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Technical note

Speeding up stochastic analysis of bulk water supply  
systems using a compression heuristic
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ABSTRACT

It is possible to analyse the reliability of municipal storage tanks through stochastic analysis, in which the user demand, fire 
water demand and pipe failures are simulated using Monte Carlo analysis. While this technique could in principle be used 
to find the optimal size of a municipal storage tank, in practice the high computational cost of stochastic analyses made this 
impractical. The purpose of this study was to develop a compression heuristic technique to speed up the stochastic analysis 
simulations. The compression heuristic uses a pre-run to characterise the failure behaviour of a tank under demand-only 
conditions, and the stochastic simulations are then only run for periods in which fire demand or pipe failures affect the 
tank. The compression heuristic method was found to be accurate to within 5% of the full stochastic analysis method. The 
compression heuristic was also found to be faster than the full stochastic method when more than 27 systems were analysed, 
and thus allowed genetic algorithm optimisation to be practical by reducing the optimisation simulation time by 75%.
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INTRODUCTION

Stochastic analysis is a technique whereby the deterministic 
and probabilistic parameters of a system are simulated to model 
its behaviour more accurately. Stochastic modelling is often 
used to analyse complex systems in which risk and uncertainty 
are significant, and where components are subject to stochastic 
failures (Yang et al., 1996). This technique is relatively new to 
water distribution systems, even though it has long been used 
in fields like hydrology (Thomson et al. 1997; Cui and Kuczera, 
2003). Work on the application of stochastic analysis to water 
distribution systems has been done by Wagner et al. (1988), 
Yang et al. (1996), and Ostfeld et al. (2001). 

Nel (1996) first applied stochastic analysis to estimate 
the reliability of municipal storage tanks. This work was later 
expanded by Van Zyl et al. (2008), where stochastic analysis was 
used to determine the failure characteristics of a tank in a bulk 
water supply system, which in turn is used as a measure of the 
bulk system’s reliability. Van Zyl et al. (2008) proposed a crite-
rion of 1 failure in 10 years at the most critical time of the year 
as the basis for sizing municipal storage tanks. Further work 
has been done to explore the effect of different user demand 
parameters on the reliability of bulk water supply systems (Van 
Zyl et al., 2012), as well as investigating the financial benefits 
of designing systems based on reliability criteria rather than 
design guidelines (Vlok, 2010). 

In a recent study (Chang and Van Zyl, 2012), stochastic 
analysis was used in combination with genetic algorithms to 
optimise the design of bulk water supply systems. The opti-
misation variables were the storage tank capacity, feeder pipe 
configuration and feeder pipe diameter. Genetic algorithms 

require a large number of system evaluations, each of which 
required stochastic analyses of the system to be conducted. 
Due to the high computation cost associated with stochastic 
analysis, this work would not have been practically possible 
without speeding up the stochastic analysis substantially, while 
retaining acceptable levels of accuracy. The aim of this paper 
is to describe the development, testing and application of the 
compression heuristic method used to achieve this aim. The 
motivation for using a compression heuristic is provided first, 
followed by a description of the method. The simulation times 
and accuracy of the compression heuristic are then compared 
to the full stochastic analysis. 

STOCHASTIC ANALYSIS MODEL

The stochastic analysis model presented by Van Zyl et al. (2008) 
uses reliability criteria for site-specific sizing of a storage tank 
in a bulk supply system. The reliabilities of different tank sizes 
are determined by simulating the system for an extended 
period of time (typically 10 000 years) in hourly intervals. 
Consumer demand, fire water demand and pipe failure states 
are estimated for each time step based on stochastic unit 
models. A failure is recorded whenever a tank runs dry, and 
the tank failure frequency is used as a measure of the tank 
reliability. 

Unit models for calculating consumer demand, fire water 
demand and pipe failure events are summarised below, but 
more details can be found in Van Zyl et al. (2008) 

Consumer demand was calculated in 2 steps, the first to 
determine the average daily demand and the second to cal-
culate the hourly demands. Both steps included an average 
demand, day-of-week or hourly pattern, persistence (auto-
correlation) and a random component. 

The fire demand model considered 3 generic compo-
nents: occurrence, duration and fire flow. The times between 
successive fires events were modelled using an exponential 
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distribution, and both fire duration and demand were esti-
mated with lognormal distributions. 

The pipe failure model consisted of 2 generic components: 
occurrence and duration. An exponential model was used to 
model the times between pipe failure events, and a lognormal 
distribution to model the failure duration. 

Typical results of a stochastic analysis simulation for a bulk 
supply system (showing the tank failure frequency against tank 

capacity) is shown in Fig. 1. From this relationship, the required 
tank size can be estimated based on an acceptable level of 
reliability.

COMPRESSION HEURISTIC

The motivation for the development of a compression heuristic 
method to speed up stochastic simulations was the observation 
that most computational effort is used to simulate the system in 
the absence of fire or pipe failure events (see Fig. 2(a)), and thus 
with consumer demand only. In addition, while fire and pipe 
failure events occur infrequently, they play an important role 
in most tank failure events. By characterising tank behaviour 
for demands only in a pre-run, these periods could be removed 
from the stochastic analysis run. In the main simulation run, 
referred to as the events run, only the critical periods in which 
fire or pipe failure events occurred are simulated as shown in 
Fig. 2(b). 

An earlier compression heuristic was applied to the study 
of urban water resources and drought (Cui and Kuczera, 2009), 
which was aimed at improving Monte Carlo simulation for 
urban headworks systems that typically have high reliabil-
ity. Failures of water distribution system reservoirs are more 
frequent, and thus this study had to estimate failure rates in 
non-critical periods too. 

Before implementing the compression heuristic in this 
study, Latin Hypercube sampling (McKay et al., 1979) was 
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Figure 1
Typical output of a stochastic simulation run

a)   

(b)   
 

Figure 2
The variation of a typical tank level with time is shown in (a). The compression heuristic sped up the simulation by only simulating 

periods where fire or pipe failure events occurred and estimating failures for the excluded periods as shown (b).  
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implemented, but was found not to decrease the duration of 
stochastic simulations. Reasons for this may be the extra com-
putational effort or the fact that only one-dimensional Latin 
Hypercube samples were required in this study as opposed 
to multi-dimensional Latin Hypercube samples often used in 
simulations in which it decreases the simulation duration. 

Pre-run

Method

The purpose of the pre-run is to characterise the tank failure 
behaviour resulting from consumer demand only. From the 
pre-run results, the demand failures can be estimated for 
periods in which there are no events in the events run. The 
consumer demand model is used to find the hourly demand for 
each time step, which is then used to update the tank level. If 
the tank level drops to zero, a failure is recorded, lasting until 
the tank has a net inflow again. The number of failures and the 
mean and standard deviations of the time-to-failure (TTF) are 
recorded and used to determine the convergence of the failure 
results and the end of the pre-run.

Another function of the pre-run is to generate a lookup 
table of the tank level distribution at a given time in the simula-
tion week. In this study the tank level was estimated on Sunday 
mornings at 4:00, since this was assumed to be the most likely 
time for the tank to be full. The events run always starts simu-
lating an event at 4:00 on a Sunday preceding a fire or pipe 
failure event, and the tank level lookup table is required to 
randomly initialise the tank level. 

The tank level distribution curve was modelled by first 
recording the fraction of time the tank is full, and secondly 
the distribution of the tank level for the fraction when the tank 
was not full in 10 bins. Figure 3 shows a typical distribution for 
the non-full fraction of the tank level for all the data and when 
estimating it with a lookup table using 10 bins. In this example, 
the tank had a probability of being full 47% of the time.  

Termination conditions 

Except for a user-defined simulation duration, 2 alternate 
termination conditions were defined for the pre-run. In the 
first condition, the simulation was terminated when the average 
tank failure rate was estimated with an error of less than 5% at 
a confidence level of 95%, thus: 

               (1)

where: 
n is the number of failures recorded
y is the sample mean 
S is the standard deviation

This criterion worked well for systems with larger failure 
frequencies, as it relies on a certain number of failures to be 
generated. However, in systems that are very reliable under 
demand-only conditions, it may take an exceedingly long pre-
run to generate enough failures to meet the first criterion, and 
thus an alternative terminating condition was required. 
The second termination condition is activated when the results 
show that the upper confidence level of the tank’s failure 
frequency is assuredly lower (using a 95% confidence interval) 
than a user-defined value. This was defined in terms of the 
average time between failure events as follows:

                  (2)

where: 
y is the mean time-to-failure
S is the time-to-failure standard deviation
n is the number of failures
max TTF is the user-defined maximum time-to-failure. 

Since a reliability criterion of less than 1 failure in 10 years 
under seasonal peak conditions was used in the study by Van 
Zyl et al. (2008), it was considered reasonable to use a cut-off 
probability of 1 in 100 years in this study.

An additional termination condition based on convergence 
of the tank level distribution was also considered, but it was 
found that convergence of the tank level distribution was faster 
and of less importance than the failure frequency parameter. 
This condition was therefore excluded.   

Representing pre-run results

Since tank size and feeder pipe capacity were both criteria in 
the optimisation study, it was necessary to do the pre-run for 
a matrix of supply ratios (feeder pipe capacity / average user 
demand) and tank sizes. It was found that an exponential func-
tion provides a suitable description of the relationship between 
tank size and failure frequency (refer to Fig. 1), and such a 
curve was determined for a discretised range of supply ratios. 
Values for intermediate supply ratios were determined through 
linear interpolation. 

Events run

The events run estimates the failure behaviour of a given com-
bination of feeder pipe configuration, feeder pipe capacity (or 
supply ratio) and tank capacity. Firstly the system parameters 
(demand failure frequency, full fraction of the tank, and tank 
level lookup table) are initialised based on the pre-run results. 
The time of occurrence of the first fire or pipe failure event is 
estimated and the simulation ‘jumps’ to the start of the week 
(i.e. Sunday at 4:00) in which it occurs. The simulation is then 
run and tank failures recorded. 

Three simultaneous conditions were used for deciding 
when the simulation can ‘jump’ to the next event:
•	 The simulation of a given event must end at 4:00 on a 

Sunday before jumping to the next event. This ensures that 

 
 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 20 40 60 80 100

Pr
ob
ab
ili
ty
	o
f	n
on
ex
ce
ed
an
ce

Tank	level	(%	full)

Raw	tank	level	data	(not	full) Lookup	table

Figure 3
Example tank level distribution at Sunday 04:00 for non-full fraction

1.96 5%S y
n

    

1.96 maxSy TTF
n

   



http://dx.doi.org/10.4314/wsa.v40i3.1
Available on website http://www.wrc.org.za

ISSN 0378-4738 (Print) = Water SA Vol. 40 No. 3 July 2014
ISSN 1816-7950 (On-line) = Water SA Vol. 40 No. 3 July 2014398

no days are ‘lost’ between the events and pre-run. 
•	 The fire and/or pipe failure event must have ended. 
•	 The tank must have filled up completely after the end of the 

last event that occurred. This condition ensures that any 
residual impact an event may have on the tank level is fully 
simulated. 

The termination conditions applied to the events run are the 
same as those used for the pre-run. Once the events run has 
been completed, the number of tank failures recorded is com-
bined with the number of tank failures estimated from the 
pre-run for the periods jumped over, to get the final failure 
frequency of the tank. 

RESULTS

To ensure that the compression heuristic allows stochastic 
analysis to be incorporated into a genetic algorithm optimisa-
tion routine, it has to deliver adequate accuracy and a signifi-
cant reduction in simulation time. In this section, a description 
of the optimisation problem is provided, the accuracy of the 
compression heuristic is evaluated, and then its simulation time 
is compared to that of the full stochastic analysis. 

Optimisation problem

The aim of the genetic algorithm optimisation routine was to 
find Pareto-optimal solutions that could be used in the design 
of bulk water supply systems. The solutions were presented in 
the form of trade-off curves of cost against failure frequency 
(assessed through the stochastic analysis model). Whereas 
consumer demand, fire and pipe failure events are beyond the 
control of the designer, it is possible to control the pipe con-
figuration and diameter of the supply pipe system, as well as the 
capacity of the storage tank. These three aspects of the design 
were used as the decision variables in the optimisation routine. 

Accuracy

To test the accuracy of the compression heuristic to that of the 
full stochastic analysis, both methods were applied to a simple, 
but typical, example of a bulk water supply system used in Van 
Zyl et al. (2008) and shown in Fig. 4. 

The example system consisted of a source connected to a 
storage tank through a feeder pipe system. Users are served 
from the storage tank only. The system was analysed at the most 
critical time of the year, i.e., under seasonal peak conditions. 
The demand model of the system was based on 3 small towns 
in France and the demand pattern had a seasonal peak factor 
of 1.49. A fire frequency of 6 fires∙a−1 and pipe failure rate of 0.2 
failures∙km−1∙a−1 were assumed.  Four variations of the system 
were created by combining small and large supply ratios (1.2 and 
1.5) and tank sizes (3 h and 12 h seasonal peak demand). 

The full stochastic analysis and compression heuristic were 
each run 10 times on each network using different random 
seeds. The average and standard deviation of the failure fre-
quency for both methods were then determined. The accuracy 
requirement set for the compression heuristic was to provide 
accurate and reproducible results for the tank failure frequency 
within 5% of those calculated with the full stochastic analysis.

As a typical example, one of the systems analysed had a 
supply ratio of 1.5 and tank capacity of 12 h, which represents 
a fairly reliable system. The simulation results of 10 random 
seeds for the full stochastic analysis and compression heuristic 
methods are compared in Fig. 5. The average failure frequency 
obtained using the compression heuristic is 0.1277 failures∙a−1, 
which is within 1.4% of the full Monte Carlo method (0.1259 
failures∙a−1). The variability in the results is very similar with 
standard deviations of 0.0028 and 0.0030 failures∙a−1 for the 
full stochastic analysis and compression heuristic methods, 
respectively. 

A similar comparison of the average and standard devia-
tion of the failure frequency for the compression heuristic and 
full Monte Carlo was made for the other systems. The results of 
all the systems analysed are summarised in Table 1. It is evident 
that the average failure frequency results produced by the com-
pression heuristic are very similar to those of the full Monte 
Carlo. The compression heuristic also appears to produce less 
variability in results.
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Comparison of failure results for system 4 (SR = 1.5; TC = 12 h)

Figure 4
Example system layout

TABLE 1
Comparison of accuracy in failure frequency results for the compression 

heuristic and full Monte Carlo simulation

SR TC (h)
Average (failures∙a−1) Standard deviation

CH Full MC CH Full MC

1.2 3 157.68 157.76 1.48 3.53
1.2 12 1.965 1.890 0.022 0.044
1.5 3 26.87 26.67 0.39 0.73
1.5 12 0.1277 0.1259 0.0030 0.0028
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In summary, all four systems analysed demonstrated that 
the compression results are suitably close to those of the full 
stochastic analysis, with the average value consistently falling 
within the 5% bounds of the average failure frequency for the 
full stochastic analysis method. 

Simulation time 

For all four systems tested individually in the previous section, 
the total simulation time of the compression heuristic (com-
bined times for the pre-run and the events run) was longer than 
the full stochastic analysis method for a single simulation. This 
is due to the computational overheads and additional simula-
tion steps performed when both the pre- and event runs were 
done. 

However, since the compression heuristic only required 1 
pre-run for any number of event runs on the same system, it 
was able to outperform the full stochastic analysis when mul-
tiple simulations were required (as in the case of the genetic 
algorithm optimisation). 

In order to examine the improvement in speed achieved 
by the compression heuristic over the full stochastic analysis 
method, the methods were applied to an increasing number 
of simulations from 10 up to 100. To include variation in the 
system, the supply ratios and tank capacities of the systems 
were randomly selected between ranges of 1 to 2 and 4 h to 24 h 
of seasonal peak demand, respectively.

The pre-run in the compression heuristic was simulated for 
a set of 6 supply ratios (1.0, 1.2, 1.4, 1.6, 1.8 and 2.0) and 6 tank 
capacities (4, 8, 12, 16, 20 and 24 h of seasonal peak demand). 
The simulation time for the pre-run for all 36 systems was 
found to be 2.6 h (9 411 s). The simulation time for the event 
runs was then measured and added to the pre-run time to get 
the full time required for the compression heuristic simula-
tions. The results were compared to that measured for the full 
stochastic analysis runs as shown in Table 2 and Fig. 6.

TABLE 2
Comparison of simulation times for a large number of 

simulations
No. 
simulations

CH Time (s) Full MC

Pre-run Events 
run

Total run Time (s) CH:FMC

10 9 411 875 10 286 4 958 2.1

20 9 411 1 832 11 243 9 256 1.2

50 9 411 4 151 13 562 19 411 0.7

100 9 411 8 845 18 256 38 455 0.5

Both methods show a linear increase in simulation time 
with the number of systems analysed, but the slope of the 
compression heuristic is significantly smaller than that of the 
full stochastic analysis method, resulting in the compression 
heuristic requiring less time if more than 27 systems are evalu-
ated. This shows that the compression heuristic is capable of 
reducing the computational time required for the full Monte 
Carlo method for a large number of evaluations. 

The benefit of using the compression heuristic was clearly 
demonstrated in its application within a genetic algorithm opti-
misation routine where up to 2 550 reliability evaluations are 
conducted for 50 generations for a population of 50 solutions. 
Optimisation of the bulk system could take up to 269 h on a 
2.66 GHz Intel Core 2 Quad processor using the full stochastic 

analysis method as presented by Van Zyl et al. (2008), whereas 
the compression heuristic reduces the simulation time by 75% 
to approximately 66 h. This allowed stochastic analysis to be 
successfully incorporated in a genetic algorithm optimisation 
study (Chang and Van Zyl, 2012) 

CONCLUSIONS

The aim of this study was to increase the computational speed 
of the stochastic simulation of bulk water supply systems using 
a compression heuristic. This was necessary in order to allow 
stochastic analyses to be incorporated into a genetic algorithm 
optimisation study of bulk water supply systems. The compres-
sion heuristic increases the speed of the simulation by fully 
modelling only the most critical periods, i.e., those during 
which fire or pipe failure events occur, while ‘skipping over’ the 
intermediate periods. During the intermediate periods, which 
often make up the majority of time, only user demand affects 
the reliability of the system. The system’s behaviour under these 
conditions is characterised using a pre-run, and this is used to 
update the results for the periods jumped over. 

The accuracy and simulation time of the compression 
heuristic were compared to those of the full stochastic analysis 
model. The results showed that the compression heuristic was 
able to estimate the system’s failure rate to within 5% of the full 
stochastic model. Due to the computational overheads associ-
ated with the pre-run, the compression heuristic required more 
simulation time than the full stochastic simulation for a small 
numbers of runs. However, the compression heuristic was 
found to be faster after 27 simulation runs for a sample system, 
and substantially faster when large numbers of simulations 
were conducted. For the genetic algorithm optimisation of a 
typical bulk water supply system, it was found that the com-
pression heuristic reduced the computational time by 75%.
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