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Treatment of textile wastewater using heterogeneous photocatalysis began in the the last decade and 
attracted the attention of researchers due to its versatile application. The variety of applications of TiO2 as a 
photocatalyst was due toits numerous positive properties, such as low operating temperature, biologically 
inert nature, low energy consumption, water insolubility, availability and photoactivity, low toxicity, high 
chemical stability, suitable flat band potential, narrow bandgap and the fact that it is environmentally benign. 
Heterogeneous UV-TiO2 photocatalysis is capable of removing organic pollutants from textile wastewater; this 
has been widely studied, with the technology also having been commercialized in many developing countries. 
Decolorization of anthraquinone dye Reactive Blue 19 (RB 19) by heterogeneous advanced oxidation processes 
TiO2/UV/H2O2, TiO2/UV/KBrO3 and TiO2/UV/(NH4)2S2O8 was studied under different conditions and in the 
presence of electron acceptors such as hydrogen peroxide (H2O2), potassium bromate (KBrO3) and ammonium 
persulphate ((NH4)2S2O8). Decolorization was very fast for all three processes, and complete dye decolorization 
was achieved in 10 min. The effect of various ions (Cl–, SO4

2– and HCO3
–) on RB 19 decolorization was also 

studied. The optimal condition for the decolorization of the dye were determined to be: TiO2 concentration 1 
g∙dm–3, electron acceptor concentration 30.0 mmol∙dm–3, dye concentration 50.0 mg∙dm–3, UV intensity 1 950 
μW∙cm–2, at temperature 25 ± 0.5°C. In addition, experiments were performed and compared in three different 
matrices. In the surface water and dyebath effluent water, the removal efficiency for RB 19 was lower than that 
achieved in the deionized water because of the interference of complex constituents in the surface water and 
effluent. LC-MS analysis was carried out and the detected intermediates were compared with the previously 
published data for anthraquinone dyes.

INTRODUCTION

Textile industries play a vital role in the economic development of many developing countries and 
therefore also in increasing the gross domestic products of these countries (Masum, 2016). These 
industries use different raw materials, such as cotton, synthetic and woollen fibres, and chemicals 
including dyes. Approximately 10 000 different synthetic dyes are available in the market and 
worldwide annual production of these dyes is over 700 000 t. Nearly 200 000 t of synthetic dyes 
are lost into the environment because of the inefficient dyeing process used in textile industries. 
According to World Bank estimates, about 17–20% of industrial wastewater is generated from 
textile dyeing and finishing treatments (Holkar et al., 2016; Hossain et al., 2018; Ribeiro et al., 
2017).

Thus, though the textile industry provides significant economic benefits, it also faces the 
environmental and social impacts associated with the generation of toxic wastewaters from its 
processing operations, such as de-sizing, sizing, scouring, bleaching, mercerizing, dyeing, printing, 
finishing and other processes (Masum, 2016; Miguel et al., 2002; Ledakowicz et al., 2001; Punzi et 
al., 2015). In order to meet the colour requirement, reactive and azo dyes are highly water-soluble 
and therefore around 10–20% of the used dye is washed out with water as effluents which are 
hazardous (carcinogenic or mutagenic) and toxic to the environment (Ganesh et al., 1994; Weber 
and Adams, 1995; Zhang et al., 1998).

Various treatment technologies have been developed for the textile wastewater, namely, physical, 
chemical and biological treatment (Ganesh et al., 1994; Weber and Adams, 1995). In recent years 
much attention has been given to advanced oxidation processes (AOPs). AOPs include a number 
of approaches, such as UV photolysis, Fenton process, photo-Fenton process, electro-Fenton 
process, photoelectro-Fenton, ozonation process, sonolysis, catalytic and radiation-induced 
biodegradation, etc. (Mohej et al., 2003; Muruganandham and Swaminathan, 2004a; Flox et 
al., 2006; Chen et al., 2002; Daneshvar and Khataee, 2006; Shu and Chang, 2005; Brillas et al., 
2000; Rosenfeldt et al., 2006; Daneshvar et al., 2003; Daneshvar et al., 2005a; Piera et al., 2000; 
Daneshvar et al., 2007; Elmorsi et al., 2010; Tehrani-Bagha et al., 2010; Wang et al., 2008; Rauf et 
al., 2010; Ayed et al., 2010; Chen et al., 2008). Photocatalysis relies on the formation and utilization 
of OH• radicals and lead to the breakdown of contaminants into water, CO2 and less harmful 
products. Various semiconductors such as TiO2, ZnO, Fe2O3, CdS, ZnS and V2O5 can be used for 
photocatalysis because of their suitable bandgap energy.
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Heterogeneous photocatalysis is based on the reactive 
properties of photogenerated electron-hole carriers. When 
a semiconducting material is illuminated by light with an 
appropriate wavelength, electron-hole pairs are generated. The 
photogenerated hole, an electron donor, can react with the 
adsorbed water and hydroxide ions (OH–) to form hydroxyl 
radicals (OH•), whereas the photogenerated electron can react 
with oxygen to form superoxide radical ion (O2•

–). Both OH•, 
O2•

– and the photogenerated hole are capable of oxidizing a host 
of organic and inorganic compounds (Linsebigler and Yates, 
1995; Fujishima et al., 2000; Fox and Dulay,1993). It has been 
demonstrated that TiO2 is one of the most significant inorganic 
photocatalytic materials (Subramanian et al., 2001), in particular 
the commercial Degussa P25.

Semiconductor TiO2-based photocatalysis has received much 
attention because of its properties such as non-toxicity, chemical 
and biological stability, low cost and higher photocatalytic 
activity. However, for the technical and commercial feasibility 
of the process, extensive investigations are needed to overcome 
some problems with TiO2-based photocatalysts (Sharotri and 
Sud, 2017).

One of the major disadvantages of heterogeneous photocatalysis is 
the recombination of the photo-generated electron (ecb

−) and hole 
(hvb

+). This step decreases the quantum yield and causes energy 
wasting. These could be overcome by using electron acceptors or 
hole scavengers. The addition of the electron acceptor, such as 
KBrO3, H2O2 and (NH4)2S2O8 enhanced the degradation rate by 
(i) preventing the electron-hole recombination by accepting the 
conduction band electron; (ii) increasing the hydroxyl radical 
concentration; and (iii) generating other oxidizing species 
(SO4•

–) to improve the efficiency of intermediate compounds 
(Wei et al., 2009).

The objective of the present study was to evaluate the 
effectiveness of heterogeneous advanced oxidation processes 
TiO2/UV/KBrO3, TiO2/UV/H2O2 and TiO2/UV/(NH4)2S2O8 at 
degrading the anthraquinone dye Reactive Blue 19 (RB 19). For 
all three processes, the influence of background ions Cl–, SO4

2– 
and HCO3

–, which can compete with the target contaminant 
for reaction with radicals and holes, was examined. The effect 
of these ions has not been reported in the literature. Therefore, 
the influence of the aqueous matrix should also be considered 
when applying TiO2/UV/KBrO3, TiO2/UV/H2O2 and TiO2/
UV/(NH4)2S2O8 in practice. For this reason, experiments were 
performed in three different matrixes (laboratory deionized 
water, surface water collected from the local Nišava River and 
dyebath effluent water from a local cotton dyeing facility).

Most investigators have provided information on dyes removal 
during the degradation process and not much information has 
been provided about the degradation pathway or intermediate 
compound formation by heterogeneous advanced oxidation 
processes TiO2/UV/KBrO3, TiO2/UV/H2O2 and TiO2/UV/
(NH4)2S2O8. Hence in the present study, an attempt was made 
to identify the intermediate compound formed during the dye 
photocatalytic degradation by using LC-MS analysis.

MATERIALS AND METHODS

Reagents

The anthraquinone reactive dye C.I. Reactive Blue 19 (RB 19) 
(Mw = 626.55 g∙mol–1) was obtained from Sigma-Aldrich (USA) 
and used without any purification. The hydrogen peroxide (H2O2) 
solution (30.0%), potassium bromate (KBrO3) and ammonium 
persulfate ((NH4)2S2O8) were of analytical grade and purchased 
from Merck (Germany). Commercially produced titanium 
dioxide (TiO2-P25) was used in all experiments. TiO2-P25 

was received from Degussa (Frankfurt, Germany). TiO2-P25 
contains anatase 80.0 and rutile 20.0 with mean particle size of 
30.0 nm and BET surface area of 50.0 m2∙g–1.

Photoreactor

Photochemical experiments were carried out in a batch 
photoreactor handmade in our laboratory (Mitrovic et al., 2012). 
The UV lamps were turned on 10 min before performing each 
experiment. The intensity of UV radiation was measured by a 
UV radiometer Solarmeter model 8.0 UVC (Solartech, USA). 
The total UV intensity was controlled by turning on different 
numbers of UV lamps and the maximum intensity was 1 950 
μW∙cm–2 (with all ten UV lamps on) at a distance of 220 mm 
from the working solution surface.

Procedures

A stock solution of RB 19 was prepared by dissolving 1.0 g dye in 
1 000.0 cm–3 of deionized water. Working solutions were freshly 
prepared before irradiation, by diluting the stock to the desired 
concentration with deionized water. The pH of the solutions was 
adjusted by addition of NaOH or HCl (0.1/0.01 mol∙dm–3) with 
pH/ISE meter (Orion Star A214, Thermo scientific, USA). The 
suspensions of dye and TiO2 were magnetically stirred in the 
dark for 30 min to attain adsorption-desorption equilibrium 
between dye and TiO2, and the dye solutions were then treated 
in the UV reactor.

During irradiation, the solution was magnetically stirred (Are, 
Velp Scientifica, Italy) at a constant rate, and temperature was 
maintained at 25 ± 0.5°C by thermostatting. At required time 
intervals, 4.0 cm–3 of samples were withdrawn, centrifuged (3 
000 r∙min–1, 15 min) and filtered through a 0.20 μm regenerated 
cellulose membrane filter (Agilent Technologies, Germany) to 
separate the catalyst. Absorbance at 592 nm was measured using 
a UV-vis spectrophotometer Shimadzu UV-1800 PC (Shimadzu, 
Japan) to determine the degree of decolorization of the solution. 
The removal (%) of RB 19 dye was calculated as:

0

Removal(%) 1 100tc
c

 
= − × 

 
 (1)

where c0 and ct are the concentration values of the dye solution 
before and after UV irradiation, respectively.

Identifying the degradation product of the RB 19 solution was 
carried out by LC-MS system. After treatment, the samples 
of RB 19 were processed using LCQ Fleet mass spectrometer 
(Thermo Fisher Scientific, USA) with orthogonal electrospray 
(ESI) source and ion trap (IT) as an analyser. The LCQ Fleet 
mass spectrometer was linked to the HPLC system (Ultimate 
3000, Thermo Fisher Scientific, USA). Thermo Scientific column 
Dionex Hipersil GOLD C18 was used for separation in a liquid 
chromatograph. The samples of anthraquinone dye RB 19 were 
analysed in a negative mode of the mass spectrometer.

To ensure the accuracy, reliability, and reproducibility of the 
collected data, all experiments were carried out in triplicate, 
and mean values are recorded. OriginPro 2016 (OriginLab 
Corporation) software was used for statistical analysis and 
calculation of the data.

RESULTS AND DISCUSSION

Influence of experimental parameters on removal 
efficiency of RB 19

The preliminary experiments were carried out in order to 
investigate the effect of UV radiation only, TiO2 without UV 
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radiation, electron acceptors (KBrO3, H2O2 and (NH4)2S2O8) 
without UV radiation and UV irradiation in the presence of 
TiO2 and electron acceptors. The solution of RB 19 dye (initial 
dye concentration was 50.0 mg∙dm–3) was irradiated for 180 
min to examine the effect of UV light radiation alone, and 
there was no observable decrease in residual dye concentration. 
This indicated that the direct photolysis of RB 19 dye by UV 
irradiation was slow. Experiments with only electron acceptors 
were done for 180 min in the dark. The dye removal efficiency, 
in that case, was also negligible. No decolorization was observed 
for the dye solution with TiO2 without UV radiation. But if 
electron acceptors are applied in combination with UV radiation 
and TiO2, residual dye concentration rapidly decreases (Fig. 1). 
Complete decolorization was obtained in less than 15 min, with 
an initial dye concentration of 50.0 mg∙dm–3 in the presence 
of 1.0 g∙dm–3 TiO2 and 30.0 mmol∙dm–3 electron acceptors and 
under 1 950 μW∙cm–2 light intensity.

Titanium dioxide has drawn much attention from the industry as 
a good candidate for a large band-gap semiconducting oxide for 
photodecomposition processes in pollutant treatment, because 
of its favourable physical/chemical properties, low cost, ease of 
availability, and high stability (Wang et al., 2013; Yang et al., 
2013; Xu et al., 2013; Cetinkaya et al., 2013). Numerous studies 
in the literature show that TiO2 and other catalysts remain 
unchanged after the photocatalytic process, confirming their 
stability even after several cycles of use. (Wan et al., 2012; Li and 
Wu, 2017; Zhu et al., 2011). Because of all the abovementioned 
factors, TiO2 was selected as a photocatalyst in the processes 
examined in this manuscript. The process optimization for the 
best dye removal efficiency is presented below.

Effect of electron acceptors

BrO3
– ion is an efficient electron acceptor and is used to enhance 

photocatalytic decolorization rate (Poulios and Tsachpinis, 1999; 
Gratzel et al., 1990; Sanchez et al., 1998). The effect of the addition 
of KBrO3

 (10.0–100.0 mmol∙dm–3) on removal efficiency of RB 19 
is shown in Fig. 2. It can be seen that adding a small amount of 
KBrO3, from 10.0 to 30.0 mmol∙dm–3,increases the decolorization 
from 88.62% to 96.38% during the time period of 10 min. The 
enhancement of the removal efficiencyis due to the reaction 
between BrO3

– ion and conduction band electron (Eq. 2) (Wei 

et al., 2009; Muneera and Bahnemannb, 2002; San et al. 2001)
 (2)

With the further increase in KBrO3 concentration from 30.0 to 
100.0 mmol∙dm–3 the removal efficiency is almost constant. This 
is due to the adsorption effect of Br– ions on the TiO2 surface, 
which affects the catalytic activity of TiO2 (San et al., 2001). So 
the optimum concentration of bromate ion is 30.0 mmol∙dm–3 
for photocatalytic decolorization of RB 19.

The photocatalytic decolorization of dye occurs on the surface 
of TiO2, and O2 and H2O2 are necessary for photocatalytic 
decolorization (Vesely et al., 1991; Chen and Liu, 2007; Dionysiou 
et al., 2000; Houas et al., 2001):

 (3)

 (4)

H2O2 may be photolyzed or react with superoxide anion to form 
hydroxyl radical directly:

 (5)

 (6)

The initial concentration of H2O2 plays an important role in 
the TiO2/UV/H2O2 process. The effect of the addition of H2O2 
(10.0–100.0 mmol∙dm–3) on the decolorization of RB 19 is shown 
in Fig. 2. The addition of H2O2 from 10.0 to 30.0 mmol∙dm–3 

increases the decolorization from 59.52% to 87.79% at 10 min. 
A further increase from 30.0 to 100.0 mmol∙dm–3 decreases 
the removal efficiency to 64.12% within 10 min. A similar 
observation has been reported for other organic pollutants 
(Wei et al., 2009; So et al., 2002; Chu and Wong, 2004). The 
increase in the decolorization is due to the increase in hydroxyl 
radical concentration by the addition of H2O2. At a high dosage 
of H2O2 the decrease in decolorization is due to the hydroxyl 
radical scavenging effect of H2O2 and recombination of hydroxyl 
radicals (Daneshvar et al., 2005b; Aleboyeh et al., 2005):

Figure 1. Effect of UV light, TiO2, electron acceptors, TiO2/
UV/KBrO3, TiO2/UV/H2O2 and TiO2/UV/(NH4)2S2O8 processes on 
decolorization of RB 19. [RB19]0 = 50.0 mg∙dm–3, TiO2 = 1.0 g∙dm–3, 
[KBrO3]0 = 30.0 mmol∙dm–3, [H2O2]0 = 30.0 mmol∙dm–3, [(NH4)2S2O8]0 

= 30.0 mmol∙dm–3, initial pH was 7.0, UV radiation intensity was 1 
950 μW∙cm–2, temperature was 25 ± 0.5°C.

Figure 2. The removal efficiency of RB 19 by TiO2/UV/KBrO3, TiO2/
UV/H2O2 and TiO2/UV/(NH4)2S2O8 processes as a function of initial 
concentration of electron acceptors. [RB19]0 = 50.0 mg∙dm–3, TiO2 = 
1.0 g∙dm–3, initial pH 7.0, UV radiation intensity was 1 950 μW∙cm–2, 
temperature was 25.0 ± 0.5°C.
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 (7)

 (8)

H2O2 is also a powerful hole scavenger. In excess, it may react 
with holes to produce oxygen and protons. In photocatalytic 
decolorization, the hole directly oxidizes the dye and with water 
produces a hydroxyl radical. Hence, the removal efficiency for 
the dye decreases due to the removal of holes (Pichat et al., 1995).

 (9)

The effect of the addition of S2O8
2– on the photolytic oxidation 

of RB 19 (50.0 mg∙dm–3) was investigated by varying the amount 
of (NH4)2S2O8 from 10.0 to 100.0 mmol∙dm–3. The results are 
shown in Fig. 2. The addition of (NH4)2S2O8 from 10.0 to 30.0 
mmol∙dm–3 increases the removal efficiency from 93.63% to 
100.00% within 10 min. These results are in agreement with 
earlier research (Poulios and Tsachpinis, 1999, Sanchez et al., 
1998). With the further increase of (NH4)2S2O8 concentration 
from 30.0 to 100.0 mmol∙dm–3 the removal efficiency is almost 
constant. Addition of persulfate to photocatalytic processes 
enhances the decolorization rate in the following ways:

 (10)

In the reaction with a photogenerated electron and with a 
water molecule, the sulfate radical anion SO4•

– can generate a 
hydroxyl radical. The sulfate radical anion is a strong oxidant 
and participates in the decolorization process. At a high dosage 
of S2O8

–2, inhibition of reaction occurs due to the increase in 
the concentration of the SO4

2– ion. On the surface of the TiO2 
catalyst there is absorption of the SO4

2–ions. Therefore, catalytic 
activity is reduced. On the other hand, the adsorbed SO4

–2 ion 
also reacted with photogenerated holes (Eq. 11) and hydroxyl 
radical (Eq. 12).

 (11)

 (12)

Effect of initial RB 19 concentration

Pollutant concentration is a very important parameter in 
wastewater treatment. The effect of initial dye concentration 
on decolorization was investigated over a range of 10.0 to 100.0 
mg∙dm–3. The removal efficiency of RB 19 by TiO2/UV/KBrO3 
after 10 min of treatment is shown in Table 1. The results indicate 
that whileincreasing the initial concentration of dye from 10.0 
mg∙dm–3 to 100.0 mg∙dm–3 removal efficiency decreased from 
100.0% to 82.55%.

The results after 10 min of treatment by TiO2/UV/H2O2 
process are shown in Table 1. With the increase in the initial 
concentration of dye from 10.0 mg∙dm–3 to 100.0 mg∙dm–3, 
removal efficiency decreases from 95.49% to 39.14%. At high 
concentrations the penetration of photons entering into 
the solution decreases, consequently lowering the hydroxyl 
radical concentration (Ghodbane and Hamdaoui, 2010; 
Muruganandham and Swaminathan, 2004b; Behnajady 
et al., 2004; Galindo and Kalt1998). It can be seen that 
removal efficiency decreased as initial dye concentration 
increased at the same concentration of (NH4)2S2O8.

Effect of UV radiation intensity

By increasing UV radiation intensity, the efficiency of dye 
decolorization increases considerably. Based on the obtained 
results, which are shown in Fig. 3, it can be concluded that 
removal efficiency of dye increases with the increase in radiation 
intensity from 730 μW∙cm–2 to 1 950 μW∙cm–2. The lowest 
difference within the process efficiency is between the radiation 
intensity 1 750 μW∙cm–2 and 1 950 μW∙cm–2, from which follows 
that the back lamps in photoreactor have the least contribution 
to dye decolorization. Results have also shown that the UV 
intensity tested in the study lies in the linear range and all the 
photons produced are effectively used (Fig. 3).

The increase in light intensity from 730 μW∙cm–2 to  
1 950 μW∙cm–2 increases the decolorization by TiO2/UV/H2O2 
process from 29.70 to 87.79% within 10 min. The investigation 
is consistent with previous studies which generally observed 
an increase in decolorization rate with increasing UV intensity 
(Mills et al., 1993; Lea and Adesina, 1998). This is a consequence 
of a higher quantity of generated •OH radicals, which make 
oxidative decolorization of anthraquinone dye more efficient.

The influence of UV light intensity on the decolorization of RB 
19 by TiO2/UV/KBrO3 and TiO2/UV/(NH4)2S2O8 processes has 
been monitored by varying the UV radiation intensity as in 
previous experiments, and similar results were obtained.

Comparison of decolorization by TiO2/UV/KBrO3, TiO2/UV/
H2O2 and TiO2/UV/(NH4)2S2O8

In order to optimize the process, a comparison was made 
between the three heterogeneous oxidation processes after 

Table 1. Effect of initial dye concentration on removal efficiency of RB 
19 by TiO2/UV/KBrO3, TiO2/UV/H2O2 and TiO2/UV/(NH4)2S2O8 processes

Conc. of dye 
(mg∙dm–3)

Removal efficiency (%)

TiO2/UV/KBrO3 TiO2/UV/H2O2 TiO2/UV/(NH4)2S2O8

10 100.00 95.49 100

20 98.93 93.24 100

30 98.05 89.32 100

40 97.45 85.11 100

50 96.38 87.79 100

60 92.78 65.63 98.78

80 85.07 45.46 95.34

100 82.55 39.14 90.05

Figure 3. The removal efficiency of RB 19 by TiO2/UV/KBrO3, 
TiO2/UV/H2O2 and TiO2/UV/(NH4)2S2O8 processes as a function 
of radiation intensity. [RB19]0 = 50.0 mg∙dm–3, TiO2 = 1.0 g∙dm–3, 
[KBrO3]0 = 30.0 mmol∙dm–3, [H2O2]0 = 30.0 mmol∙dm–3, [(NH4)2S2O8]0 = 
30.0 mmol∙dm–3, initial pH 7.0, temperature = 25.0 ± 0.5°C.
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10 min of treatment under given conditions. The initial electron 
acceptor concentrations in these experiments were 30.0 
mmol∙dm–3, and the amount of TiO2 was 1.0 g∙dm–3. In the case 
of photocatalytic decolorization, S2O8

–2 is the most effective for 
the photodecolorization of RB 19 among the additives studied 
in this paper. The decolorization efficiencies of RB 19 are in the 
following order TiO2/UV/(NH4)2S2O8 (100%) > TiO2/UV/KBrO3 
(96.38%) > TiO2/UV/H2O2 (87.79%).

Electron acceptors such as hydrogen peroxide, potassium 
bromate and ammonium persulfate were added into the solution 
in order to enhance the decolorization (Poulios and Tsachpinis, 
1999; Gratzel et al., 1990; Sanchez et al., 1998). All the additives 
showed a beneficial effect on the decolorization of the dye, 
whereas S2O8

–2 has been found to remarkably enhance the 
decolorization of pollutant. The efficiency of the TiO2/UV/H2O2 
process is comparable to the TiO2/UV/KBrO3 process.

TiO2-based photocatalysts also offer advantages such as high 
physical and chemical stability, low cost, availability, low 
toxicity, and excellent photoactivity (Banerjee et al., 2014). 
However, purification of water and wastewater using the TiO2/
UV/KBrO3 process leads to the formation of bromide ions (Lv et 
al., 2008). Although bromide ion are not harmful to the human 
body, they can be converted to bromated and other brominated 
pollutants (Haag and Holgne, 1983; Gunten and Oliveras, 
1998) which have suspected carcinogenic potential. Therefore, 
it is necessary and significant to remove the DBP (disinfection 
by-product) precursor bromide.

A traditional precursor removal strategy (enhanced coagulation) 
and novel precursor removal strategy (anion exchange such as 
activated carbon adsorption processes) are two areas of active 
research for controlling DBP formation (Johnson and Singer, 
2004; Boyer and Singer, 2005). Also, Br– ions are absorbed 
on the surface of TiO2 and the ability to convert them into 
BrO3

– ions is reduced. In the case of TiO2/UV/H2O2, the final 
products of dyes degradation are carbon dioxide, water and 
inert salts (Muruganandham et al., 2004b, Sharma et al., 2016). 
The persulfates have high solubility and stability at ambient 
temperature, while the sulfate ions, which are the major products 
of persulfate reduction, are relatively harmless and considered 
to be environmentally friendly (Peternel et al., 2012, Olmez-
Hanci et al., 2014). Therefore, these processes are a promising 
environmental engineering technique.

Effect of salt addition and decolorization test of RB 19 in 
surface water and dyebath effluent water

Starting from the assumption that the typical constituents of 
natural water and wastewater (CO3

2–, HCO3
–, SO4

2–, Cl–, NO3
–, 

HPO4
2–, H2PO4

–) can influence the rate of decolorization of the 
tested substrates, the effects of different concentrations of some 
ions were studied. Decolorization experiments were performed 
by dissolving 50.0 mg∙dm–3 of dye in deionized water. The added 
amount of catalyst was 1.0 g∙dm–3 and the initial pH was 7.0. The 
obtained results are shown in Table 2.

The decrease in decolorization efficiency of the dye is due to 
the hole scavenging and hydroxyl radical scavenging properties 
of chloride and sulfate ions (Wei et al., 2009; Wenhua et al., 
2000). The presence of bicarbonate increased the decolorization 
efficiency. Bicarbonate ions react with hydroxyl radical and 
produce carbonate radical, CO3•

– (Aleboyeh et al., 2012). The 
carbonate radical is a strong oxidant and very selective for 
organic compounds.

In order to confirm the behaviour of RB 19 decolorization by 
TiO2/UV/KBrO3, TiO2/UV/H2O2 and TiO2/UV/(NH4)2S2O8 
processes in different practical water samples under optimal 

conditions, we chose three kinds of water samples as 
experimental matrices: (i) laboratory deionized water (DW) as 
the simulation wastewater treatment effluent, (ii) surface water 
(SW) collected from the Nišava River (pH 7.2, Ca+ = 79 mg∙dm–3, 
Mg+ = 21 mg∙dm–3, Na+ = 13.42 mg∙dm–3, Cl– = 69 mg∙dm–3, SO4

2– 

= 35 mg∙dm–3, HCO3
– = 240 mg∙dm–3), and (iii) dyebath effluent 

water (DEW) collected from a local cotton dyeing facilitiy. 
Dyebath effluent contained 0.050 g∙dm–3 of dye RB 19. Assisting 
chemicals were also present in reactive dyebath effluent: 40 
g∙dm–3 NaCl (electrolyte, aggregation of dye onto fabric), 13 
g∙dm–3 Na2CO3 (pH buffer), 0.51 g∙dm–3 NaOH (produces 
covalent bonds between dyestuff and fabric), 0.79 g∙dm–3 nacetic 
acid (neutralization), 0.50 g∙dm–3 alkylphenol polyglycol ether 
(detergent, washing out of unfixed dyestuff). For preparing 
a model effluent, dyebath effluent wastewater was diluted to 
obtain a new solution with 50.0 mg∙dm–3 of RB 19. RB 19 was 
spiked in surface water after the water sample’s filtration, with 
initial concentration of 50 mg∙dm–3. Figure 4 shows the removal 
efficiency of RB 19 obtained by TiO2/UV/KBrO3, TiO2/UV/H2O2 
and TiO2/UV/(NH4)2S2O8 processes. Each process was carried 
out in all three matrices: DW, SW and DEW.

After 10 min irradiation, the TiO2/UV/KBrO3 process achieved 
96.38%, 89.63% and 79.99% RB 19 removal for the DW, SW, and 
DEW, respectively;the TiO2/UV/H2O2 process achieved 81.84%, 
77.34% and 69.56% for the DW, SW, and DEW, respectively; and 
the TiO2/UV/(NH4)2S2O8 process 100.0%, 96.56% and 86.35% for 
the DW, SW, and DEW, respectively. As shown in Fig. 4, in the 
surface water and dyebath effluent the efficiency of removal of RB 
19 was lower than that achieved in the deionized water because 
of the interference of complex constituents in the surface water 
and dyebath effluent.

LS–MS analyses

On the mass spectra obtained after the applied heterogeneous 
oxidation processes, signals are observed at similar m/z values, 
so it can be assumed that the degradation of the RB 19 dye by the 
applied processes is probably carried out by a similar mechanism.

After the preliminary fragmentation of RB 19, the samples 
obtained during treatment with selected heterogeneous 
advanced oxidation processes were analysed. In Fig. 5b it can 
be seen from the mass spectrum of the sample after 2 min of 
treatment that a new ion at m/z of 499.1 was reported, compared 
to the spectrum of untreated dye sample. MS2 ion analysis on 
m/z 499.1 gave ions on m/z 435.1 and m/z 408.0. These ions are 
found at m/z values greater than Δm/z 16 of the fragments at 
m/z 419.1 and 393.0 of the untreated RB 19 dye sample. Based 
on these facts, it can be assumed that the formation of mono-
hydroxylated products has occurred.

Table 2. Effect of Cl–, SO4
2– and HCO3

– ions concentrations on the 
photodecolorization efficiency

Process
Conc. ion 

(mmol∙dm–3)
Decolorization (%)

Cl– SO42– HCO3–

TiO2/UV/KBrO3 0 98.12 98.12 98.12
10.0 89.39 87.92 100.0

100.0 84.01 80.15 100.0
1 000.0 77.55 70.38 100.0

TiO2/UV/H2O2 0 96.13 96.13 96.13

10.0 87.40 94.42 100.0
100.0 82.17 87.51 100.0

1 000.0 75.14 77.19 100.0
TiO2/UV/(NH4)2S2O8 0 100.0 100.0 100.0

10.0 91.40 90.85 100.0
100.0 87.15 82.64 100.0

1 000.0 79.05 76.35 100.0
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In the mass spectrum of the sample after 4 min of treatment, the 
peak intensity at m/z 602.9 was significantly reduced, and in the 
spectrum there was a peak at m/z 317.1 (Fig.5c). The presence of 
this ion indicates one of the possible mechanisms of degradation 
where there is a breakdown of the relationship between the 
carbon of the aromatic nucleus and nitrogen. MS2 fragmentation 
of the peak at m/z 317.1 gave an ion on m/z 253.2.

After 6 min of treatment, in the mass spectrum of the dye RB 
19, no further signal is available on m/z 602.9 (Fig. 5 (d)). A new 
signal is an output at m/z 515.1. MS2 analysis of the ion on m/z 
515.1 gave a peak at m/z 451.1. The ion on m/z 451.1 is found at 
m/z values greater than Δm/z 16 from ion to m/z 435.1 identified 
by the MS2 analysis of the ion at m/z 499.1 after 2 min of colour 
treatment, which is probably due to the attachment of another 
•OH radical to an anthraquinone nucleus and the formation 
of a di-hydroxylated degradation product. MS3 ion analysis on 
m/z 451.1 gave ions on m/z 424.9, 377.2 and 360.2, while MS2 ion 
analysis on m/z 499.1 obtained peaks at 435.1 and 408.1.

After 10 min of treatment, no new signals were detected, and 
the intensities of all previously detected peaks were significantly 
reduced. After a longer treatment time (60 min), the signals of 
all detected ions have disappeared, indicating further oxidative 
degradation of intermediate products. Further degradation 
leads to the formation of low molecular weight aldehydes, 
organic acids, nitrate and sulfate that cannot be detected by 
this technique (Amorisco et al., 2011, 2013). These results 
are consistent with the results for the change in RB 19 dye 
concentration over time (Fig. 1), which show a significant drop 
in dye concentration at the same time. Based on the structure 
of the intermediate degradation products identified by the 
ESI/IT technique, a possible mechanism of degradation of the 
anthraquinone dye RB 19 can be predicted (Fig. 6).

CONCLUSIONS

The decolorization of the RB 19 solutions by TiO2/UV/KBrO3, 
TiO2/UV/H2O2 and TiO2/UV/(NH4)2S2O8 processes strongly 
depends on the system parameters, such as electron acceptors, 
dye initial concentration and radiation intensity. From an 
economic point of view, the TiO2/UV/(NH4)2S2O8 process 
emerges as the most attractive oxidation system for reactive 
dye effluents in terms of complete decolorization (100.00% in 
less than 10 min), very closely followed by the TiO2/UV/KBrO3 
process (96.44% after 10 min) and TiO2/UV/H2O2 process 
(87.79% after 10 min). The presence of chloride and sulfate ions 
decreased the photocatalytic decolorization, while the presence 
of bicarbonate increased the decolorization efficiency. All three 
oxidation processes were carried out in three matrices (laboratory 
deionized water, surface water collected from the Nišava River 
and dyebath effluent water from a local cotton dyeing facility). 
In the surface water and dyebath effluent, the removal efficiency 
of RB 19 was lower than that achieved in the deionized water 
because of the interference of complex constituents in the 
surface water and the dyebath effluent. Lastly, LS-MS analyses 
were carried out to identify the intermediates produced 
during dye degradation. At longer treatment times no 
organic by-products were identified by LS-MS.

ACKNOWLEDGEMENTS

The authors would like to acknowledge financial support to the 
Ministry of Education, Science and Technological Development 
of the Republic of Serbia (Grant No TR34008).

Figure 5. LC-MS spectra of the identified compound in RB 19 solution within 6 min of treatment: (a) RB 19 without treatment, (b) after 2 min (c) 
after 4 min (d) after 6 min

Figure 4. The removal of RB 19 by different oxidation processes: TiO2/
UV/KBrO3 (pH = 7.0, [RB19]0 = 50.0 mg∙dm–3, TiO2 = 1.0 g∙dm–3, [KBrO3]0 

= 30.0 mmol∙dm–3, UV intensity 1950 μW∙cm–2), TiO2/UV/H2O2 (pH= 7.0, 
[RB19]0 = 50.0 mg∙dm–3, TiO2 = 1.0 g∙dm–3, [H2O2]0 = 30.0 mmol∙dm–3, 
UV intensity 1 950 μW∙cm–2) and TiO2/UV/(NH4)2S2O8 (pH = 7.0, [RB19]0 

= 50.0 mg∙dm–3, TiO2 = 1.0 g∙dm–3, [(NH4)2S2O8]0 = 30.0 mmol∙dm–3, UV 
intensity 1 950 μW∙cm–2)
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