DRIFT-ARID: Application of a method for environmental water requirements (EWRs) in a non-perennial river (Mokolo River) in South Africa

Maitland Seaman¹, Marie Watson¹, Marinda Avenant¹*, Alison Joubert², Jackie King³, Charles Barker⁴, Surina Esterhuyse¹, Douglas Graham⁵, Marthie Kemp¹, Pieter le Roux⁶, Bob Prucha⁷, Nola Redelinghuys⁸, Linda Rossouw⁹, Kate Rowntree¹⁰, Frank Sokolic¹, Leon van Rensburg⁶, Bennie van der Waal¹⁰, Johan van Tol¹¹ and Tascha Vos¹

¹Centre for Environmental Management, University of the Free State, PO Box 339, Bloemfontein, South Africa ²Southern Waters, PO Box 12414, Cape Town, South Africa ³Water Matters, PO Box 209, Constantia, South Africa ⁴Geography Department, University of the Free State, PO Box 339, Bloemfontein, South Africa ⁵DHI. Agern Allé 5, DK-2970 Hørsholm, Denmark

⁶Soil, Crop and Climate Sciences Department, University of the Free State, PO Box 339, Bloemfontein, South Africa

⁷DHI Water & Environment, 141 Union Blvd, Suite 425, Lakewood, USA

⁸Department of Sociology, University of the Free State, PO Box 339, Bloemfontein, South Africa

⁹Environmental and Water Quality Consultant, PO Box 16018, Panorama, 7506, South Africa ¹⁰Geography Department, Rhodes University, PO Box 94, Grahamstown, South Africa

¹¹University of Fort Hare, Private Bag X1314, Alice, South Africa.

ABSTRACT

Methods developed to determine the amount of water required (EWR) to sustain ecosystem services in non-perennial rivers need a different approach to those used in perennial rivers. Current EWR methods were mostly developed for use in perennial rivers. Non-perennial rivers differ from perennial ones in terms of variability in flow, periods of no-flow and related habitat availability. A DRIFT-ARID method (an adaptation of the Downstream Response to Imposed Flow Transformation (DRIFT) method) was developed, tested and adjusted, using the semi-permanent Mokolo River. Field data from five study sites was collected from April to May 2010 by a multidisciplinary team. The results were used in a DRIFT-ARID Decision Support System (DSS) to determine the impact of five chosen development scenarios in the Mokolo River Catchment. An integrated groundwater–surface water MIKE-SHE hydrological model was used to simulate the hydrology of the chosen scenarios. Specific non-perennial river indicators such as onset of dry phase were identified and included in the DRIFT-ARID DSS. DRIFT-ARID has the potential to be used in non-perennial rivers and, once set up, can provide results for future scenarios. The method now needs to be tested on other non-perennial river types, especially episodic rivers where data are scarce or non-existent.

Keywords: DRIFT-ARID, non-perennial, EWR, flow method, Mokolo River

INTRODUCTION

EWR methods to determine the amount of water required to sustain ecosystem services in non-perennial rivers need to be adapted from those currently being used in perennial rivers. South Africa's National Water Act (No. 36 of 1998) requires the proclamation of environmental Reserves before licences are issued for water use. Water abstraction from rivers is regulated by relevant government authorities to ensure equity of use for all users.

In generic perennial EWR determinations, a hydrological time series of data is the starting point (Brown and Louw, 2011). The methods use data on low and high flows which is then related to hydraulics and the response of biota in the river (King et al., 2004). In perennial rivers, flow is continuous and community composition of biota is spatially structured (Bunn and Arthington, 2002). The observed (present day) conditions are compared to the reference (natural) conditions when the present state of the river is determined (Kleynhans and Louw, 2007).

☎ 051 401 3939; e-mail: avenantmf@ufs.ac.za

A non-perennial river's hydrology differs from that of a perennial river, as each is hydrologically distinctive with highly variable runoff having a high coefficient of variance (CV), mostly > 1 (Bull and Kirkby, 2002; Thoms and Sheldon, 2002) and a high hydrological index, which is calculated from a combination of monthly CVs (standard deviation/mean) and an estimate of the contribution that baseflows make to total flows (Hughes and Hannart, 2003). The rivers are mostly event-driven and subject to constant and sometimes extreme fluctuations in hydrology and other physical conditions (Uys, 1998). Sediment loads are also high, with relatively high proportions of bedload compared to humid-area perennial rivers (Bull and Kirkby, 2002). The high variability of non-perennial rivers means that many rivers exhibit disequilibrium, so it may not be possible to apply the general hydraulic geometry relationships established for perennial systems (Rowntree and Van der Waal, 2012). The fauna are unstructured (spatial patterns are less clear), physically controlled and under constant stress (Uys, 1998).

EWR methods, used to determine the Reserve, were developed on perennial rivers. Projects funded by the Water Research Commission (WRC) to test if these methods were suitable for use on non-perennial rivers revealed certain deficiencies and found that they could not always be applied to

^{*} To whom all correspondence should be addressed.

Received 30 March 2015; accepted in revised form 25 May 2016

DRIFT-ARID method for determining the EWR of a non-perennial river

non-perennial rivers in their present form (Rossouw et al., 2005; Seaman et al., 2010).

Current perennial EWR methods used in South Africa, namely, DRIFT (Brown et al., 2008; 2013) and Habitat Flow Stressor Response (HFSR, O'Keeffe et al., 2002), as well as Ecoclassification (Kleynhans and Louw, 2007) which is an integral part of EWR methods, were therefore evaluated in this study to determine if they could be suitable for use in non-perennial rivers. It was found that the DRIFT method could be used and modified where necessary.

The original DRIFT method (King et al., 2004) was adjusted, in the study on the Mokolo River, and the application of the adapted method named DRIFT-ARID was tested (for details see Seaman et al., 2013; 2016).

The DRIFT-ARID method includes some aspects which differ from the original DRIFT method (King et al., 2004) and other perennial methods, of which the most important are:

- The addition of new flow and hydraulic indicators which are relevant for non-perennial systems, such as 'onset of hydro-logical wet season after a period of wet river bed', 'depth to groundwater', 'percentage contribution of groundwater to surface flow'
- The creation of weighted (as opposed to un-weighted) lag periods, such that more recent results have a greater influence than those further in the past (now incorporated in the original DRIFT method)
- The DRIFT-ARID method was the first test of the use of DRIFT's 'linked indicators', whereby response indicators are linked to driver indicators other than flow (e.g. a fish indicator linked to a macroinvertebrate indicator as a source of food)
- The inclusion of the use of an integrated groundwater and surface water hydrological model to produce data on indicators needed such as % contribution of groundwater to surface flow in dry periods

Only phases and activities in the DRIFT-ARID method that differ from the original DRIFT or perennial EWR methods will be discussed.

IMPLEMENTATION OF METHOD

The DRIFT-ARID method tested comprises 11 phases and 29 activities as illustrated in Fig. 1 (see Seaman et al., 2016).

The phases and activities in the DRIFT-ARID method (see Seaman et al., 2013; 2016) were completed using the Mokolo River, South Africa, as a case study (Fig. 2). Only selected phase results will be presented (for complete results, see Seaman et al., 2013).

Degr	TA ee of non-perenn	BLE 1 iality of the N	Aokolo River
Locality	% of time when there is flow	#Gauging station	Type of non- perennial river
Mokolo at Dwaalhoek	72%	A4H005	On the border of semi-permanent and ephemeral
Mokolo at Zandrivier	87%	A4H002	Semi-permanent

for location of gauging station see Fig. 2.

Phase 1: Initiate the EWR Study

The degree of non-perenniality of the catchment was determined by Steÿn (2008), using daily flow data from two functioning gauging weirs (A4H002; A4H005; Fig. 2) with reliable data available from the Department of Water and Sanitation (DWS). The measure of non-perenniality is important when deciding which specialists are required in the team. The Mokolo River is a semipermanent river with sections bordering on ephemeral (Table 1). As this is a semi-permanent river, the multidisciplinary team of specialists included hydrological modellers; geomorphologists; water quality, vegetation, fish and macroinvertebrate specialists; a DSS modeller; a sociologist; soil scientists; a geohydrologist and a GIS specialist.

Phase 3: Delineate the catchment and describe its hydrology

Detailed desktop data and information on the Mokolo River catchment was collected by the team to define the catchment. Runoff Potential Units (RPUs) were determined using drainage features, slope, cover, soil composition and rainfall intensity data, following the method in Barker (2010). The Mokolo is a fifthorder (Strahler's ordering; Strahler, 1952) catchment with 48 third-order catchments forming the RPUs. The highest potential runoff will occur mostly in the southern and eastern part of the catchment as the result of low cover, steeper slopes, and higher rainfall intensity (Fig. 3).

Natural Resource Units (NRUs), Management Resource Units (MRUs) and Combined Resource Units (CRUs) were identified using a GIS method of overlays (Seaman et al., 2013). The combination of NRUs and MRUs into CRUs is a unique step in the DRIFT-ARID method and is not followed in the perennial method (Kleynhans and Louw, 2007a).

NRUs were determined by overlaying Geomorphological Zones, Macroreaches and Level II Ecoregions (Fig. 4 left) with the RPUs (Fig. 3). Seven NRUs (A-G) were identified (Fig. 4 right).

Seven MRUs (A–G) were identified in the Mokolo Catchment by overlaying maps containing information from the Water Quality Response Units (WQRUs), Socio-Economic Response Units (SRUs) and Habitat Integrity Units (HIUs) (Fig. 5 left and right). A combination of the three maps provides an understanding of the catchment in relation to the impacts and future developments planned for the catchment.

An overlay of NRUs and MRUs produced nine CRUs (A-I) which represent units in the Mokolo River that are relatively homogenous with regards to natural and management aspects (Fig. 6).

Once the CRUs were chosen, they needed to be ranked in importance by each specialist. Rankings were then combined to obtain a final, overall ranking, with the lowest score indicating the most critical or important CRU. Different CRUs could have the same ranking and it was therefore necessary to standardise the ranking from each specialist to produce the same total throughout. The nine identified CRUs for the Mokolo River were ranked from 1 (important) to 9 (not important), and standardised to ensure each specialist's ranking totalled 45 (1+2+3+4+...9=45). In this case, CRU H was the most critical (Table 2).

Water and Sanitation (DWS) gauging stations and sites

Figure 3 Runoff Potential Units (RPUs) in Mokolo River catchment (white areas represent stream orders other than third order used for RPU determination)

Vaalwater

Ν

10

Con	nbinec	d and s	standa	rdised	l comb	oined s	pecial	ist Co	٦ mbine	ABLE d Reso	2 ource l	Jnit (C	RU) ra	nking	in the	Moko	o Rive	er in te	rms of	im-
CRU	Wa qua	ter lity	S	oil	Fi	sh	Ma inve bra	cro- erte- ites	Veg	eta- on	Flu geor pho	ng vial mor- logy	Cat me geor pho	ch- ent mor- logy	Soo econ	cio- omic	Sco	ore	Final	rank
	0	S	0	S	0	S	0	S	0	S	0	S	0	S	0	S	0	S	0	S
н	2.0	6.0	1.0	2.0	5.0	5.0	1.0	1.0	2.0	3.5	1.0	1.0	5.0	5.0	1.0	1.0	18.0	24.5	1.0	1.0
D	2.0	6.0	1.0	2.0	3.0	3.0	2.0	2.0	2.0	3.5	5.0	5.0	6.0	7.5	2.0	2.0	23.0	31.0	2.0	2.0
G	1.0	2.5	3.0	5.0	4.0	4.0	3.0	3.0	2.0	3.5	4.0	4.0	5.0	5.0	8.0	8.0	30.0	35.0	3.0	3.0
В	1.0	2.5	9.0	8.0	1.0	1.0	6.0	6.0	6.0	8.0	7.0	7.0	2.0	1.0	4.0	4.0	36.0	37.5	6.0	4.0
E	1.0	2.5	3.0	5.0	7.0	7.0	8.0	8.0	1.0	1.0	3.0	3.0	6.0	7.5	7.0	7.0	36.0	41.0	5.0	5.0
С	2.0	6.0	9.0	8.0	2.0	2.0	7.0	7.0	5.0	7.0	2.0	2.0	7.0	9.0	3.0	3.0	35.0	44.0	4.0	6.0
F	1.0	2.5	3.0	5.0	8.0	8.0	9.0	9.0	2.0	3.5	9.0	9.0	3.0	2.5	6.0	6.0	41.0	45.5	8.0	7.0
I	4.0	8.5	1.0	2.0	6.0	6.0	4.0	4.0	3.0	6.0	6.0	6.0	5.0	5.0	9.0	9.0	38.0	46.5	7.0	8.0
Α	4.0	8.5	9.0	8.0	9.0	9.0	5.0	5.0	7.0	9.0	8.0	8.0	3.0	2.5	5.0	5.0	50.0	55.0	9.0	9.0
тот		45.0		45.0		45.0		45.0		45.0		45.0		45.0		45.0				

(*O* = original specialist ranking, *S* = standardised ranking)

Figure 4

Left: Overlay of Geomorphological Zones, Macroreaches, Level II Ecoregions, and Runoff Potential Units (RPUs). Right: Natural Resource Units (NRUs) identified in the Mokolo River.

Figure 5

Left: overlay of Water Quality Response Units (WQRUs), Socio-Economic Response Units (SRUs) and Habitat Integrity Units (HIUs). Right: Management Resource Units (MRUs) (A–G) identified in the Mokolo River

All indica	ators and	TABLE 3 their linked indicators as defined for the Mokolo River scenarios appear in bold	; indicato italics	ors chos	en for n	on-pere	nnial riv	vers or s	pecific
Group	Code	Indicator	Links						
	H1	Total annual volume of surface flow (MAR)							1
	H2a	Depth of water table: channel, dry							
	H2b	Depth of water table: channel, wet							
	H3a	% contribution of groundwater to surface flow, dry	1						
	H3b	% contribution of groundwater to surface flow, wet							
	H5	Onset of surface flow after period of dry river bed							
s	H6	Onset of hydro wet season after a period of wet river bed	1						
ato	H7	No. of floods per year that cover FZ1	1						1
dic	H8	No. of floods per year that cover FZ2							
∠ i	H9	Longest duration of inundation of FZ2	1						
	H10	No. of floods per year that enter FZ3	1						
<u> </u>	H11	Flood greater than PD 1.3 magnitude							
	H12	Peak flow discharge							
	H13	Surface flow duration							
	H14	No surface flow onset							
	H15	No surface flow duration							
	H16	Channel subsurface flow. dry	_						
	Hvl	Height of max, flood per year							
ii Sr	Hv2	Length of time with flow < 0.3	-						
ato	Hy2 Hy3	Length of time with flow > 0.3							
did i	Hv4	Average depth: dry season	+						
Ξ. Ξ	Hy5	Average depth: wet season	+						
		Dollution							
ica	PI		-						
ind.	S1	Ratio: fine to coarse							
i ji	Sc1	Hectares of cultivated land							
la	Sc2	Hectares of game farms							
Sce	Sc3	Power produced by power plants							
	Gl	Percent of fines (sand and smaller) on bed	H8	<u>S1</u>					
	G2	Width of low-flow channel	H8	H12	<u>S1</u>	V2			
~	G3	Low-flow channel depth	H8	H12	<u>S1</u>	12			
og	G4	Geomorphic pool depth	H8	H12	<u>S1</u>	V3			
Per	G5	Length of pools	H8	H12	V2	13			
orp	G6	A rea of Flood Zone 1	62	1112	12				
Ĕ	G7	A rea of Flood Zone 2	G2 G2	V3					
Je J	G8	A rea of Flood Zone 3	H12						
	G9	Number of low-flow channels		V2					
	G10	Geomorphic number of floods covering F73	G3	+2					
	WOI	Conductivity (flowing state)	H32	Нзр	H10	H13	D1		
	WO2	nH (flowing state)	H3a	H3b	H10	H13	P1		
~	WO3	Nutrients (flowing state)	H32	H3b	H10	H13	P1		
alit	WQ5	Algae/ Chlorophyll a (flowing state)	H30	H3b	H10	H13	D1		
0 ng	WQ5	Conductivity (icolated pools)	H30	H3b	H10	H16	P1 D1		
er.	WQ0	bH (isolated pools)	H30	1150 H3b	H10	H16	P1		
Nat	WQ/	pri (isolated pools)	H20	1130 112b	П10 Ц10	П10 Ц14	P1 D1		
-	WQ0	Algan/ Chloupphull a (isolated pools)	H20	1130 112b	H10	П10 Ц12	P1 D1		
	WQ10	Algue/ Chlorophyll a (isolatea pools)	Пра	<u>пэр</u>			P1 D1		
	WQII	A quatic vogotation	 	п эр ц/	п10	п13	P1 WO9		
u		Aquate vegetation				11/5	8,0 1		
ati	V 2	I avan hank vegetation	H2a		п15 1115	пуз	51		
get	V 3	Lower bank vegetation	Н2а	H8	H15	51			
Š	V4	Upper bank vegetation	Н2а		51	1110	61		
	V5	FIOOUPIAIN vegetation (switched off at Site 4)	н2а	H2b	н8	н10	51	1	1

Table continues on next page

All indica	TABLE 3 (CONTINUED) All indicators and their linked indicators as defined for the Mokolo River; indicators chosen for non-perennial rivers or specific														
scenarios appear in bold italics															
erte- s	I1	Riffle/rapid families (incl. rocky interpools)	H5	H13	H14	H15	Hy5	Hy2	Ну3						
roinv brate	I2	Pool and open sandy beds families	H15	H16	Hy4	G1	WQ6	WQ10							
Mac	I3	Aquatic and marginal vegetation families	WQ5	WQ10	V1	V2									
-	F1	Rapid/riffle-dwelling fish species	H5	H9	H13	H14	Hy4	G1	WQ5						
Fish	F2	Deep pool-dwelling species	H8	H15	Hy5	G1	WQ6	WQ10	V2						
	F3	Shallow pool-dwelling species	H9	H15	Hy4	G7	WQ10	V1	V2						
N.	SE1	Employment	Sc1	Sc2	Sc3										
mic	SE2	Household income	Sc1	Sc2	Sc3										
ouc	SE3	Tourist numbers	Sc2	WQ11	Ecosyst	em integ	grity								
-ec	SE4	Incidence of diarrhoea in under-5-year-olds	P1	WQ11											
ocic	SE5	Pesticide poisoning	P1	Sc1	Ecosyst	em integ	grity								
Ň	SE6	Impacts of floods and droughts	WQ5	WQ5	WQ1										

Phase 5: Site and indicator selection

Sites and indicators were selected by the team:

- Site selection: Five sites were identified in each of the five most important CRUs (H; D; G; B and E, Fig. 6). The location of the sites was determined using data on existing sites already sampled as part of the River Health Programme (DWA 2010b), routine fish sampling sites (Kleynhans et al., 2008), and Intermediate Reserve (EWR) sites (DWAF, 2008b). Google images and historic information on the catchment were also taken into consideration when sites were selected. The chosen sites were then groundtruthed during field sampling by a team of specialists in April 2010 and the final location verified. Unseasonal floods during the fieldwork hampered the data collection. As the Mokolo River is semipermanent it was possible for most specialists to use the methods designed for perennial rivers for data collection. If the river was ephemeral or episodic, adjusted sampling and interpretation methods would be needed. At present, no formal method has been developed for the collection of data on non-perennial rivers in the different disciplines.
- **Indicators:** Indicators were chosen specifically for nonperennial rivers and these can be adjusted according to the type of river studied. A summary of indicators and links is presented in Table 3.

Phase 6: Complete specialist studies

Specialist studies were completed where a multidisciplinary team sampled the Mokolo River in April 2010.

 Geomorphology: Due to the high flood levels during the time of sampling, Google Earth images were used to produce an initial geomorphological sketch map to indicate the location of channel banks, benches and flood zones within a 100–200 m length of channel. A final channel morphology map was produced after comparing the surveyed transects to the features shown on the satellite images. A channel cross-section was surveyed using levelling and water depth measurements across transects to estimate the channel bed topography. In non-perennial rivers, with characteristically high sediment loads, sediment becomes a key driving variable, influencing rooting depth and water availability

http://dx.doi.org/10.4314/wsa.v42i3.02 Available on website http://www.wrc.org.za ISSN 1816-7950 (Online) = Water SA Vol. 42 No. 3 July 2016 Published under a Creative Commons Attribution Licence in the riparian zone. Sediment samples were collected from each exposed morphological feature, including channel bed, banks, and the three flood zones. Particle size analysis was done using sieves to fractionate the sediment into coarse (2–0.5 mm), medium (0.5–0.25 mm) and fine sand (0.25–0.063 mm), and silt and clay (0–0.063 mm). Sediment size was described using the d84, d50 and d16 particle sizes.

- Water quality: The water temperature (°C), conductivity $(\mu$ S/cm) and total dissolved salts (ppt or g/L), concentration of dissolved oxygen (mg/L) and percentage of saturation (O₂ %) were measured, in situ from the shore, with an YSI Model 85 meter. pH and redox measurements were taken in situ using a Euteck Instrument CyberScan pH 110 meter. A number of subsurface water samples were collected and then transported in a portable ice chest to the laboratory. Diatom samples were collected according to the method described in Taylor et al. (2007) and preserved with 90% alcohol.
- **Riparian vegetation** was surveyed using the VEGRAI (Riparian Vegetation Response Assessment Index) method as described by Kleynhans et al. (2007).
- Macroinvertebrates were sampled using the standard South African Scoring System (SASS5) method (Dickens and Graham, 2002) and the Okavango Assessment System (OKASS) method (Dallas, 2009).
- **Fish**: Flooding during sampling necessitated that fish samples were taken in the lateral flooded areas, which were more accessible than the fast-flowing main channel. A combination of electro-narcosis, seine net and fyke net sampling was done depending on the habitat type and conditions to be sampled.
- Socio-economics: The socio-economic analysis identified the stakeholder groups that interact with the Mokolo River and included stakeholders from the commercial agricultural sector, the mining and power generation sectors, individual users and development agencies working in the area. A purposive sampling method was employed by selecting key stakeholders from the community to provide information on people-ecosystem interactions relating to the Mokolo River.

Map indicating the Mokolo River Combined Resource Units (CRUs) and sites chosen

Phase 7: Choose scenarios and complete hydrological simulation of scenarios

Possible development scenarios were chosen by the team, using socio-economic, historic and recent data on the Mokolo River catchment. The hydrological simulation to produce a daily time series for the scenarios chosen was completed using the MIKE-SHE integrated groundwater and surface water model (Prucha and Graham (2012) and Prucha et al. (2016)). The daily time series of data provided by the model included data on the river discharge, river stage, depth to groundwater beneath river, baseflow to river and subsurface flow beneath river.

The demand for water in the Mokolo River, the most economically developed catchment in the Limpopo Water Management Area, is increasing, and, concomitantly, the interactions between the ecological and social systems could increase in scale and complexity. The social environment is not site-specific. At Sites 1-3, the population is mainly rural and engaged in commercial crop farming and game farming. At Sites 4-5 mining and power generation are additional factors. The population at Sites 4-5 is, largely, still agricultural, with the exception of the town of Lephalale that is characterised by extensive urban development resulting from the expansion of the mine and the building of the Medupi Power Station. Recently, many farms have been converted from crop-producing farms to game farms. There is definite potential for tourism development in the area, but this is partly reliant on the preservation of the ecosystem surrounding the river.

Hydrological simulations for all scenarios consisted of 50 years of data, based on the initial modelling for the present day, using 8 gauging stations (Fig. 2) which had overlapping observed data. All flow upstream of the Mokolo Dam was routed downstream to the outlet of the Mokolo River (through Gauge A4H014). Detailed climate data were also available for the Mokolo Catchment from 1950–2000 (Schultz and Maharaj, 2007). The five scenarios chosen were:

- Scenario 1: Present day (PD): The 50-year simulations included the main infrastructure present at the time of the study (Mokolo Dam, and 31 other structures including 25 dams, and 6 weirs), i.e., the whole time series represents what would happen if the same climatic conditions of the previous 50 years were repeated for another 50 years with current (2010) levels of infrastructure.
- Scenario 2: Natural/reference: The 50-year PD simulations were modified by (a) estimating a natural stream profile through the Mokolo Dam based on the upstream and downstream profile, and (b) excluding farm dams, irrigation, interbasin transfers and weirs.
- Scenario 3: Game farming (GameFarm): The 50-year PD simulations were modified by (a) changing the vegetation, upstream of Mokolo Dam, from irrigated agriculture to natural, and (b) keeping development downstream of the Mokolo Dam the same as PD.
- Scenario 4: External water (ExtWater): The 50-year PD simulations were modified by (a) adding an interbasin transfer from the Crocodile River to the Mokolo Basin, and (b) keeping development upstream of the Mokolo Dam the same as PD. The interbasin transfer was made to support expansion of the Exxaro mine, Eskom power plants (Medupi and Matimba) and Lephalale town water supply. Water was applied in these scenarios using the irrigation module as if the water would be used for irrigation and no water was released back into the Mokolo River after use. No vegetation change was made from the PD vegetation.
- Scenario 5: Combined: The 50-year PD simulations were modified by (a) adding the interbasin transfer of Scenario 4, and (b) changing land-use from irrigation to game farming as for Scenario 3. Therefore, Scenario 5 is a combination of Scenarios 3 and 4.

The hydrological simulation to produce a daily time series for the five scenarios was completed. Only the surface flow results from the hydrological simulation for Site 4 (below the dam) will be presented here (for full results, see Prucha and Graham, 2012 and Prucha et al., 2016).

At Site 4, there is little difference between the PD and ExtWater scenarios. The water transferred from the Crocodile River was not modelled to reach the Mokolo River, either due to releases from the dam, or due to return flows from mining or agriculture. However, the ExtWater scenario does improve water availability for irrigation, mining and power production. There is little difference between the Natural, GameFarm and Combined scenarios. This is because, in the GameFarm and Combined scenarios the change from irrigation to game farming above the dam was modelled to produce much higher releases from the dam than currently takes place, and the change to game farming dominates flows in the resulting Combined scenario. The resulting flows are similar to Natural flows (Fig. 7).

Phase 8: Knowledge capture

The DRIFT-ARID DSS was populated with the 5 site names, 17 flow indicators, 5 hydraulic indicators, 5 scenario indicators (e.g. hectares of irrigation) (see Table 3), 5 scenario names, and other information such as the start year of the hydrology (1950). A screen shot of part of the 'Setup' page is shown in Fig. 8.

A file was set up for each specialist area for each site, including hydrology. The hydrology site files also house the hydraulics and scenario indicators which were managed in the same way as the flow indicators. Each site-level hydrology file (e.g. Hydro_Site 4_BeDam.xlsb for Site 4 'below dam') contains the time series of flow indicators for each scenario. Figure 9 shows an example of the time series of flow indicators entered for Site 4 for the Present Day (PD) scenario.

Each specialist data entry file was pre-populated with the flow indicators, the discipline's indicators, and standard information such as site and scenario names. Figure 10 shows an example of the specialist's indicator list for fish. These can be deactivated if they are irrelevant for a particular site. The specialist had to specify flow and other indicators linked to each of his/her indicators (see Table 3). A macro was used to prepare data entry sheets with blank response curves for each linked indicator. Part of the sheet for entering links is shown in Fig. 11.

Response curves were then completed on the page prepared for each of the specialists' indicators. Three of the response curves are shown in Fig. 12, dealing with the 'shallow pool dwelling species' response to (a) the duration of inundation of flood zone 2 (FZ2), (b) the duration of time with no surface flow, and (c) the average depth in the dry season. The values in the yellow-shaded cells ('min') were completed by the specialist in response to the values to the right ('days'). The values in the 'days' column are a range of values for that input indicator, including the median PD value, the PD range, and an extended range to accommodate scenarios. The DSS also allows for a range of response values ('min' and 'max') to allow for greater uncertainty than that already implied by the response scores. The range is shown in the response curve graphs as paler blue lines (Fig. 12). See Seaman et al. (2013) for details of the scoring system used.

Total annual volume of surface flow (MAR) at Site 4 on the Mokolo River from 1950–2000

3.)	SCEN		ES	4.)	SPECIALIST A	REAS	5.)	SITE / REA		ES	
		CHANGE HERE			CHANGE HERE	Complete list		CHANGE HERE	CHANGE HERE		CHANGE HERE
	1	PD	PD	Hydro	Hydro	Hydro	1	Site 1	TweeF	TweeF	River
	2	Natural	Natur	Geomo	Geomorph	Hydraulics	2	Site 2	VaalW	VaalW	River
	3	Game	Game	Water	Water quality	Sediment	3	Site 3	Ab_Dam	Ab_Da	River
	4	ExtWater	ExtWa	Veget	Vegetation	Geomorph	4	Site 4	Bel_Dam	Bel_D	River
	5	Combo	Combo	Macro	Macroinverts	Water Quality	5	Site 5	Bel_Sand	Bel_S	River
	6	Blank6	Blank	Fish	Fish	Vegetation	6		Blank	Blank	Floodplain
	7	Blank7	Blank	Socio	SocioEcon	Macroinverts	7		Blank	Blank	River
		Blank8	Blank	Blank	Blank	Fish	8		Blank	Blank	0
		Blank9	Blank	Blank	Blank	Mammals	9		Blank	Blank	
		Blank10	Blank	Blank	Blank	SocioEcon	10		Blank	Blank	
		Blank11	Blank	Templ	Template	Template	11		Blank	Blank	

Figure 8

Part of the 'Setup' page of the Scenario Interface file for the Mokolo River, showing scenarios, disciplines and site names

	H1	H2a	H2b	H4a	H4b	H5	H6	H7	H8	H9	H10	H11	H12	H13	H14	H15	H16	Hy3	Hy 4	Hy 5	Hy6	Hy7
ALL STATI	STICS PD									18	9)	36	i								
Year	MAR	DDepCl	WDepC	DGr	WGr	WoDry	WoWet	WFZ1	WFZ2	WindFZ2	WFZ3	W13	WPk	Wdur	Do	Dd	Dsub	FloodH	FlowLT	FlowGT	Ddep	Wdep
							Onset															
							of															1
				Perc	Perc	Onset	hydro															1
				contrib	contrib	of	wet															1
				ution of	ution of	surfac	seaso	No of	No of		No of											1
		Depth	Depth	ground	ground	e flow	n after	floods	floods	Longest	floods	Flood										1
		of	of	water	water	after	a	per	per	duration	per	greater										1
	Total annual	water	water	to	to	period	period	year	year	of	year	than PD	Peak		No	No					Average	Average
	volume of	table,	table,	surface	surface	of dry	of wet	that	that	inundati	that	1.3	flow	Surface	surfac	surface	Channel	Height of	Length	Length	depth	depth
	surface flow	chann	chann	flow,	flow,	river	river	cover	cover	on of	enter	magnitu	discha	flow	e flow	flow	subsurfac	max flood	flow LT	flow	dry	wet
	(MAR)	el, dry	el, wet	dry	wet	bed	bed	FZ1	FZ2	FZ2	FZ3	de	rge	duration	onset	duration	e flow, dry	per year	0.3	GT 0.3	season	season
1950	109.686	-7.449	-7.448	11.532	2.3113	-55	55	1	1	2	! 1	0	2.018	309	55	25	0.000545	2.675543	215	94	1.6268	1.8347
1951	188.936	-7.446	-7.447	3.0744	2.0302	-55	55	0	0	0	0) (3.507	365	55	0	0.000551	3.268887	188	177	1.819	1.91548
1952	105.677	-7.446	-7.449	3.2712	2.8454	28	55	0	0	0	0) (1.859	310	26	55	0.000566	2.604122	168	142	1.7703	1.75066
1953	398.457	-7.448	-7.444	4.3291	1.0123	-55	24	2	0	0	0) (5.289	364	55	1	0.000573	3.856737	76	288	1.7125	2.35465
1954	210.011	-7.447	-7.447	3.3563	1.5716	25	55	0	0	0	0) (3.78	339	24	26	0.000573	3.365031	103	236	1.7599	1.9763
1955	833.477	-7.447	-7.445	2.1611	0.47	-55	10	6	3	39.333	: 1	1	12.45	365	55	0	0.000549	5.348339	48	317	1.8606	2.92165
1956	520.091	-7.446	-7.446	4.7758	0.6438	-55	17	5	2	34	4 C) 1	5.7	360	55	5	0.000541	3.980351	63	297	1.7421	2.52249
1957	526.319	-7.449	-7.447	2.176	0.6238	-55	17	7	4	20	1	1	8.269	354	55	11	0.000558	4.647863	59	295	1.7828	2.50213
1958	161.569	-7.446	-7.446	5.1884	2.1253	26	55	0	0	0	0) (3.069	334	24	31	0.000581	3.104069	170	164	1.7294	1.88069
1959	280.556	-7.448	-7.445	4.3954	1.301	-3	55	0	0	0	0) 1	5.656	351	50	14	0.000551	3.966616	83	268	1.6967	2.13747
1960	172.338	-7.445	-7.447	2.4165	2.2369	-55	55	1	0	0	0) (4.521	357	55	8	0.000553	3.615004	196	161	1.8434	1.86328
1961	515.111	-7.448	-7.443	2.891	0.8551	-55	11	6	3	21.333	; () 1	6.056	365	55	0	0.000537	4.081988	76	289	1.7745	2.5213
1962	141.505	-7.448	-7.448	4.4865	2.1178	-55	55	0	0	0	0) (2.236	359	55	6	0.000556	2.76894	209	150	1.7061	1.85421
1963	212.308	-7.444	-7.446	2.8543	1.937	-55	19	1	0	0	0) (4.828	365	55	0	0.000553	3.713895	188	177	1.8341	1.95195
1964	174.808	-7.447	-7.447	2.745	2.2491	27	55	0	0	0	0) (4.179	323	24	42	0.000554	3.502379	134	189	1.8262	1.87286
1965	174.586	-7.448	-7.446	5.8619	1.9192	-55	9	0	0	0	0) 1	6.518	350	55	15	0.000559	4.213843	187	163	1.6772	1.92185
1966	166.554	-7.448	-7.447	4.4325	2.0016	28	9	2	1	12	2 0) (4.103	329	24	36	0.000549	3.477656	179	150	1.7089	1.89082
1967	377.669	-7.445	-7.441	2.9262	1.41	-55	7	6	3	9.3333	. () 1	11	365	55	0	0.000493	5.145063	48	317	1.8113	2.25129
1968	242.253	-7.448	-7.444	3.6027	1.713	-55	20	5	1	10	0) (5.31	366	55	0	0.000534	3.862231	96	270	1.7487	2.04118
1969	262.802	-7.447	-7.444	2,722	1.637	-55	15	4	1	11	0) 1	5.897	365	55	0	0.000554	4.038037	133	232	1.823	2.05358
1970	209.275	-7.446	-7.446	3.4821	1.8943	-55	55	0	0	0	0) (3.164	363	55	2	0.000582	3.13978	126	237	1.8023	1.96397
1971	254.682	-7.445	-7.446	2.5516	1.697	-55	2	3	1	13	0	0	4.891	365	55	0	0.000549	3.733124	135	230	1.9195	2.00702

Figure 9

Screenshot of the PD flow, hydraulic and scenario indicators entered into the hydrology file for Site 4 of the Mokolo River

	LIS	T OF INDICATORS FOR:		Indicators are picked up from "Sce	nario Interface"	
	BE	DAM	SITE 4	Switch on / off the indicator (1 / 0)	(0 where blank),	Column F
	Fis	h		State relationship between abunda	ance and integrit	y, Column G
				Fill in Discipline PES	Discipline PES:	c 💌
Num Char		Indicators / Process(sub)-indicators	Indicators (if process indicators present, else EMPTY)			
21	1	Rapid,riffle dwelling	0	Description	Switch indicators ON (1) or OFF (0)	ls an INCREASE a move towards (T) or away (A) from natural?
18	2	Deep pool dwelling	0	0	1	т
21	3	Shallow pool dwelling	0	0	1	Т
7	4	Blank 4	0	0	1	Т

Figure 10

Specialist data entry file, showing the list of indicators and where they can be deactivated for a particular site

LIS								Fis	h	1		1		If re anot India A fo If d	levan ther s ate s r All, /stre	it ins site is seaso and I am o	ert 'y s also n wit E for I or lat	' (<u>lov</u> rele h Ab End c er d	ver vant bre of pr isci	case t (1, viati ev y plin), In 2, e on (ear. e N	dicat tc.) case	te if ser T be	nsitiv 2 E	re),	sı d	1. F i umm eper	Proc indi aris nden	ess cato es a icy i	all ors nd j info	inpu (1) prep	u t ares tion	;	4	i re	Ad indi lati	1a d we cato ve cc	. Fo eight ors e ontr	r SO ts to .g. d ibut	CIC ad iffer ion
#					H	YDRC	DLO	GIC	AL INF	PUTS	TO RE	SPO	NSE C	URVE	S																	BIC)PH	YSI	CAL	. INF	PUT	S TC) RE	SPO
#			####	Hyd	ro												Ge	omo	orp	h						Wa	ter	Qu	alit	y			١	/eç	jet	atio	on	Ma	cro	inv
:	3	Indicators	Count	Onset of surface flow after period of dry river	No of floods per year	Longest duration of	inundation of F Z2	Surface flow duration	No surface flow onset	No surface flow duration	0	0		Average depth dry	Average depth wet	0	Percent fines on bed	Width low flow channel	Low flow channel epth	Length of pools	Area F Z1	Area F Z2	Area F Z3	Number low flow	Geomorph Num Floods	Conductivity (flowing)	pH (flowing)	Nutrients (flowing)	Agae/ChIA	Conductivity (pools)	pH (pools)	Nutrients (pools)	Aage/ChlA	Aquatic Veg	Marginal Veg	Lower Bank Veg	Upper Bank Veg	Riffle/Rapid Rocky	Pool - Open Sandy Beds	AquaticMarginal
	1	Rapid,riffle dwelling	9	у		у		у	у	У				у			у												у				Τ					у		
		site																																						
		season Deen nool		۷		V	-	V	D	D				D			A	_							_	_	_		A	_		_	+	_	_		_	A		_
	2	dwelling	8		У					У					У		У													у			У		У				У	
		site	•																																					
	_	season Shallow pool			V		+			D					V		A								-	_	_	_	_	A	_	-	^	_	A			_	A	_
	3	dwelling	8			У				У				У									у		_								У	У	У					У
		site	1																				v		_	_							0	0	0					0
<u> </u>		260301			I						1		1		F	iau	re 1	1																						

Specialist data entry file, where linked indicators are specified

http://dx.doi.org/10.4314/wsa.v42i3.02 Available on website http://www.wrc.org.za ISSN 1816-7950 (Online) = Water SA Vol. 42 No. 3 July 2016 Published under a Creative Commons Attribution Licence

Response curves for 'Fish' indicator: Shallow pool-dwelling species, for the first three linked indicators (1) the duration of inundation of Flood Zone 2 (FZ2), (2) the duration of time with no surface flow, and (3) the average depth in the dry season

Phase 9: Scenario analysis

Figure 13 shows an aggregate seasonal response time series on the top of each indicator's page and, to the right of the response time series, various modifications that can be made to the responses to adjust the overall time series response.

Each specialist file includes various other summaries, as well as an annual response time series (Fig. 14) as opposed to the seasonal one (Fig. 13). The PD scenario response for each indicator was calibrated by adjusting the response curves, so that the median of the PD scenario's overall response ranged between 95% and 105% of the PD (see value indicated under average of scenario (93.77%) in Fig. 13. Hydrology data from three **calibration** scenarios (all wet, all dry and wet and dry, see Seaman et al. 2013; 2016) were also included in the DSS and the specialists further calibrated the response curves and modifiers while viewing results of these extreme scenarios (which test the outer ranges of the response curves). For example, it would be expected that the abundance of riffle-rapid dwelling fish species would increase continuously up to a certain maximum in the 'wet' scenario and decrease drastically in the 'dry' scenario.

The DRIFT-ARID DSS was then run and the output presented to the specialists for verification.

OUTCOMES OF METHOD

Phases 10 and 11: Evaluate scenarios and provide outputs

As an example of DRIFT-ARID output, only scenario results for Site 4 and for geomorphological change are presented here. For details on other specialist field results, please refer to Seaman et al. (2013).

The outcome of running the five scenarios is illustrated in Figs 15 a–j and Fig. 16. In all scenarios, the low-flow channel width (b), low-flow channel depth (c), geomorphic pool depth (d) and pool length (e) responded synchronously in response to increased or decreased flood events. The feedback between low-flow channel depth and the number of floods inundating Flood Zone 1 (FZ1) can be seen in (j). FZ1, as expected, was the most responsive to changes in channel width (f), with a varied response between scenarios. The extent of the other flood zones varied little for all scenarios through time.

Figure 16 shows the summary results of geomorphological health or integrity at Site 4 for the five scenarios. The site was in a B/C (good to fair) category in the PD scenario and improved to an A/B (natural to largely natural) category for the GameFarm and Natural scenarios. The ExtWater scenario had the largest negative impact (loss in pool depth and low-flow channel width with a concomitant gain in FZ1). It is uncertain

Figure 13

Screenshot of the seasonal time series response built up from the responses to a time series of eight input indicators for Site 4 of the Mokolo River. To the right (grey and blue blocks) are various modifications that can be made, e.g., inclusion of lag periods

Figure 14

Annual time series resulting from the seasonal time series in Figure 13 (Y axis = percentage of present day)

why these changes would have resulted from this scenario, unless there was a reduction in floods at the expense of increased baseflow. However, the responses in geomorphology at Site 4 are all very small.

The DRIFT-ARID DSS uses the integrity scores from each of the disciplines to determine the overall ecosystem integrity of the site under the different scenarios (Fig. 17). It is worth noting that, given the problems with hydrological modelling (inconsistency with data etc., see Prucha et al., 2016) and scenario definition, these are hypothetical results only, and **no conclusions should be drawn from them regarding the actual performance of the different scenarios.** An increase in integrity is noted in all scenarios except in ExtWater where integrity is negatively impacted (dropping a category from overall B to overall C, bordering D (Fig. 17).

DISCUSSION

The research in the current EWR projects (Rossouw et al., 2005; Seaman et al., 2010; 2013) has contributed considerably to the knowledge on the ecological functioning of non-perennial rivers in South Africa, and the testing of DRIFT-ARID. DRIFT is one of the DWS-approved methods for determining the EWRs of South African rivers and has been used in many national and international rivers (e.g. Olifants-Doorn – Brown et al. (2006); Zambezi Basin – Beilfuss and Brown (2006); Lesotho rivers – King et al. (2003), and the Mekong River – MRC (2006)). DRIFT-ARID, however, has only been tested on the semi-permanent Mokolo River (Seaman et al., 2013).

Some of the requirements for an effective EWR method as discussed by Cottingham et al. (2002) are included in the DRIFT-ARID method, including guidelines on site selection and collection of data, the consideration of social and economic implications, and a standardised process for the presentation and documentation of outcomes.

Determining the **degree of perenniality** is vital as each type of non-perennial river needs to be approached differently (Seaman et al., 2010; 2013). For semi-permanent rivers (Mokolo River) both the perennial and non-perennial EWR methods could be used, but for ephemeral rivers (Seekoei and Fish Rivers) perennial methods are less useful (Seaman et al., 2010; Palmer, 2013). In the Mokolo River study, soil scientists contributed valuable data for integrated groundwater-surface water modelling. In episodic rivers, macroinvertebrate and fish specialists would be less vital than in perennial rivers, whereas vegetation, mammal (wildlife) and terrestrial insect specialists would become more important (Seaman et al., 2013). A hydraulic specialist should be included in all studies although the traditional hydraulic approach used in EWR studies would have to be adjusted in non-perennial rivers. Hydraulic input for crosssections of pools and riffles is crucial for accurate integrated groundwater–surface water modelling. In non-perennial systems pool depth and volume become important indicators (Prucha and Graham, 2012; Seaman et al., 2013), whereas riffles are more important in perennial systems.

The **catchment delineation** process is a standard approach in EWR assessments and in the Water Resource Classification System in South Africa (WRCS; Dollar et al., 2007). The DRIFT-ARID method augments the standard approach with the addition of RPUs to supplement the lack of gauging weir data in data-scarce regions.

The **site selection** method is also similar to the approaches followed for perennial rivers (e.g. Louw et al., 1999) and in the Water Resource Classification System (Dollar et al., 2007). The determination of CRUs and their importance ranking in the DRIFT-ARID method requires input from all specialists involved in the study and could be compared to the importance ranking used in DWA (2010). Studies comparing the two methods are needed to verify the preferred method.

The project used an integrated groundwater and surface water hydrology model, MIKE-SHE (Graham and Butts, 2005), for the whole catchment. Hydrology is one of the main drivers of the DRIFT-ARID method and the importance of groundwater in non-perennial rivers was emphasised in the previous EWR projects (Rossouw et al., 2005; and Seaman et al., 2010). One of the main constraints in one previous EWR project (Seaman et al., 2010) was the difficulty in modelling the hydrology of non-perennial rivers (specifically the ephemeral Seekoei River) due to a shortage in gauging-weir data and the absence of a suitable hydrological model for integrated surface and groundwater modelling (Hughes, 2008). The use, in this project, of MIKE-SHE for an entire catchment was a first for non-perennial rivers in South Africa. However, an integrated method, a simple classification scheme based on the geological setting of selected river stretches and the prevailing hydraulic gradients between surface and groundwater as proposed by Witthüser in DWA (2010a), was used to model a section of the Mokolo River in the Intermediate Reserve study. For challenges identified in applying the MIKE-SHE model see Prucha and Graham (2012) and Prucha et al. (2016).

Figure 15

Integrity scores for geomorphology at Site 4

The likely **future scenarios** included in the study had some limitations, particularly as all implied an increase in flow relative to current flow. At least one scenario should have been included which had more water being abstracted from the river or groundwater.

Scenario results using the DRIFT-ARID DSS provided an ecological integrity score for each site and each scenario. It is difficult to compare results from all scenarios in the present study with other studies on the Mokolo River as the scenarios differed in assumptions made. Results from the PD scenario compared to results from DWAF (2008a, using ECOSTATUS) indicated that Site EWR4 (DWAF, 2008a), which was downstream of Site 4 (present study), was in a C (moderately modified) category, compared to the B category (largely natural; Fig. 16) obtained in this study using the DRIFT-ARID method. It is not possible to assess which of these is correct in terms of integrity and this anomaly emphasises the importance of developing and testing methods for EWR determinations in all rivers as the management of the rivers is reliant on accurate results.

CONCLUSIONS AND RECOMMENDATIONS

A EWR method for non-perennial rivers, namely DRIFT-ARID, has been developed. Several adaptations to the original DRIFT method had to be made to accommodate non-perennial river characteristics.

Some additional findings and recommendations from the current study are the following:

In each of the disciplines, specific **constraints and challenges** were identified when using the current perennial methods to determine the Present Ecological State (PES). Studies are needed in non-perennial rivers in order to determine links between flow and habitat availability, especially to determine what the critical stage in habitat and flow change is before generalist species (usually found in non-perennial rivers) are affected.

Generic indicators for non-perennial rivers need to be identified, and for this more long-term data on non-perennial rivers is needed. Event hydrology, groundwater-surface water interactions, sediment transport processes and vegetation all drive channel dynamics in non-perennial systems. Fish may not be present in episodic rivers, and fish and macroinvertebrates may not be observed during no-flow conditions. However, channel morphology showed the integrated response to past flows, and deep-rooted vegetation will be sustained through dry periods (Rowntree and Van der Waal, 2012). Indicators for

Figure 17

Overall integrity at Site 4 on the Mokolo River (ecosystem integrity only)

which established empirical relationships with flow have been developed should be chosen until more data is available.

The **socio-economic** aspect of EWRs is extremely important (Cottingham et al., 2002). A more comprehensive stakeholder process is needed to fully incorporate the socio-economic aspects into the EWRs. In non-perennial rivers, the stakeholder process is extremely important as it can provide local knowledge and data (e.g. timing of floods, location of permanent pools) for specialists to use in catchments where data is scarce. Although the stakeholder process is expensive, it is a necessity in any study on non-perennial rivers.

Due to **data shortages and inaccuracies of data** for nonperennial rivers, a rapid method based on catchment and readily available data, should be developed until more reliable data is available. An option is a rapid DRIFT-ARID 'LITE', which relies on a countrywide assessment of the responses to development of various types of non-perennial rivers. Broad rules could be determined on how non-perennial rivers react to development, and could be used to infer the impact of scenarios on similar river types.

It is envisaged that DRIFT-ARID and the DRIFT-ARID DSS will evolve from their current state as the underlying conceptual understanding of the functioning of non-perennial systems evolves and is tested on other rivers.

ACKNOWLEDGEMENTS

The Centre for Environmental Management and the Water Research Commission are acknowledged for supplying funds and facilities. We thank Southern Waters for assisting in the development of the DRIFT-ARID model. Both reviewers are thanked for the considerable contribution they made to the success of this article.

REFERENCES

- BARKER CH (2010) Catchment geomorphology. Runoff potential unit determination. Report for Centre for Environmental Management as part of WRC Project K5/1798. WRC Report No. TT 579/13. Water Research Commission, Pretoria.
- BEILFUSS RD and BROWN C (2006) Assessing Environmental Flow Requirements for the Marromeu Complex of the Zambezi Delta: Application of DRIFT Model (Downstream Response to Imposed Flow Transformations). Museum of Natural History, University of Eduardo Mondlane, Maputo, Mozambique.

- BROWN CA, PEMBERTON C and MAGOBA KN (2006) Olifants Doorn Catchment. Ecological Water Requirements Study. Final Summary Report. Prepared by Southern Waters Ecological Research and Consulting CC for DWAF. DWAF Report No. RDM/E000/MSR/01/ CON/0606. Department of Water Affairs and Forestry. Pretoria.
- BROWN CA, JOUBERT AR, PEMBERTON CW, GREYLING AJ and KING JM (2008) DRIFT user manual. Volume 2: Biophysical Module for predicting overall river condition in small to medium sized rivers with relatively predictable flow regimes (incorporating updates to the DRIFT database). Water Research Commission, Pretoria.
- BROWN CA and LOUW D (2011) Tools and Procedures for Resource Directed Measures. In: King J and Pienaar H (eds) Sustainable Use of South Africa's Inland Waters. WRC Report No. TT 491/11. Water Research Commission, Pretoria.
- BROWN CA, JOUBERT AR, BEUSTER J, GREYLING A and KING JM (2013) DRIFT: DSS software development for integrated flow assessments: Final report and user manual. Southern Waters, Town.
- BULL LJ and KIRKBY MJ (2002) Dryland river characteristics and concepts. In: Bull LJ and Kirkby MJ (eds) (2002) Dryland Rivers Hydrology and Geomorphology of Semi-Arid Channels. Wiley and Sons Ltd., Chichester.
- BUNN SE and ARTHINGTON AH (2002) Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ. Manage. 30 (4) 492–507. http://dx.doi.org/10.1007/ s00267-002-2737-0
- COTTINGHAM P, THOMS MC and QUINN GP (2002) Scientific panels and their use in environmental flow assessment in Australia. *Aust. J. Water Resour.* **5** 103–111.
- DALLAS HF (2009) Wetland monitoring using aquatic macroinvertebrates. Technical Report 5/2009. Prepared for the Biokavango Project, Harry Oppenheimer Okavango Research Centre. University of Botswana. The Freshwater Consulting Group, University of Cape Town, Cape Town.
- DICKENS CWS and GRAHAM PM (2002) The South African Scoring System (SASS) Version 5. Rapid Bioassessment Method for Rivers. *Afr. J. Aquat. Sci.* 27 1–10. http://dx.doi.org/10.2989/16085914.2002 .9626569
- DOLLAR ESJ, BROWN CA, TURPIE JK, JOUBERT AR, NICOLSON CR and MANYAKA SM (2007) The development of the Water Resource Classification System (WRCS). Volume 1. Overview and 7-step classification procedure. CSIR Report No. CSIR/NRE/WR/ ER/2006/0187A/C. Department of Water Affairs and Forestry. Pretoria.
- DWAF (DEPARTMENT OF WATER AFFAIRS AND FORESTRY, SOUTH AFRICA) (2008a) Intermediate Reserve Determination Study for the Surface and Groundwater Resources in the Mokolo Catchment, Limpopo Province: EcoClassification Report – Volume 2. Prepared by Water for Africa and Clean Stream Biological Services. Louw, MD and Koekemoer S (eds.). RDM Report No. 26/8/3/10/14/008. Department of Water Affairs and Forestry, Pretoria.
- DWAF (DEPARTMENT OF WATER AFFAIRS AND FORESTRY, SOUTH AFRICA) (2008b) Intermediate Reserve determination study for selected water resources (rivers, groundwater and wetlands) in the Limpopo Water Management Area, Limpopo. Mokolo River System: Resource Unit Delineation: Prepared by Clean Stream Biological Services and Water for Africa. Kotze PJ and Louw MD (eds). Report No. 26/8/3/10/14/006. Department of Water Affairs and Forestry, Pretoria.
- DWA (DEPARTMENT OF WATER AFFAIRS, SOUTH AFRICA) (2010) Intermediate Reserve Determination Study for the surface and groundwater resources in the Mokolo Catchment, Limpopo Province: Mokolo River System: Main report. Report authored by Rivers for Africa eFlows Consulting. Report No. 26/8/3/10/14/014. Department of Water Affairs, Pretoria.
- DWA (DEPARTMENT OF WATER AFFAIRS, SOUTH AFRICA) (2010a) Intermediate Reserve Determination Study for the surface and groundwater resources in the Mokolo Catchment, Limpopo Province: Ground water–surface water interaction report. Authored by Rivers for Africa eFlows Consulting. Report No. 26/8/3/10/12/013. Department of Water Affairs, Pretoria.

- DWA (DEPARTMENT OF WATER AFFAIRS, SOUTH AFRICA) (2010b) Rivers database. URL: http://www.riv.co.za/Rivers/ Application/Login.aspx? ReturnUrl=%2fRivers%2fApplication%2fDe fault.aspx. (Accessed 13 March 2015).
- GRAHAM DN and BUTTS MB (2005) Flexible, integrated watershed modelling with MIKE SHE. In: Singh VP and Frevert DK (eds) (2005) *Watershed Models*. CRC Press, Boca Raton.
- HUGHES DA and HANNART P (2003) A desktop model used to provide initial estimate of the ecological instream flow requirements of rivers in South Africa. *J. Hydrol.* **270** 167–181. http://dx.doi. org/10.1016/S0022-1694(02)00290-1
- HUGHES DA (2008) Hydrological information requirements and methods to support the determination of Environmental Water Requirements in ephemeral river systems. WRC Report No. KV 205/08. Water Research Commission, Pretoria.
- KING JM, BROWN CA and SABET H (2003) A scenario based holistic approach to environmental flow assessments for regulated rivers. *River Res. Appl.* 19 (5–6) 619–640. http://dx.doi.org/10.1002/rra.709
- KING JM, BROWN CA, PAXTON BR and FEBRUARY RJ (2004) Development of DRIFT, a scenario-based methodology for environmental flow assessments. WRC Report No. 1159/1/04. Water Research Commission, Pretoria.
- KLEYNHANS CJ and LOUW MD (2007) Module A: EcoClassification and EcoStatus Fetermination in River EcoClassification: Manual for EcoStatus Determination (version 2). Joint Water Research Commission and Department of Water Affairs and Forestry Report. WRC Report No. TT329/08. Water Research Commission, Pretoria.
- KLEYNHANS CJ and LOUW MD (2007a) Appendix A. River reach demarcation, delineation and site suitability. In: Comprehensive Reserve determination study for selected water resources (rivers, groundwater and wetlands) in the Inkomati Water Management Area, Mpumalanga. Sabie and Crocodile systems: resource unit delineation. Report No. 26/8/3/10/12/006. Department of Water Affairs and Forestry, Pretoria.
- KLEYNHANS CJ, LOUW MD and MOOLMAN J (2008) Module D (Volume 2): Reference Frequency of Occurrence of Fish Species in South Africa: Manual for EcoStatus Determination (Version 2). Joint Water Research Commission and Department of Water Affairs and Forestry Report. WRC Report No. TT331/08. Water Research Commission, Pretoria.
- KLEYNHANS CJ, MACKENZIE J and LOUW MD (2007) Module
 F: Riparian Vegetation Response Assessment Index in River
 Ecoclassification: Manual for Ecostatus Determination (Version
 2). Joint Water Commission and Department of Water Affairs and
 Forestry Report. WRC Report No. TT 333/08. Water Research
 Commission, Pretoria.
- LOUW MD, KEMPER N and BIRKHEAD A (1999) R22: Procedure for Selection Sites in Intermediate and Comprehensive Determination of the Ecological Reserve (Water Quantity Component). Resource Directed Measures for the Protection of Water Resources: River Ecosystem. Department of Water Affairs and Forestry. Pretoria.
- MRC (MEKONG RIVER COMMISSION) (2006) Integrated Basin Flow Management Report Number 8: Flow-Regime Assessment. Mekong River Commission, Vientiane. Lao PDR.
- O'KEEFFE JH, HUGHES DA and THARME RE (2002) Linking ecological responses to altered flows, for use in environmental flow assessments: The flow stressor-response method. *Proc. Int. Ass. Theor. Appl. Limnol.* 28 84–92.
- PALMER R (2013) Macroinvertebrates. In: Rivers for Africa, Eflows consulting Pty Ltd. (eds) River EFR assessment, Volume 2: Fish River EFR, supporting information. Research project on environmental flow requirements of the Fish River and the Orange-Senqu River Mouth. UNDP_GEF Orange-Senqu Strategic Action Programme (Atlas Project ID 71598). ORASECOM Technical Report 28. ORASECOM.
- PRUCHA RH and GRAHAM D (2012) Integrated hydrologic flow model of the Mokolo River Basin, South Africa. Specialist report for Centre for Environmental Management. University of the Free State. WRC Report No. TT579/13. Water Research Commission, Pretoria.

- PRUCHA RH, GRAHAM D, WATSON M, AVENANT MF, ESTERHUYSE S, JOUBERT A, KEMP M, KING J, LE ROUX P, REDELINGHUYS N and co-authors (2016) MIKE-SHE integrated groundwater and surface water model used to simulate scenario hydrology for input to DRIFT-ARID: the Mokolo River case study. *Water SA* 42 (3) 384–398.
- ROSSOUW L, AVENANT MF, SEAMAN MT, KING JM, BARKER CH, DU PREEZ PJ, PELSER AJ, ROOS JC, VAN STADEN JJ, VAN TONDER GJ and co-author (2005) Environmental water requirements in non-perennial systems. WRC Report No. 1414/1/05. Water Research Commission, Pretoria.
- ROWNTREE KM and VAN DER WAAL B (2012) Fluvial geomorphology specialist report. Specialist Report for WRC Project K5/1798. WRC Report No. TT579/13. Water Research Commission, Pretoria.
- SCHULZE R and MAHARAJ M (2007) 50 years of daily hydroclimatic data per quaternary catchment in South Africa. School of Bioresources Engineering and Environmental Hydrology, University of KwaZulu-Natal. (CD-ROM.)
- SEAMAN MT, AVENANT MF, WATSON M, KING J, ARMOUR J, BARKER CH, DOLLAR E, DU PREEZ PJ, HUGHES D, ROSSOUW L and co-authors (2010) Developing a method for determining the environmental water requirements for non-perennial systems. WRC Report No. TT 459/10. Water Research Commission. Pretoria.
- SEAMAN MT, WATSON M, AVENANT MF, JOUBERT AR, KING JM, BARKER CH, ESTERHUYSE S, GRAHAM D, KEMP ME, LE ROUX PA and co-authors (2013) Testing a methodology for Environmental Water Requirements in non-perennial rivers. The Mokolo River Case Study. WRC Report No. TT579/13. Water Research Commission, Pretoria.

- SEAMAN MT, WATSON M, AVENANT MF, KING JM, JOUBERT AR, BARKER CH. ESTERHUYSE S, GRAHAM D, KEMP ME, LE ROUX PA and co-authors (2016) DRIFT-ARID: A method for assessing environmental water requirements (EWRs) for non-perennial rivers. Water SA 42 (3) 356–367.
- STRAHLER AN (1952) Hypsometric (area-altitude) analysis of erosional topology. *Geol. Soc. Am. Bull.* **63** (11) 1117–1142. http://dx.doi.org/10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2
- STEŸN E (2008) Investigation into the reliability of the discharge records of selected gauging stations in a few non-perennial rivers in RSA. Report by Department of Water Affairs and Forestry, Northern Cape Province, for Centre for Environmental Management as part of WRC Project K5/1798. WRC Report No. TT579/13. Water Research Commission, Pretoria.
- TAYLOR JC, HARDING WR and ARCHIBALD CGM (2007) A methods manual for the collection, preparation and analysis of diatom samples. Version 1.0. WRC Report No. TT 281/07. Water Research Commission, Pretoria.
- THOMS MC and SHELDON F (2002) An ecosystem approach for determining environmental water allocations in Australian dryland river systems: the role of geomorphology. *Geomorphology* **47** 153–168. http://dx.doi.org/10.1016/S0169-555X(02)00085-5
- UYS MC (1998) The ecology of temporary streams in the Eastern Cape. PhD Thesis, Rhodes University, Grahamstown.