*Qt —  Monthly   (14)

Here, it can be observed that the sediment yield from the daily model
depends on its successive past sediment yield value, whereas for
weekly, ten-daily and monthly models, it is independent of their
past values. The performance evaluation results of all the developed
simulation modes are given in Table 2. It can be seen that the model
performance in calibration generally improves with an increase in the
time scale, but it does not hold in verification. The performance in
second verification period (1992 to 95) is better than the first
verification period (1988 to 89).

ANN models

In BPANN the same number of input variables was taken as those
obtained while developing LTF models. All the input-output pairs
of data set were first normalised considering the maximum value of
the series and thus reducing the individual variables in the range of

TABLE 3
Performance evaluation of BPANN sediment yield models for Vamsadhara River basin for different time scales

Model and No. of     Value of       Calibration period,          Cross-validation period            Verification period,
structure                   iteration   objective           (1984 to 1987) (1988 to 1989) (1992 to 1995)

     function
RMSE CC CE RMSE CC CE RMSE CC CE
(Abs.) (%) (%) (Abs.) (%) (%) (Abs.) (%) (%)

Batch-learning process

1. Generalisation with cross validation
Daily (4,8,1) 1 707 0.032 190 86.8 74.8 310 72.5 15.9 463 70.0 3.9
Weekly (2,5,1) 501 0.067 760 90.7 78.2 1 300 75.0 11.9 2105 68.6 21.5
Ten-daily (2,4,1) 123 0.049 840 91.9 82.6 1 300 96.4 54.1 2459 65.1 34.5
Monthly (2,4,1) 1 480 0.022 1  100 95.7 90.8 1 600 91.2 82.9 3923 72.9 52.9

2. Generalisation with high level of iteration
Daily (4,8,1) 5 000 0.032 250 82.3 56.5 330 75.2 6.1 492 68.6 -8.2
Weekly (2,5,1) 5 000 0.051 1 000 87.2 61.3 1 600 69.8 -37.6 1990 19.4 29.8
Ten-daily (2,4,1) 5 000 0.025 900 93.4 80.1 1 500 78.9 40.0 2048 75.7 54.6
Monthly (2,4,1) 5 000 0.014 1 500 95.7 83.4 2 000 91.6 72.7 4065 72.5 49.4

Pattern-learning process

1. Generalisation with cross validation
Daily (4,8,1) 19 0.094 200 86.7 72.2 200 79.3 62.8 267 83.2 68.0
Weekly (2,5,1) 21 0.150 760 91.6 78.1 820 80.2 64.1 1648 75.1 51.8
Ten-daily (2,4,1) 135 0.080 830 91.6 83.3 1 100 82.7 68.2 2342 65.0 40.6
Monthly (2,4,1) 2 260 0.019 1 100 96.0 92.0 1 700 89.4 79.1 3889 74.1 53.7

2. Generalisation with high level of iteration
Daily (4,8,1) 5 000 0.041 130 93.6 87.4 210 83.2 59.5 380 69.0 35.2
Weekly (2,5,1) 5 000 0.106 620 92.7 85.6 1 000 77.3 46.6 1598 76.0 54.7
Ten-daily (2,4,1) 5 000 0.039 630 95.2 90.2 1 200 80.9 63.1 2026 75.0 35.5
Monthly (2,4,1) 5 000 0.024 1 000 96.2 92.5 1 800 88.8 77.3 3931 73.0 52.7

0 to 1 to avoid any saturation effect that may arise from the use of
sigmoid activation function. In both batch- and pattern-learning, the
initial values of interconnecting weight were randomly selected
between –0.5 and +0.5 (Dawson and Wilby, 1998) against the
recommended ranges of (–1.0, +1.0) or (–0.5, +0.5) or (–0.1, +0.1)
(Lorrai and Sechi, 1995; Dawson and Wilby, 1998). The sigmoid
activation function was considered in model development. The
values for both learning rate (α) and momentum term (β) were
initially considered as 0.5, which, however, decreased in successive
iterations. All the interconnecting weights were updated using the
error of input-output pairs. In batch-learning, these weights were
adjusted only after processing all data sets for error, and the data set
indicating the highest error was used for leaning? and updating of
weights. This type of learning is fast, but requires more computation
for it is governed by the data set indicating the highest error (Minns
and Hall, 1996). The pattern-learning is governed by the error of each
data set; the interconnecting weights were simultaneously adjusted.
The processing in pattern-learning was slow for it continuously
improved the weights for each data set.

The number of input nodes in the input layer was taken equal
to the number of input variables. Since no guideline is yet available
on the number of hidden nodes in the hidden layer(s) (Vemuri, 1992),
these were initially taken equal to twice of input nodes (Hipel et al.,
1994), and increased one at a time considering the improved
generalisation and the above pruning criteria. However, correspond-
ing to one output, only one node was taken in the output layer. Thus,
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a three-layer network structure with varying numbers of hidden
nodes in the hidden layer was tried, and the finally selected ANN
structure along with the performance of developed daily, weekly,
ten-daily, and monthly models for both pattern- and batch-learning
is listed in Table 3.

Table 3 shows a comparative performance of pattern and batch-
learned daily, weekly, ten-daily, and monthly BPANN models for
generalisation:
• With maximum number of iterations restricted to 5 000
• Using cross-validation (by least errors both in calibration and

cross validation).

Apparently the batch-learned models for both the cases of gener-
alisation yield a relatively low value of the objective function
compared to the similar pattern-learned models, but perform poorly
in both cross-validation and verification. It suggests avoiding the use
of fast optimisation methods in model generalisation with such data.
Furthermore, in calibration, the performance of pattern-learned
BPANN models generalised with cross-validation is generally
superior to those generalised using high level of iteration. It suggests
preference of best-fit models to ANN models requiring high num-
bers of iterations, for it over-learns and memorises the data, and
performs poorly in cross-validation and simultaneously in verifica-
tion (French et al., 1992; Hus et al., 1995). The generalised pattern-
learned sediment yield models are superior in both calibration and
verification based on RMSE, CC and CE criteria (Table 3) and,
therefore, are preferred to the other models based on the batch-
learning and LTF concept. Similar to the model based on the LTF
concept, the performance of the best pattern-learned BPANN
model also generally improves with increase in time scale in
calibration only.

Conclusion

Based on the selected performance evaluation criteria, viz., RMSE,
CC, and CE, the developed BPANN and LTF sediment yield models
for the Vamsadhara River basin exhibit an improvement with
increase in time scale in model calibration. The pattern-learned
BPANN models perform better than batch-learned models irrespec-
tive of their high convergence. On the other hand, the pattern-learned
BPANN models generalised with cross-validation perform better
than those generalised with a high level of iteration and LTF models.
This study suggests that a fast and high convergence is not essential
in generalised model development.
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