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Abstract

Hydrological data (e.g. rainfall, river flow data) are used in water resource planning and management. Sometimes hydrologi-
cal time series have gaps or are incomplete, or are not of good quality or are not of sufficient length. This problem seems to 
be more prevalent in developing countries than in developed countries.  In this paper, feed-forward artificial neural networks 
(ANNs) techniques are used for streamflow data infilling. The standard back-propagation (BP) technique with a sigmoid ac-
tivation function is used.  Besides this technique, the BP technique with an approximation of the sigmoid function by pseudo 
Mac Laurin power series Order 1 and Order 2 derivatives, as introduced in this paper, is also used. Empirical comparisons of 
the predictive accuracy, in terms of root mean square error of  predictions (RMSEp), are then made. A preliminary case study 
in South Africa (i.e. using the Diepkloof (control) gauge on the Wonderboomspruit River and the Molteno (target) gauge on 
Stormbergspruit River in the River summer rainfall catchment) was then done. Generally, this demonstrated that the standard 
BP technique performed just slightly better than the pseudo BP Mac Laurin Orders 1 and 2 techniques when using mean 
values of seasonal data. However, the pseudo Mac Laurin approximation power series of the sigmoid function did not show 
any substantial impact on the accuracy of the estimated missing values at the Molteno gauge. Thus, all three the standard BP 
and pseudo BP Mac Laurin orders 1 and 2 techniques could be used to fill in the missing values at the Molteno gauge. It was 
also observed that a linear regression could describe a strong relationship between the gap size (0 to 30 %) and the expected 
RMSEp (thus accuracy) for the three techniques used here. Recommendations for further work on these techniques include 
their application to other flow regimes (e.g. 4-month seasons, mean annual extreme, etc) and to streamflow series of a winter 
rainfall region.
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Introduction 

For planning, management and effective control of water re-
source systems, a considerable amount of data on hydrological 
variables such as rainfall, streamflow, etc. are required. Very 
often in some developing countries, hydrological data sequences 
at a given network have gaps or are incomplete, or are not of 
good quality or are not of sufficient length (This problem is more 
prevalent in developing countries than in developed countries). 
This can severely affect the reliability of the design of, e.g. a 
hydropower plant, the construction of dams, etc. Generally, in 
those countries, the overwhelming majority of gaps are caused 
by temporary absence of observers, the cessation of measure-
ment or absence of observations prior to the commencement of 
measurement (Makhuvha et al., 1997) or by limited financial re-
sources (Balek, 1992). 
 Several streamflow hydrological data infilling techniques 
have been used, e.g. artificial neural networks (ANNs), regres-
sion methods, etc. Despite the criticisms formulated against 

ANNs techniques, these techniques were found to be powerful 
tools when compared to multivariate regression based models for 
infilling the missing data (Panu et al., 2000). ANNs techniques 
can be used to express a non-linear mapping between variables 
with no prior assumptions on the variables (linear or non-linear 
as in regression methods) and these techniques can cope with 
missing data (French et al., 1992). In the past decade, ANNs 
have been used intensively in hydrology and water related fields. 
However, apart from a few papers published (Panu et al., 2000; 
Khalil et al., 2001; Elshorbagy et al., 2000), its application for 
infilling streamflow data remains sparse.
 In this paper, feed-forward ANNs techniques are used for 
streamflow data infilling. On one hand the standard back-prop-
agation (BP) with a sigmoid function (Freeman and Skapura, 
1991) is used and on the other hand the BP technique with an 
approximation by pseudo Mac Laurin power series (Order 1 and 
Order 2 derivatives) to the sigmoid function, as introduced in 
this paper, is also used. Empirical comparisons of the predic-
tive accuracy, in terms of root mean square error of predictions 
(RMSEp) are then made. A preliminary case study is made to 
demonstrate the performance of these three techniques. In what 
follows, the terms algorithm and technique can be used inter-
changeably. McL1BP and McL2BP will mean pseudo Mac Lau-
rin Order 1 derivative and Order 2 derivative respectively (refer 
to Figs. 2, 3, 4, 6 and 7).
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Streamflow data infilling techniques 

Artificial Neural Networks (ANNs) overview 

ANNs are networks of interconnected simple units (nodes) that 
are based on a greatly simplified model of the brain. There are 
two main types of ANNs, i.e. feed-forward networks (where 
the signal is propagated only from the input nodes to the output 
nodes) and recurrent networks (where the signal is propagated 
in both directions). The advantage of the ANNs, even if the “ex-
act” relationship between sets of inputs and outputs data is un-
known but is acknowledged to exist, is that the network can be 
trained to learn that relationship, requiring no prior underlying 
assumptions (non-linear vs. linear) as in conventional methods, 
and they are regarded as ultimate black-box models (Minns and 
Hall, 1996). ANNs seek to learn patterns, but not to replicate the 
physical processes in transforming input to output (Minns and 
Hall, 1996). As opposed to conventional methods, the ANNs are 
thought to have the ability to cope with the missing data and, 
perhaps most importantly, are able to generalise a relationship 
from the small subsets of data whilst remaining relatively ro-
bust in the presence of noisy or missing inputs. Thus, ANNs 
can learn in response to a changing environment (Wilby and 
Dawson, 1998). Since the early nineties, ANNs have been suc-
cessfully used in the area of water resource engineering related 
to rainfall/runoff forecasting (Minns and Hall, 1996; French et 
al., 1992; Agarwal and Singh, 2001) and  infilling streamflow 
data (Panu et al., 2000; Khalil et al., 2001; Elshorbagy et al., 
2000, etc.). However, apart from the above-mentioned applica-
tions of ANN techniques, the application of ANNs in infilling 
hydrological data remains sparse. For infilling streamflow data, 
these authors developed ANN techniques for cases where data 
exist before and after missing gaps (e.g. consecutive missing 
values). Three-layered ANNs have been intensively used in that 
respect. 
 
Standard back-propagation (BP) technique 

The standard BP technique is only outlined in this section and for 
more details, the reader is referred, for example, to Freeman and 
Skapura (1991). Given a three-layered ANN as depicted in Fig. 
1, in standard BP the adjustment of the interconnecting weights 
during training employs a method known as error back-propa-
gation in which the weight associated with each connection is 
adjusted by an amount proportional to the strength of the signal 
in the connection and the total measure of the error. The total er-
ror at the output layer is then reduced by redistributing this error 
value backwards through the hidden layers until the input layer 
is reached. This process is repeated until the total error for all 
data sets is sufficiently small. The weights change equations on 
the output layer and hidden layers are respectively:

              , and    (1)

                          (2)

where:
 i  =  unit node in the input layer
 j  =  unit node in the hidden layer
 p  =  pattern and k is related to the output layer
  η =  learning rate
  δpk

0 and δpj
h

 =error terms (which encompass a derivative part)  
      for output units and hidden units respectively
 t  =  tth iteration. 

For practical considerations, it is sometimes suggested to re-
move the bias terms altogether: their use is optional (Freeman 
and Skapura, 1991).
 In the standard BP, basically the learning process is done 
through sequential mode and batch mode. In the former mode of 
learning the process of learning is governed by the error of each 
data set one by one while in the latter mode weights at each itera-
tion are adjusted only after all data sets have been processed.    
 An activation function is used to express the non-linear re-
lationship process between the input and output data. This func-
tion can be any threshold function or any continuous function. 
It is normally a monotonic non-decreasing function and differ-
entiable everywhere for x values. The activation function most 
commonly used is a sigmoid, non-linear continuous function 
between 0 and 1 and is represented as:
                                                                                                              
               (3)

Freeman proposed that a range of x values from 0.1 to 0.9 should 
be used for practical purposes. This range will be adopted in this 
paper. Thus, the input data and output data will be scaled (dur-
ing training of ANNs) to fall under the above-mentioned range. 
A linear scaling was used here as in Hines (1997). Scaling input 
data and output data has the advantage on the speed of conver-
gence of the system and it gives each input equal importance and 
prevents premature saturation of the activation function (Hines, 
1997). Therefore, the formulas used in this paper should not con-
tain any unit as they apply to scaled numbers during training of 
ANNs. 
 The first derivative of the sigmoid activation function, which 
is used in the updated Eqs. (1) and (2), is given by:

                                                                                              (4)

The standard BP (which is a gradient descent method) has been 
criticised because convergence to an optimal solution is not al-
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A three-layer feed-forward ANN
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ways guaranteed (Agarwal and Singh, 2001). Thus, several vari-
ants of the BP such as Newton’s method, Adaptive step-size and 
the Levenberg-Marquardt algorithm were proposed. Despite 
these criticisms, it appears in practice that the BP leads to so-
lutions in almost every case and that standard multilayer feed-
forward networks are capable of approximating any measurable 
function to any desired degree of accuracy, as stated by Minns 
and Hall (1996).    
 In the following section a modification to the standard BP, 
by approximating the sigmoid function by “pseudo” Mac Laurin 
power series Order 1 and 2 derivatives, is introduced. 

Standard BP technique with sigmoid function  
approximated by pseudo Mac Laurin power series  

This technique is the same as the one outlined in the previous 
section but with the only difference that a Mac Laurin power 
series approximation was applied to the sigmoid activation as 
follows:

                                                                    (5)

The Mac Laurin power series (which is actually a particular case 
of a Taylor power series) approximates the function f(x) when x 
approaches zero. In other words, for small values of x such that  
0 < x <<<1 , a good approximation of  f(x) can be achieved by a 
Mac Laurin power series. The Mac Laurin first order derivative 
approximation of Eq. (3) is given by: 
                                                                                                                 
                 (6)

The derivative of Eq. (6) is given by:     

                                                                                           (7)

Similar to Eq. (4), Eq. (7) can be used in the weights update 
equations of the neural network.
 The Mac Laurin second order derivative approximation of 
Eq. (3) is given by: 
                                                                                                        
               (8)

The derivative of Eq. (8) is given by: 

                                                                           (9)

Similar to Eq. (4), Eq. (9) can also be used in the weights up-
date equations of the neural network. Like the sigmoid function,  
Eqs. (7) and (9) are also continuous, monotonic non-decreasing 
functions and differentiable under the interval (0.1; 0.9). 
 For this paper, no strict limitation on the range of values of 
x (e.g. x is greater than 0 but approaching 0) was set for the 
application of the Mac Laurin power series. However, the Mac 
Laurin power series approximation is just applied to an interval 
such that 0 < x <1, e.g. (0.1; 0.9), for scaled input and output data. 
That is why the prefix “pseudo” is introduced. The Mac Laurin 
(Order 1 and Order 2) approximation is done purposely for this 
interval just to evaluate the impact on the accuracy of the esti-
mated missing values. 

Data availability 

A preliminary test was done with mean values of seasonal natu-
ralised streamflow data of two rivers belonging to the Orange 
River drainage system (D) of South Africa, specifically in the 
secondary drainage region D1 of the Eastern Cape (Midgley et 
al., 1994). The geographical location of these rivers, located in 
the summer rainfall region, is given below (refer to Table 1). The 
mean monthly flows and the mean annual runoff for the selected 
rivers are given in Table 2 and Table 3 respectively. Two seasons 
of a 6-month period each were assumed (wet-October to March, 
and dry-April to September). This was considered just to test 
preliminarily the approach as presented in this paper. Generally 
speaking, four seasons should have been considered for South 
Africa. This has been suggested in the conclusion. Recall that 
Pegram (1997) found that the months of October and Septem-
ber could fall into earlier summer (e.g. wet) and dry seasons re-
spectively. The D1H004 gauge (Molteno) was taken as the target 
gauge and D1H001 (Diepkloof) as the control gauge. The hydro-
logical year starts in October and ends in September.

Results and discussion  

The selected streamflow data set was complete and thus exhib-
ited no gaps. However, for testing of the different infilling tech-
niques (i.e. the standard BP and the pseudo Mac Laurin Order 
1 and Order derivatives BP techniques), some consecutive gaps 
(e.g. 6.7 %, 13.3 %, 20 %, 30 % of missing data, and starting in 
1934) were created on the target streamflow gauge data set, e.g. 
D1H004. It was noticed that starting gaps earlier (e.g. 1928) on 
the record of the target gauge D1H004 did not sensitively have 
any impact on the accuracy of the estimated values for the dif-
ferent techniques. The three techniques were applied to mean 
monthly seasonal flows. The ANNs were trained in a sequential 
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TABLE 1
Geographical location of rivers

Gauge Name River Latitude Longitude Area (km2) Period of 
records used

% Missing

D1H001 Diepkloof Wonderboomspruit 31000’03’’ 260 21’11’’ 2 397 1924-53 0
D1H004 Molteno Stormbergspruit 310 24’00’’ 260 22’17’’ 348 1924-53 0

TABLE 2
Mean monthly flows (million m3/month) for gauges D1H001 and D1H004

Gauge Oct. Nov. Dec. Jan. Feb. Mar. Apr. May June July Aug. Sept.

D1H001 1.57 3.02 2.99 4.22 6.51 11.75 4.97 3.69 1.04 0.51 2.92 2.30
D1H004 0.24 0.77 0.71 0.74 0.89 1.45 0.86 0.66 0.12 0.19 0.05 0.21
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mode on the concurrent parts of observed data and the weights 
obtained were then used to estimate the missing values. A sin-
gle input-output ANN with three nodes in the hidden layer was 
used and the bias terms were assumed to be zero as their use is 
optional (Freeman and Skapura, 1991). The learning rate was set 
to 0.35 throughout for quite reasonable results, although a wide 
range of values (e.g. between 0.01 and 0.9) for the learning rate 
was tried. Input and output values were scaled to fall within the 
range 0.1 to 0.9 as mentioned earlier.
 Table 4 summarises the results from the three techniques, 
i.e. the standard BP and the pseudo Mac Laurin (Order 1 and 
Order 2 derivatives) BP techniques. 

TABLE 3 
Mean annual runoff for 

gauges D1H001 and D1H004
Gauge MAR (million m3)

D1H001 44.271
D1H004 7.858

TABLE 4
Performance of Standard BP and pseudo 
Mac Laurin (orders 1 and 2 derivatives) 
BP for different proportions of missing 

values at gauge D1H004
Algorithm RMSEp (million m3/month)

6.7% 13.3% 20% 30%

Standard BP 0.082 0.180 0.304 0.505
Mac Laurin 
order 1 BP

0.093 0.20 0.292 0.524

Mac Laurin 
order 2 BP

0.095 0.185 0.307 0.520
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 From Table 4, generally, it follows that the RMSEp increases 
with increase in the proportion of missing values (gap size) for 
all three techniques. Thus, the accuracy decreases as the gap 
size increases. Generally, the standard BP performs just slightly 
better than the pseudo Mac Laurin (Orders 1 and 2) BP. This 
could be due to the fact that the error terms in the updated Eqs. 
(1) and (2) which encompass a derivative part, are slightly bigger 
for pseudo Mac Laurin (Orders 1 and 2 derivatives) BP tech-
niques  than for the standard BP technique (e.g. the slopes of 
functions (6) and (8) are steeper than the one of function (3) 
within the range 0.1 to 0.9). However, the pseudo Mac Laurin 
approximation did not show any substantial negative impact 
on the accuracy of the estimated missing values. The graphical 
plots (refer to Figs. 2, 3 and 4) confirm these results, where the 
differences in estimated missing values at gauge D1H004 are 
generally small, except for Fig. 4 (20 % missing data) where the 
flows are exaggeratedly overestimated for the year 1939. Figures 
5, 6 and 7 show the root mean square errors of predictions (RM-
SEp), thus the accuracy vs. the gap size (% of missing values), at 
gauge D1H004 for the standard BP, pseudo Mac Laurin (Orders 
1 and 2 derivatives) BP algorithms respectively. From Figs. 5, 6 
and 7, it is seen that for all algorithms, the bigger the gap size, 
the bigger the RMSEp, thus the accuracy becomes increasingly 
less. However, it is observed from these figures that a linear re-
gression can strongly describe the relationship between the gap 
size and the expected RMSEp (thus accuracy) for the three tech-
niques. 
 The coefficients of determination (which are very close) 
were found to be 0.972, 0.969, and 0.974 for standard BP, pseudo 
Mac Laurin Order 1 and Order 2 BP algorithms respectively 
(refer to R2 values in Figs. 5 to 7). This correlates with the ob-
servation that the differences in estimated values were small for 
the respective techniques at different gap sizes (0 to 30%). It 
was noticed that increasing the number of data points (e.g. up to 
seven gap sizes: 6.7%, 10%, 13.3%, 15%, 20%, 25% and 30%) 
did not affect substantially the relationship between the gap size 
and the expected RMSEp for the three techniques.  

 From the results obtained here, 
it can be said that all three the 
standard BP and pseudo Mac Lau-
rin Orders 1 and 2 BP algorithms 
are acceptable to fill in the missing 
values for gauge D1H004. This can 
be done within the range 0 to 20 % 
without any significant violation 
of either the accuracy of estimated 
values or the statistical properties 
(i.e. the mean and the variance 
of the incomplete and infilled se-
ries).

Conclusion and sugges-
tions

Besides the standard BP algo-
rithm, two other techniques, viz. 
the pseudo Mac Laurin (Order 1 
and Order 2 derivatives) BP have 
been introduced for scaled in-
put and output data in the inter-
val (0.1; 0.9). These preliminary 

Figure 2
Mean monthly seasonal flows at D1H004 (6.7 % missing data from 1934)
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results showed that the pseudo Mac 
Laurin approximation does not affect 
substantially the accuracy of the esti-
mated values at gauge D1H004, when 
compared to the standard BP. Thus, 
both techniques were acceptable to fill 
in the missing values. However, it was 
observed that a linear regression could 
describe a strong relationship between 
the gap size and the expected RMSEp 
for the three algorithms under investi-
gation. It is suggested that the impact 
of the Mac Laurin power series of  
order relatively higher (e.g. 3, 4 etc.) 
on the estimated values also be investi-
gated. The batch-training mode has to 
be tried and other activation functions 
(e.g. hyperbolic tangent) as well. The 
techniques herein evoked should also 
be tested on other data sets. Recall that 
these techniques have been applied to 
mean values of seasonal streamflow 
data. Other flow regimes should also 
be tried (4-month seasons, mean annu-
al, extreme, etc.). The three techniques 
should also be applied to streamflow 
series of a winter rainfall region. 
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Figure 3 (Top right)
Mean monthly seasonal flows at 

D1H004 (13.3 % missing data from 
1934)

Figure 4 (Middle right)
Mean monthly seasonal flows at 
D1H004 (20 % missing data from 

1934)

Figure 5 (Bottom right)
Accuracy vs. gap size  at D1H004 

(Standard1BP)
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Figure 7
Accuracy vs. gap size  at D1H004 (McL2BP)
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Figure 7
Accuracy vs. gap size  at D1H004 

(McL2BP)

Figure 6
Accuracy vs. gap size  at D1H004 

(McL1BP)
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