Main Article Content

Movement of contaminants in the unsaturated zone of the subsurface from a low flush on-site sanitation system in Ivory Park, Johannesburg


M.B. van Ryneveld
A.B. Fourie
I.H. Palmer

Abstract

This study measured the movement of contaminants in the unsaturated zone of the subsurface from a low-flush on-site sanitation system (also known as an aqua-privy) at three sites in Ivory Park, which at the time that the fieldwork was done was a newly-established informal settlement in Johannesburg. The aim of the study was to provide field data on the movement of contaminants from this sanitation system in a low-income area, in these climatic and subsurface conditions, and to counter a perception that on-site sanitation will inevitably cause pollution. Subsurface conditions consisted nominally of a 1 m thick layer of silty sand with denser gravel at the bottom of it, underlain by a stiff sandy clay (residual granite), with the natural water table more than 15 m below ground surface. In summary, it can be deduced that movement in the unsaturated zone of bacterial indicators, nitrogen and phosphorus from low-flush on-site sanitation systems in lowincome areas is very limited, as long as the effluent remains in the subsurface. More specifically, the impact in terms of COD appears to be negligible, with substantial treatment apparently taking place within the soakaway or within the immediate vicinity thereof. With respect to (i) bacteriological indicators, (ii) nitrogen (in the form of ammonium, nitrite and nitrate) and (iii) phosphorus (in the form of Total Phosphorus), using the distilled water washout technique, there is a very rapid drop-off of contamination with distance from the soakaway. At horizontal distances of 3 m from the soakaway, levels of the measured contaminants had dropped to values consistent with the background levels. The results of this study are not confined to this particular sanitation system. By virtue of the higher hydraulic loading, these results provide an upper bound for contaminant movement from dry on-site systems under similar conditions.

Keywords: contaminants, unsaturated zone, subsurface, on-site sanitation


Journal Identifiers


eISSN: 1816-7950
print ISSN: 0378-4738