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Abstract

A brief review is given of membrane extraction techniques that are seen as suitable for the extraction of various chemicals in 
water samples. Membrane-based extraction methods have now gained popularity as methods of choice in the extraction of 
both ionisable and non-ionisable molecules from different samples. The main attractive features for these techniques include 
the use of minimal organic solvents, high selectivity and clean-up efficiency, with high enrichment factors. In most cases 
the overall cost involved is low due to the simplicity of the techniques which normally involve relatively fewer steps and 
handling procedures as compared to many other sample-preparation techniques. The various forms and the configurations of 
membrane-based techniques are another attractive feature which allows the possibility of hyphenation with separation instru-
ments such as gas/liquid chromatographs and even capillary electrophoresis.

Keywords: liquid membrane extraction techniques, sample preparation, water monitoring, organic and 
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Introduction

Sample preparation is among the most important steps in any 
analytical process. This is due to the fact that sample preparation 
plays an important role in the removal of macromolecules and 
other matrix constituents that may adversely interfere with the 
detection system. In addition to that, sample-preparation meth-
ods bring about a possibility of enrichment of the analytes in 
very dilute samples or where low detection limits are required 
(Jönsson, 1992; 1993; 1999). Sample-preparation processes 
therefore have a direct impact on accuracy, precision and quan-
tification limits and are often a limiting step for many analytical 
methods (Majors, 2003). Many sample-preparation techniques 
(Tadeo et al., 2004; Mitra and Kebbekus, 1998; Patnaik, 1997) 
that have been in use all along include head space analysis, 
purge and trap, solid-phase micro-extraction (SPME) (Eisert et 
al.,  1997; Pawliszyn, 2003), liquid-liquid extraction (LLE) and 
solid-phase extraction  However, the oldest and most widely used 
technique is liquid-liquid extraction. The limitations of this tra-
ditional extraction technique (liquid-liquid extraction) include 
the lengthy extraction times, automation challenges and use of 
large organic solvents which are not environmentally friendly.
	 Recently, sample preparation employing liquid membranes 
has been reported in many applications, a sign that liquid mem-
branes are a preference over many others. The use of membrane 
techniques for selective extraction of analyte molecules was 
first introduced by Audunsson who used it for the extraction of 
amines in urine (Audunsson, 1986) and further developed by 
Jönsson and Mathiasson research groups to cover a wider appli-
cation to both environmental as well as biological samples (Jöns-
son, 1992; 1993; 1999). Membrane extraction techniques have 

been used for the extraction of molecules in biological matrices 
(Jönsson et al., 2003; Pálmarsdóttir et al., 1997; Lindegård et al., 
1992; Basheer and Lee, 2004; Msagati and Nindi, 2001; 2004a; 
2004b; 2005a; 2005b; 2006; Drapala et al., 2005).
	 Liquid membranes have also been used extensively in the 
extraction of both organic molecules such as pesticides and her-
bicides in waters and wastewaters (Chao et al., 2002; Megersa 
et al., 2001; Dżygiel and Wieczorek, 2001) and metals in water 
and wastewater matrices (Ndungù et al., 1998; Yang and Cussler, 
2000; Juang and Huang, 2000; Juang et al., 2000; 2004; Ortiz et 
al., 2003; Ho, 2002) as well as other organic pollutants (Berhanu 
et al., 2006; Khrolenko et al., 2002; Qin et al., 2002). Membrane- 
based techniques have been coupled to a variety of other analytical 
instruments such as ion chromatography (Amara and Kerdjoudj 
2007) liquid chromatography (Sandahl et al., 2000; 2002), gas 
chromatography (Luthje et al., 2004; Mitra et al, 1996), capillary 
electrophoresis (Palmarsdottir et al., 1997) and atomic absorption 
spectrophotometers (Juang et al., 2004; Fontas et al., 2005; Van de 
Voorde et al., 2004; Arous et al., 2004a; Arous et al., 2004b).
	 Generally, liquid membrane extraction techniques may 
be applied in many different ways, employing different types 
of membranes and a variety of set-ups and configurations or 
designs. This review discusses the different types of liquid 
membrane extraction techniques in their various designs.

Principles of liquid membrane extraction  
techniques

In liquid membrane extraction techniques, the analyte molecules 
diffuse across the hydrophobic porous membranes impregnated 
by organic solvent under a gradient which may be created due to 
either concentration differences (ΔC) between the two phases, 
the feed (or donor) and the stripping (or acceptor) or differences 
in the electrical potential (ΔE). 
	 The process of diffusion in liquid membranes is governed by 
Fick’s first law of diffusion (Smith, 2004):
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 				     								           			      [1]
where:
	 J denotes the extent of flux of the analyte molecules per 

given area and time (e.g., g·cm-2·s-1 or mol·cm-2·s-1)
	 D gives the diffusibility measure of the analyte across the 

membrane (diffusion coefficient), with units of cm2·s-1 and is 
proportional to the velocity of the diffusing particles 

	 Φ is the concentration in dimensions of amount of substance 
per volume e.g., mol·cm-3;  

	 χ is the position e.g., cm or metre (m).

The concentration gradient is given by the ratio of the change in 
concentration (∂Φ) to the change in position (∂χ), that is,     .  

The term D depends on the temperature, viscosity of the fluid 
and the size of the particles according to Stokes-Einstein equa-
tion,  

				     								           			      [2]
where:
 	 D is the diffusion constant
	 A is the radius of solute 
	 η is the solution viscosity = mobility of the particles
 	 kB is Boltzmann’s constant, 
	 T is the absolute temperature. 

Integrating the Fick’s equation gives Eg. (3):
 
				     								           			      [3]
where:
 	 cis is the concentration of analyte i at the outer membrane 

interface
 	 cil the concentration of analyte  i in acceptor phase 
	 L is the membrane thickness.

From the equations above, several parameters need to be 
adjusted to speed up the diffusion process in order to increase 
the flux across the membrane. Factors which control the D term 
(diffusion coefficient), such as temperature and partition coef-
ficient are normally adjusted to optimal conditions for that pur-
pose. The effect of temperature increase on the rate of diffusion 
and flux can be approximated by the Stokes-Einstein equation, 
such that by increasing T, D will increase and hence the analyte’s 
flux.
	 Partition coefficient (K) is another important factor, which 
controls the diffusion (flux) of analyte molecules across the 
membrane. The partition coefficient is defined as the ratio of the 
concentration of analyte in the membrane to that in the matrix as 
indicated by Eq. (4):

 				     								           			      [4]
where:
 	 Cmembrane is the analyte concentration in the membrane 
	 Cmatrix is the analyte concentration in sample matrix.

The partition coefficient plays an important role mostly in liq-
uid membranes where analytes cross the membrane in steps, 
because the analyte species in the donor (feed) phase has to 
be dissolved first in the membrane, diffuse through passing 
the membrane-acceptor interface into the bulk of the accep-
tor phase. The analyte is thus extracted into the membrane 
from the donor side and then re-extracted into the acceptor 
phase.

Typical materials used in fabricating membranes

The types of materials used to fabricate membranes are diverse 
and these include polytetrafluoroethylene (PTFE), polyvinyli-
denefluoride (PVDF), polypropylene (mainly for hollow fibres), 
silicone, and polysulphone (PS) (Hylton and Mitra, 2007). These 
materials are known to have some qualities that give them an 
edge over others. The materials are known to be stable at all pH 
ranges and they are inert to many other chemicals and have high 
temperature stability (Hylton and Mitra, 2007).

Classification of liquid membrane techniques

Membrane techniques exist in various forms and may be classi-
fied into several groups depending on the mode of classification 
(Jönsson and Mathiasson, 1999). Morphologically they may be 
classified into porous and non-porous (though almost all liquid 
membrane techniques are non-porous), but geometrically they 
may be classified into film/flat sheet or hollow fibre configu-
rations. In all these configurations, the analyte molecules are 
selectively partitioned between two or three phases. At least 
from the context of this review, the geometric forms of mem-
brane techniques will be discussed.

Porous membrane extraction techniques

In actual sense these may not qualify fully as liquid membrane 
techniques and therefore their discussion in this review will be 
brief. In porous membrane techniques, the analyte molecules 
are partitioned from one phase which forms the feed (upstream 
phase) through the porous hydrophobic liquid membrane to the 
second phase which forms the stripping/acceptor (downstream 
phase) (Fig. 1) (Jonsson and Mathiasson, 2001).
	 The driving forces in the porous membrane extraction 
include temperature, concentration, pressure, heat flux, volume 
flux, momentum flux and electrical flux. The selectivity in the 
extraction process is governed mainly by the membrane prop-
erties, as well as the physical-chemical properties that exist 
between the membrane and the permeate components. Dialysis 
and electrodialysis are among the examples of porous membrane 
extraction techniques (Chimuka et al., 2004). 

Non-porous liquid membrane techniques

Non-porous membranes do not have pores as the name suggest, 
therefore analytes movement in these setups is controlled mostly 
by diffusion. In the non-porous membrane systems, liquids are 
held in the pores of polymeric membranes to form what may 
either be called, two-phase or three phase supported liquid 
membrane extraction. Different configurations of non-porous 
membrane extractions are known to exist such as supported liq-
uid membrane extraction (SLM) technique, micro-porous mem-
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Figure 1
Porous membrane extraction process. The arrows show the 
direction of the movement of the different molecules under a 

concentration gradient.



Available on website http://www.wrc.org.za
ISSN 0378-4738 = Water SA Vol. 34 No. 3 July 2008
ISSN 1816-7950 = Water SA (on-line)

423

brane liquid-liquid extraction (MMLLE) technique, emulsion 
liquid membranes (ELM) and stabilised liquid membrane device 
(SLMD) extraction techniques. 

Supported liquid membrane extraction (SLM) 
technique

Supported liquid membrane (SLM) is a three-phase system in 
which an organic phase is sandwiched (interposed) between two 
aqueous phases (Figs. 2, 3a and 3b). This liquid is immobilised 
in the pores of a supporting porous material and is held by the 
capillary action. One of the two aqueous phases is actually the 
test or sample solution containing the analyte of interest, while 
the other one forms the stripping solution to accept the extracted 
analyte (stripping/acceptor solution). In the SLM technique, the 
volumes of the stagnant strip solutions that are used are nor-
mally much smaller than the sample solution volumes pumped 
through and this ensures high preconcentration factors. There-
fore, with the SLM technique, sample cleanup and enrichment 
can be achieved simultaneously (Jönsson, 1992; 1993; 1999; 
Chimuka et al., 1998).

	 SLM extraction technique is suitable for polar and ionic com-
pounds such as organic acids, bases and metals. In the extraction 
of basic or acidic analytes, the pH of the donor solution must be 
such that the compounds are in their neutral or uncharged forms, 
thus allowing them to enter the membrane. The pH of the accep-
tor is maintained such that once in the membrane, the analytes 
are extracted into the acceptor in a charged form and cannot be 
back-extracted into the donor. The pH gradient therefore provides 
the driving force (Hylton and Mitra, 2007; Chimuka et al., 1998).
 			 
Facilitated transport in liquid membranes

To enhance the selectivity of the liquid membrane during the 
extraction of ionising compounds, a suitable carrier molecule 
with a high affinity for the analytes may be incorporated (Jöns-
son et al., 1994). Under these conditions, carrier mediated trans-
port involves the reversible complex formation between the car-
rier and the analyte (Jönsson et al., 1994). For instance, in the 
extraction of metals, a complexing agent (ligand) stronger than 
organic carrier is normally incorporated into the strip solution 
and the metal ion transport from the donor via the hydropho-
bic membrane to the stripping solution is then driven by either 
proton gradient or by counter anion/cation (Figs. 4a and b)  
(Parthasarathy et al., 1997). The mobile carrier in the membrane 
complexes the metal in the donor side, diffuses across the mem-
brane to the acceptor side where it is exchanged for a proton or 
taken up by a much stronger carrier (Fig. 4b).  Mulugeta and 
Megersa extracted bipyridilium herbicides from water samples 
whereby di-(2-ethylhexyl) phosphoric acid was used as a carrier 
(Mulugeta and Megersa, 2004). Chimuka et al., (2005) have also 
reported the use of tri-n-butyl phosphate (TBP) as an extractant 
in the monitoring of uranium in complex matrix samples. 
	 Supported liquid membranes involve the distribution of ana-
lyte in three phases to bring about clean-up/separation as well 
as enrichment of the extract (permeate). There are two main 
parameters that are of paramount importance to evaluate the 
performance of the SLM extraction process. These factors are 
the enrichment factor (Ef) and extraction efficiency (Ee). The 
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Figure 2
Schematic representation of the extraction of basic organic 
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enrichment factor (Ef) refers to a ratio of analyte concentration 
in the extract in the acceptor phase to that in the donor phase. 
The mathematical relationships that exist between the concen-
trations of the analyte in the acceptor and donor phases and the 
extraction efficiency are given by the following equations:

 				     								           			        [5]
where:
 	 Ca is the analyte concentration in the acceptor phase
	 Cd is the analyte concentration in the donor phase
	 Ef is the enrichment factor.

On the other hand, the extraction efficiency refers to the fraction 
of analyte that is extracted into the acceptor phase and is defined 
mathematically as:

 				     								           			       [6]
or

 				     								           			       [7]
where:
	 ma = mass of analyte in the acceptor phase
	 md = mass of the analyte in donor phase
	 Vd and Va are the volumes of the donor and acceptor respec-

tively.

Supported liquid membranes have been used mostly in the 
extraction of ionisable pollutants in water and wastewater sam-
ples. This technique has been used extensively in the extrac-
tion of agrochemical residues in natural waters (Chimuka et al., 
1997; Megersa and Jönsson, 1998), environmental and biological 
samples (Megersa et al., 2001) and in fruit juices (Khrolenko 
et al, 2002, 2005). Supported liquid membrane application in 
the extractions of metals in waters is well documented and has 
shown great success which is evidenced by numerous reports 
covering a wide range of metals (Smith, 1997; Djane et al., 
1997a; 1997b; 1998; 1999; Papantoni et al., 1995; Soko et al., 
2003; Romero and Jönsson 2005; Valenzuela et al., 2007).

Micro-porous membrane liquid-liquid extraction 
(MMLLE) technique

Unlike in the SLM technique which is a three-phase system, 
MMLLE technique is a two-phase system whereby analytes 
are extracted from an aqueous solution into an organic phase  
(Fig. 5).

	 The performance of the MMLLE technique is to a large 
extent dependent on partition coefficient, Kp such that:

 			    												                [8]
where:
 	 Co and Ca represent the equilibrium analyte concentration in 

the organic and aqueous phases, respectively.

For an analyte to be efficiently extracted with MMLLE, it should 
have low solubility in the aqueous phase as well as volatility. 
Non-polar organic compounds and non-ionising compounds 
usually extract well with high efficiencies and preconcentrate 
higher than the polar and ionising molecules due to the solubility 
factors. In MMLLE, the migration of molecules from aqueous 
to organic phase is driven by the concentration gradient of the 
analyte and is limited by its partition coefficient.
	 MMLLE has been reported in the extraction of environ-
mental pollutants such as the extraction of dinitrophenolic com-
pounds [Bartolome et al., 2007], isobutylicetophenone (Zorita et 
al., 2007), organo tin compounds (Cukrowska et al., 2004), and 
organo lead compounds (Cukrowska et al., 2007) from aqueous 
samples.

Hollow fibre micro-extraction technique

The hollow fibre micro-extraction technique is also known 
as liquid phase micro-extraction (LPME). In this technique 
a porous polypropylene hollow fibre strand is used and to it a 
very small volume of acceptor solution (in micro-litre ranges) 
is filled. The filled hollow fibre is then exposed to an organic 
liquid to impregnate the pores and then placed in an aqueous 
sample where extraction will proceed. Liquid phase micro-
extraction can be carried out in either a two phase (MMLLE) or 
a three phase (SLM) depending on the analyte being extracted. 
The application of LPME has been reported in a wide variety of 
analyses of environmental pollutants such as the PAHs, drugs 
and pesticides (Hou et al., 2003; Hou and Lee 2002; Ma et al., 
2006, Dziarkowska, 2007).
	 There are two modes of LPME that have been reported  
thus far and these include the static LPME and dynamic LPME 
(Figs. 6a and b) (Zhao and Lee, 2002). In static mode, the accep-
tor solution remains in the lumen throughout the entire extrac-
tion. In dynamic mode, however, the acceptor is repeatedly 
introduced and withdrawn from the lumen. Some researchers 
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have indicated that the dynamic mode has an edge over the static 
mode in that it can result in much higher enrichment factors 
(Hou et al., 2003; Hou and Lee, 2002; Basheer et al., 2003).
	 An example of the application of HFSLM static mode was 
reported by Kou et al.  (2004)  in the analysis of haloacetic 
acids in water, where they analysed 9 haloacetic acids to sub 
µg·ℓ-1 detection limits, low RSD values between 1.5 to 10.8% 
and high enrichment factors ranging between 300 to 3 000. 
Nora-adisak and Varanusupakul (2006) have also reported the 
use of a similar configuration to determine trihalomethanes in 
water samples.

Emulsion liquid membrane (ELM) technique

The emulsion liquid membrane (ELM) (Fig. 7) is designed to 
have a large surface area per unit sample volume, which gives it 
an advantage of high flux rates across the membrane as well as 
high preconcentration factors. ELM technique has several disad-
vantages, all related to the formation of emulsion and these are:
•	 Controlling the factors that affect emulsion stability such as 

ionic strength, pH, etc.
•	 If for any reason, the membrane does not remain intact dur-

ing use, the separation that has been achieved is destroyed
•	 In order to recover the receiving phase and also to replenish 

the carrier phase, one has to break the emulsion. This is a 
difficult task, since in order to make the emulsion stable; you 
have to work against the ease of breaking it back down.

Despite the above cited drawbacks, several applications of ELMs 
have been reported both for speciation of metal ions (Kumbasar 
and Tutkun, 2001; Gasser et al., 2007; Fonad and Bart 2008;  
Sengupta et al., 2007; Sabry et al., 2007; Garmeiro et al., 2007)  
and organic compounds (Lee, 2008; Kaghazch et al., 2006).
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ELM extraction set-up

Conclusions

Liquid membrane extraction techniques in various forms and 
configurations have many sample-preparation applications and a 
potential to be extended to even more different pollutants in the 
water samples. Depending on the type of analyte and possible 
extraction process, it is possible to select the most appropriate 
liquid membrane technique. 
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