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Water distribution systems are an integral part of the economic infrastructure of modern-day societies. 
However, previous research on the design optimization of water distribution systems generally involved 
few decision variables and consequently small solution spaces; piecemeal-solution methods based on 
pre-processing and search space reduction; and/or combinations of techniques working in concert. The 
present investigation was motivated by the desire to address the above-mentioned issues including those 
associated with the lack of high-performance computing (HPC) expertise and limited access in developing 
countries. More specifically, the article’s aims are, firstly, to solve a practical water distribution network design 
optimization problem and, secondly, to develop and demonstrate a generic multi-objective genetic algorithm 
capable of achieving optimal and near-optimal solutions on complex real-world design optimization problems 
reliably and quickly. A multi-objective genetic algorithm was developed that applies sustained and extensive 
exploration of the active constraint boundaries. The computational efficiency was demonstrated by the small 
fraction of 10-245 function evaluations relative to the size of the solution space. Highly competitive solutions 
were achieved consistently, including a new best solution. The water utility’s detailed distribution network 
model in EPANET 2 was used for the hydraulic simulations. Therefore, with some additional improvements, the 
optimization algorithm developed could assist practitioners in day-to-day planning and design
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INTRODUCTION

Water distribution systems, as part of the indispensable economic infrastructure of modern societies, 
should be designed, maintained and operated in an economical and sustainable way. Multi-objective 
evolutionary optimization algorithms are widely used for design purposes, as they yield a range 
of efficient candidate solutions that provide the decision makers with the vital flexibility that is 
needed when appraising and selecting the final solutions (Li et al., 2015). Other advantages of multi-
objective evolutionary optimization algorithms are that the objective and constraint functions of 
the optimization problem need not be differentiable or continuous, discrete and mixed decision 
variables and non-convex problems can be handled relatively easily and, by deploying a population 
of candidate solutions simultaneously, the chances of achieving the global optimal or near-optimal 
solutions are greatly increased.

Evolutionary optimization algorithms operate on populations of solutions that may include both 
feasible and infeasible solutions. To address constraint violations when optimizing water distribution 
systems, penalty-based methods have been applied widely (Broad et al., 2005; Ostfeld and Tubaltzev, 
2008). The major drawback of the penalty-based approaches is that additional case-specific parameters 
are required (Ayvaz and Kentel, 2015; Ostfeld and Tubaltzev, 2008; Kang and Lansey, 2012), the 
calibration of which is generally very challenging (Moosavian and Lence, 2017; Siew et al., 2014; Saleh 
and Tanyimboh, 2013, 2014; Siew and Tanyimboh, 2012a; Dridi et al., 2008; Prasad and Park, 2004).

Thus, some of the constraint-handling methods in the literature are: (i) penalties imposed on 
infeasible solutions to reduce their fitness; (ii) constraint dominance tournaments that, essentially, 
impede the survival and propagation of infeasible solutions (Deb et al., 2002); (iii) replacement of 
infeasible solutions with new solutions created randomly (Tersi et al., 2015); (iv) repair of infeasible 
solutions (Chootinan and Chen, 2006); and (v) stochastic ranking that involves binary tournaments 
and probabilistic penalty functions (Runarsson and Yao, 2000). While constraint dominance 
tournaments may have a strong practical appeal based on the ease of implementation, they tend to 
reduce diversity in the population of candidate solutions too quickly (Liu et al., 2010; Eskandar et al., 
2012; Sheikholeslami and Talatahari, 2016), which, in turn, impedes the progress of the optimization 
through lack of diversity in the gene pool. Repairing infeasible solutions and designing penalty 
functions are, generally, extremely challenging, while replacing infeasible solutions is wasteful 
(Oyama et al., 2007; Ray et al., 2009; Woldesenbet et al., 2009; Yen, 2009), as the information content 
of the infeasible solutions is not harnessed.

Furthermore, when applied to real-world problems, multi-objective evolutionary optimization 
algorithms commonly require computationally intensive simulation models that are time-consuming 
to execute. Moreover, for complex optimization problems such as the design of real-world water 
distribution networks, the amount of time needed for the simulations can be prohibitive as, typically, 
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the number of function evaluations or simulations required is very 
large. Thus, a major challenge concerning evolutionary algorithms 
in the context of the design optimization of water distribution 
systems is that the algorithms are computationally demanding 
and particularly difficult to implement when applied to large real-
world networks with multiple operating conditions that generally 
require dynamic or extended period simulation (Van Zyl et al., 
2004; Broad et al., 2010; Kang and Lansey, 2012; Sheikholeslami 
and Talatahari, 2016).

Even with the latest powerful workstations, a single execution of 
an evolutionary optimization algorithm may require many days 
or several weeks or more, depending on the problem at hand. 
Moreover, the solution space of the optimization problem is 
frequently enormous and, consequently, instances of premature 
convergence are common. Therefore, to be confident that any 
solutions achieved are reasonably optimal, the algorithms are 
normally executed many times. This is the reason that HPC 
(high-performance computing) facilities are frequently used to 
overcome the problem (Barlow and Tanyimboh, 2014; Seyoum 
et al., 2015; Tanyimboh and Seyoum, 2016). However, most 
researchers and practitioners lack access to HPC facilities and the 
necessary expertise, which holds true in South Africa also.

One way of addressing this difficulty involves using parallel 
algorithms, which inherently are computationally more efficient 
(Trobec et al., 2009). Two common approaches for parallel 
algorithms are the controller-worker and island models. The 
controller-worker model is popular due to the relative ease of 
implementation (Alba, 2005; Castillo et al., 2008; Cantu-Paz, 2000). 
It employs a single population with the fitness evaluation carried 
out in parallel by assigning a fraction of the population to different 
processors. It is very efficient, particularly for problems in which 
the fitness evaluation is computationally demanding (Cantu-Paz 
and Goldberg, 2000), and achieves significant speed-up, if the 
communication costs are small when compared to the computation 
costs (Kumar et al., 2006; Cantu-Paz and Goldberg, 2000).

In the island model, the candidate solutions are divided into sub-
populations that evolve independently and may exchange some 
solutions that are called migrant solutions occasionally. When 
designed well, it can solve very complex problems for which the 
serial algorithm performs poorly regardless of the search duration 
(Back et al., 1997; Tang et al., 2007). However, the island model is 
much more difficult to design (Cantù-Paz and Goldberg, 2000), 
and its practical application is not straightforward as it involves 
several parameters that require calibration, e.g., the size of the sub-
populations, frequency of migration, number of migrant solutions 
and their destinations, etc. (Artina et al., 2012). It is worth noting 
again that evolutionary optimization algorithms commonly apply 
penalties to address constraint violations (Piratla and Ariaratnam, 
2012; Moosavian and Lence, 2017). Moreover, the development 
and calibration of the penalty functions on a case-by-case basis is 
particularly challenging (Dridi et al., 2008; Gibbs et al., 2015). This 
increases the overall complexity of the calibration effort further, 
when considered alongside the parameters of the underlying 
evolutionary algorithm that generally require calibration also.

In any case, applications of parallel evolutionary optimization 
algorithms in the design of water distribution systems are 
surprisingly lacking in the literature. Moreover, applications of 
evolutionary optimization algorithms that address complex design 
problems based on real-world water distribution systems are also 
lacking. Such problems often involve large networks, enormous 
solution spaces, time-varying demands, multiple operating 
conditions, extended period simulation, etc. Indeed, Kang and 
Lansey (2012) observed that studies on the optimization of water 
distribution systems in the preceding three decades had focused 
mainly on the applications of new optimization techniques  

(e.g. Ostfeld and Tubaltzev, 2008; Wu et al., 2013; Moosavian and 
Lence, 2017) to relatively simple systems. For example, Ewald et 
al. (2008) applied an island model to optimize the locations of 
booster chlorination stations. Artina et al. (2012) employed both 
the controller-worker and island models to optimize the design 
of a water distribution network. They observed that frequent 
exchanges of good solutions improved the results. Barlow and 
Tanyimboh (2014) used the controller-worker model to execute 
a single optimization run while the island model performed 
multiple independent optimization runs simultaneously.

Following Walski (1995), Kang and Lansey (2012) characterised 
three levels of water supply and distribution planning and 
design as follows. The master planning scale (Level 1) considers 
large-scale infrastructure that includes water treatment plants 
and major trunk mains (e.g. the New York City Water Supply 
Tunnels and Hanoi network in the literature). The second level 
of planning and design (Level 2, e.g., the hypothetical Anytown 
network in the literature) considers the transmission mains that 
distribute water between and within water supply zones (i.e. 
demand management areas or pressure zones). The third level of 
planning and design (Level 3) involves the distribution network 
that supplies individual households. Kang and Lansey (2012) also 
emphasised that, although water distribution network models 
having thousands of pipes were the focus of network modelling or 
simulation (as distinct from optimization) in the water industry 
nowadays, the distribution network (i.e. Level 3) generally has not 
been considered in design optimization studies, as the problems 
are extremely difficult to solve.

Several examples illustrate the point further. Kang and Lansey 
(2012) optimized the diameters of a water distribution network 
using steady state rather than dynamic simulation to solve the 
problem in two stages by applying a heuristic technique followed 
by a genetic algorithm. It is important to note that the optimized 
solutions they achieved using the heuristic technique were then 
used as the starting point for the genetic algorithm. Price and 
Ostfeld (2016) and Stokes et al. (2016) optimized pump scheduling 
only, without optimizing the diameters of the pipes. Also, several 
studies (e.g. Barlow and Tanyimboh, 2014, etc.) have optimized 
the diameters of the Balerma irrigation network using hybrid 
algorithms. Hybrid algorithms combine multiple optimization 
strategies, as in Sheikholeslami and Talatahari (2016), for example. 
Finally, Moosavian and Lence (2017) applied a non-dominated 
sorting differential evolution algorithm to hypothetical networks 
only. Thus, the above-mentioned investigations mainly considered 
problems that were relatively easy to solve. The formulations 
generally involved: (i) few decision variables and consequently 
small solution spaces; (ii) piecemeal solution methods based on 
pre-processing and search space reduction (Abdy Sayyed et al., 
2019); or (iii) combinations of techniques working in concert.

The present investigation was motivated by the desire to address 
the above-mentioned weaknesses, including issues associated 
with limited HPC expertise and access in developing countries, 
e.g., South Africa. Accordingly, this article considers the multi-
objective evolutionary design optimization of water distribution 
networks. The multi-objective genetic algorithm developed 
utilises extended period simulation based on a pressure-driven 
analysis model through which the constraints of the optimization 
problem are addressed seamlessly, efficiently and reliably. More 
specifically, the article’s aims are, firstly, to solve a practical water 
distribution network design optimization problem and, secondly, 
to develop and demonstrate a generic multi-objective genetic 
algorithm capable of achieving optimal and near-optimal solutions 
on complex real-world design optimization problems reliably and 
quickly. Moreover, the quantified evaluation of the algorithm’s 
performance is extended herein to cover not just the least-cost 
feasible solution but, also, the whole Pareto-optimal front.
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MATERIALS AND METHODS

Design optimization model

The algorithm developed is based on a multi-objective evolutionary 
optimization algorithm in Siew and Tanyimboh (2012a). A key 
feature of the algorithm is that it exploits feasible and infeasible 
individuals in the population of candidate solutions equally with 
respect to constraint violations using pressure-driven analysis. 
Essentially, the proposed formulation provides a level playing field 
for all the feasible and infeasible candidate solutions. This has the 
added advantage of promoting greater diversity among the candidate 
solutions by allowing non-dominated infeasible solutions to survive 
until the end of the optimization process. Thus, an enhanced and 
sustained boundary search also takes place through the development 
and evolution of sub-populations of near-optimal feasible and 
infeasible solutions (Saleh and Tanyimboh, 2013, 2014, 2016).

Pressure-driven analysis of water distribution networks considers 
the relationship between the flow and pressure at a demand node 
(Tanyimboh et al., 1997). Thus, an infeasible solution does not 
satisfy the nodal pressures and demands in full and the shortfall 
in the flow delivered provides a direct measure of its infeasibility. 
In this way, the hydraulic simulations address the minimum node 
pressure constraints efficiently, reliably and seamlessly. A pressure-
driven extension of EPANET 2 (Siew and Tanyimboh, 2012b)  
was adopted.

Moosavian and Lence (2017) reported that the non-dominated 
sorting differential evolution (NSDE) algorithm outperformed all 
other algorithms on randomly generated hypothetical networks 
as opposed to real-world and benchmark networks in the 
literature. However, NSGA II (Deb et al., 2002) achieved better 
results than NSDE at high cost levels on benchmark networks. 
Indeed, NSGA II is the most popular multi-objective evolutionary 
optimization algorithm. Moosavian and Lence (2017) reported 
that it has weaknesses, such as unstable and slow convergence 
and difficulties in escaping from local optima. By contrast, the 
methodology in Siew and Tanyimboh (2012a) solved various 
benchmark problems in the literature successfully (Siew et al., 
2014; 2016) and was highly competitive compared to all other 
algorithms, considering the quality of the solutions achieved and 
computational efficiency.

Minimising the total capital and operating cost and maximising 
hydraulic performance are the conflicting objectives of the 
optimization model. The decision variables typically include pipe 
diameters that are selected from a set of commercially available 
discrete pipe sizes. Depending on the nature of the optimization 
problem, other decision variables and/or components (e.g. pumps 
and tanks) may be included readily if required (Siew et al., 2016). 
It was assumed that the system’s topological properties were  
pre-specified and thus topological optimization (Phan et al., 2013; 
Saleh and Tanyimboh, 2013; 2014) was not considered.

The cost objective function was:
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For solution i, σj,i represents the hydraulic performance property 
that is the ratio of the available flow to the required flow, for time 
step j of duration tj. The function f2 is thus the time-weighted 
mean value of the demand satisfaction ratio (Ackley et al., 2001) 
of the network for an operating cycle.

The exponent values of 2 and 4 in Eqs 1 and 3, respectively, 
were derived empirically in Siew and Tanyimboh (2012a). Both 
objective functions take values from zero to 1.0. A solution that has 
a demand satisfaction ratio that is less than 1.0 is infeasible in the 
sense that it cannot satisfy all nodal demands in full. Conversely, 
the demands are satisfied in full if the distribution network 
delivers the required flow and pressure in full (Germanopoulos, 
1985).

The constraints of the design optimization problem were the 
equations for conservation of mass and energy, and specified 
minimum pressures at the demand nodes and fire hydrants. 
The energy and mass conservation equations were satisfied in 
the hydraulic simulation model. The minimum node pressure 
constraints were addressed in the hydraulic performance function 
f2. Accordingly, all candidate solutions were rated using Pareto-
dominance based on the actual cost and hydraulic performance 
only, without recourse to any additional constraint-handling 
procedures.

Solution quality and optimality measure

The algorithm’s ability to provide optimal solutions reliably was 
investigated. The generational distance parameter (Veldhuizen and 
Lamont, 1998) may be used to quantify the average distance between 
a given set of non-dominated solutions and the Pareto front. Thus: 
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where GD is the generational distance; and Np is the number of 
non-dominated solutions. di is the distance in the objective space 
between the ith non-dominated solution and the nearest solution of 
the Pareto-optimal set; i.e.:
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where fmi( ) is the value of the mth objective function for the ith non-
dominated solution; fmj( ) is the value of the mth objective function 
for the jth Pareto-optimal solution; and NPO is the number of 
solutions in the Pareto-optimal front.

The optimized solutions achieved were normalised for the results 
appraisal as follows, to ensure that subsequent comparisons based 
on Eqs 4 and 5 would be equitable. Accordingly:
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in which the function fn normalises the function f; m and i refer 
to the mth objective function and ith solution, respectively; ‘max’ 
and ‘min’ refer to the largest and smallest values of fm achieved, 
respectively.

Computational solution and software implementation

The optimization problem was solved with the genetic algorithm 
developed. Binary coding was used for the pipe diameters as the 
decision variables. The genetic operators used comprised single-
point crossover, single-bit mutation and binary tournament 
selection for crossover. Figure 1 summarises the parallel computer 
program developed in C++ using Message Passing Interface 
(MPI) routines. Microsoft HPC pack 2008 was used to run the 
program in Microsoft Visual Studio (version 2010).
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Figure 1. Details of the parallel optimization algorithm. The coefficients (0.3 and 0.7) that modify the application of the crowding distance 
operator are empirical.

The crowding distance parameter in Fig. 1 is a measure of the 
spatial density of the solutions in the objective space, that is used 
to help achieve a relatively uniform distribution of the solutions 
in the Pareto-optimal front (Deb et al., 2002). Thus, when 
the number of solutions in the leading non-dominated front 
exceeds the population size, the crowding distance is applied, 
as an auxiliary criterion besides the non-domination rank, to 
help reduce the over-representation of the solutions from the 
relatively more densely populated regions of the solution space. In 
the implementation of the crowding distance herein, to enhance 
further the boundary search properties of the algorithm, 30% of 
the solutions in the next generation comprised the least expensive 

feasible solutions while the remaining 70% were obtained using 
the crowding distance (Siew and Tanyimboh, 2012a).

The controller-worker model was adopted as the fitness evaluation 
that involved extended period simulation was computationally 
very demanding and communication costs were small compared 
to the computation costs (Cantu-Paz and Goldberg, 2000; Kumar 
et al., 2006). All the processors including the controller processor 
shared the fitness evaluation of the child population equally 
(Fig. 1). Additionally, the controller processor performed the 
operations of selection, crossover and mutation along with the 
rest of the procedures of the algorithm.
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Illustrative example

Network data and problem specifications

The example presented here for demonstration purposes is based 
on the water distribution network in Fig. 2 that is part of a water 
distribution system in the UK. The calibrated EPANET 2 network 
model and GIS database having the network and operational data 
were obtained from the water utility. The respective averages of 
the heads at the five supply nodes R1 to R5 were: 130.33, 129.94, 
129.85, 129.88 and 130.32 m. The water distribution network 
comprised 251 pipes, 228 demand nodes of which 29 were fire 
hydrants, 5 variable-head supply nodes, and there were 3 demand 
categories as detailed in Seyoum and Tanyimboh (2014). The 
calibrated model of the network comprised 31 h of operation 
with a hydraulic time step of 1 h and a fire demand at a different 
location in each hour of operation except during the first and last 
hour. The pipe data included 28 pipe sizes and their respective 
costs per unit length, etc.

The minimum residual head required was 20.0 m for all demand 
nodes and 3.0 m for all fire hydrants, for a fire flow of 8.0 L/s. 
Velocity constraints were not included in the optimization 
model, as they were not prescribed. However, based on the 
British Standard for Water Supply Requirements for Systems and 
Components Outside Buildings (BS EN 805:2000), velocities of 0.5 
to 2.0 m/s may be appropriate. In special circumstances, e.g., fire 
flows, velocities of up to 3.5 m/s may be acceptable. The velocities 
were examined, accordingly, in the post-optimization evaluation.

The optimization problem was cast as the design of a new network 
as opposed to the rehabilitation and/or upgrading and capacity 
expansion of a pre-existing network. The reason is that the existing 
network already had enough capacity as the pipe diameters had 
previously been optimized using commercial software. Therefore, 
the real aim of the optimization herein was to reveal the amount 
of spare capacity/redundancy in the system, if any, by determining 
the extent to which the cost could be reduced further.

Hydraulic simulation details

For realistic comparisons with the existing network and to allow 
for any built-in uncertainties and assumptions, the network 
model and operational data from the water utility were used 
without modification. Extended period simulation was carried 
out with the nodal demands and 29 different fire flows. Head loss 
due to friction was calculated using the Darcy-Weisbach formula 
(Rossman, 2002). The pipe roughness heights ranged from  
0.01 mm to 3.0 mm. Self-evidently, less expensive solutions could 
be obtained by assuming pipe roughness values for new pipes. 
Additional details are available in Seyoum and Tanyimboh (2014).

Parameters of the genetic algorithms

With a total of 28 current and historical pipe diameters in the 
network and 251 pipes, the solution space, in theory, comprised 
28251 feasible and infeasible solutions. However, the old (and 
thus obsolete) pipe diameters that were no longer commercially 
available were subsequently excluded from the solution space to 
ensure that the solutions obtained by the optimization algorithms 
would be achievable in practice. Strictly speaking, the real number 
of distinct pipe sizes was less than 28 in practice, as some of the 
pipe diameters were effectively duplicated, where the old pipe 
diameters in inches (imperial units) had been replaced by the 
corresponding diameters in mm (SI units) that were either similar 
or essentially the same. The smallest and largest diameters in 
the existing network were 32 mm and 400 mm respectively. Ten 
commercially available pipe diameters were selected subsequently, 
based on the existing diameters in the network that ranged from 
32 mm to 400 mm, as shown in Fig. 2. In addition to the smallest 
diameter (32 mm), the selected diameters included 50 mm, 75 mm  
and all standard diameters from 100 mm to 400 mm which, therefore, 
represents virtually a full set in practical terms. The solution 
space was thus reduced by a factor of 2.8251 ≈ 1.7 × 10112 to 10251,  
an enormous reduction.

No attempt was made to explore the rest of the solution space 
that had been excluded and, similarly, no attempt was made to 
improve the subset of the pipe diameter options that was used in 
the optimization. Self-evidently, the solution space thus specified, 
with 10251 candidate solutions, remained extremely large. Search 
space reduction is beyond the scope of this article; sophisticated 
search space reduction methods are available in the literature 
(Kadu et al., 2008; Barlow and Tanyimboh, 2014; Tanyimboh 
and Czajkowska, 2018; Abdy Sayyed et al., 2019). As explained in 
Templeman (1982), the main objective herein was to demonstrate 
that the algorithm developed can find numerous high-quality 
solutions quickly and reliably, given that the present optimization 
problem is NP-hard (Yates et al., 1984). Hereafter, all references 
to the solution space refer to the reduced solution space of 10251, 
unless otherwise stated.

Due to the large size and complexity of the water distribution 
network, coupled with large spatial and temporal variations in 
the demands, the demand satisfaction ratio of the entire network 
rather than the critical node (Siew and Tanyimboh, 2012a; Siew et 
al., 2014) was used to evaluate the hydraulic performance function 
f2 in Eq. 3. In this way, any risk of premature convergence due to 
excessive selection pressure would be obviated.

Figure 2. Network topology and pipe diameter options: (a) topology; 
(b) pipe diameters selected for the optimization. R1 to R5 are variable 
head supply nodes.



470Water SA 46(3) 465–475 / Jul 2020
https://doi.org/10.17159/wsa/2020.v46.i3.8657

A four-bit binary string was used to encode the solutions. 
There were thus 24 = 16 four-bit combinations of which 6 were 
redundant. The redundant codes were allocated as follows: one 
each to the two smallest and two largest pipe diameters, and one 
each to the two middle pipe diameters. This symmetrical and 
balanced allocation was designed to minimize the effects of the 
representational bias that arises due to the imbalance between 
the number of binary codes and decision (pipe diameter) options 
(Tanyimboh and Czajkowska, 2018). Alternative approaches 
for handling redundant codes are available in the literature  
(Saleh and Tanyimboh, 2014; Herrera et al., 1998).

The crossover and mutation probabilities were pc = 1.0 and  
pm = 0.005, respectively. The population size was Np = 1 000 and 
the maximum number of function evaluations allowed was 106. 
The serial and parallel algorithms were executed 10 times each. 
An inherent feature of the solution methodology is that the initial 
population always includes the minimum and maximum decision 
variable vectors while the rest of the (Np – 2) solutions were 
generated randomly. To reduce complexity in the subsequent 
analyses and comparisons of the results obtained, the 10 sets of 
initial populations used were identical for both algorithms.

RESULTS AND DISCUSSION

Serial algorithm

The additional results used to assess the algorithm developed 
further and more deeply were obtained with a serial algorithm 
on a supercomputer. The high-performance computing (HPC) 
facility had 276 compute nodes. Each compute node had Dual 
Intel Xeon 2.66 GHz CPU (6 cores each) and 48 GB RAM, on 
the Linux Operating System. On average, the number of function 
evaluations and CPU time to achieve the best solution, within 
the specified upper limit of 1 000 000 function evaluations, were  
973 700 function evaluations and 12.81 h, respectively. The average 
CPU time to complete a single optimization run comprising 1 000 
000 function evaluations was 13.17 h, with a standard deviation 
of 0.94 h.

The least expensive feasible solution obtained was 419 514 GBP 
(British Pounds) at 985 000 function evaluations. The mean and 
median values of the minimum cost achieved were £421 938 and 
420 408 GBP, respectively, and the standard deviation was 4 038 
GBP (Table 1). The existing network cost, with the optimized 
diameters obtained previously using commercial software, was 
809  700 GBP, approximately. Therefore, on average, a potential 
saving of approximately 47.9% was achieved for the 10 optimization 
runs collectively. The least expensive feasible solution of 419 514 
GBP achieved a potential saving of approximately 48.2%.

It is worth re-stating that the existing network cost refers to the 
real-world network after rehabilitation/upgrading with comm-
ercial software. The data for the original network prior to the 
rehabilitation were not available. Therefore, by casting the problem 
as the design of a new network, the solutions achieved would help 
to reveal the amount of spare capacity or headroom in the existing, 
rehabilitated network. Also, by identifying the suboptimal and/

or grossly suboptimal pipe diameters in the existing network, the 
solutions achieved could help simplify and guide the long-term 
rehabilitation decisions.

Figure 3 shows the pipe diameters, velocities and nodal heads of 
the existing and new optimized networks. In general, the new 
optimized solutions had smaller pipe diameters and, hence, lower 
residual heads than the existing network. As stated previously, the 
existing network had some pipe diameters that were no longer 
commercially available. The minimum residual head requirements 
of 20.0 m and 3.0 m, respectively, for the demand nodes and fire 
hydrants were fulfilled for the entire operating cycle. The heads at 
the fire hydrants greatly exceeded 3.0 m due to the proximity of 
the fire hydrants to the demand nodes.

Table 1. Results and performance statistics of the genetic algorithm

Criteria

Cost (GBP) Function evaluationsa Generational distance

Parallel Serial Combined Parallel Serial Combined Parallel Serial Combined

Minimum 418 685 419 514 418 685 960 000 951 000 951 000 0.00005 0.00005 0.00005

Maximum 453 643 432 643 453 643 994 000 998 000 998 000 0.00114 0.00085 0.00114

Mean 425 334 421 938 423 636 981 000 973 700 977 350 0.00021 0.00023 0.00022

Median 422 265 420 408 421 318 982 000 972 000 979 500 0.00011 0.00013 0.00011

Std. Dev. 10 139 4 038 7 710 9 557 13 849 12 171 0.00033 0.00025 0.00028

 aRefers to number of function evaluations to reach least-cost feasible solution achieved

Figure 3. Comparison of the optimized pipe diameters, node pressures 
and pipe flow velocities: (a) existing and optimized pipe diameters; (b) 
node pressures for all time steps of the extended period simulation; 
(c) flow velocities for all time steps of the extended period simulation
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Figure 4. Evaluation of the Pareto fronts achieved. The costs shown are normalised.

The maximum velocity in the existing network was 1.1 m/s. A 
large proportion of the velocities were less than 0.5 m/s, which 
may be low under certain circumstances, considering such factors 
as the water age and discolouration potential (Boxall and Saul, 
2005; Besner et al., 2005; Furnass et al., 2013; Seyoum et al., 2013; 
Seyoum and Tanyimboh, 2014). Indeed, Fig. 3c shows that all the 
solutions depicted have pipes with low velocities. This points to 
the need to include the minimum pipe velocity constraints in 
the optimization model, in addition to any explicit water quality 
related objectives (Woolschlager et al., 2005).

In the new optimized design, collectively 43 velocities (i.e. 0.6%) 
with an arithmetic mean of 4.6 m/s exceeded the 3.5 m/s guidance 
value in 27 pipes. It was observed that the high velocities were 
related to the short pipes/sections of about 1.0 m in length, located 
at the pipe junctions. The details of the fittings and connections 
were not considered here; inter alia, they were not available. While 
the maximum velocity constraints were not addressed explicitly in 
the optimization problem, possibly an area for additional research 
in the future, these results seem reasonable given the available 
information.

Parallel algorithm

The parallel algorithm was executed on a Workstation with Dual 
Intel Xeon 2.4 GHz CPU (four cores each) and 16 GB RAM, on the 
Windows 7 Operating System. All the eight cores of the workstation 
were utilized. A single run of the serial algorithm with 1 000 000 
function evaluations required an average CPU time of 30 days 
on the Workstation. The CPU time of the parallel algorithm with 
1 000 000 function evaluations on the Workstation ranged from 
1.75 to 2.74 days, or 2 days on average, i.e., an average speed up of 
15. This is a significant achievement in the sense that it is far more 
practical than the serial algorithm. The supercomputer’s average 
CPU time of 13.17 h was obviously superior, but HPC facilities 

are very scarce as stated previously. The above-mentioned average 
speed-up of 15 refers to the speed-up achieved on the Workstation. 
To clarify further, the supercomputer was used mainly to generate 
quickly – given the lengthy execution times – the additional 
solutions needed to assess the parallel algorithm rigorously. Typical 
examples of the speed-ups achievable using parallel computing on 
the supercomputer are available in Barlow and Tanyimboh (2014).

The least expensive feasible solution achieved by the parallel 
algorithm was 418 685 GBP at 975 000 function evaluations. 
This is 0.2% less expensive than the best solution from the serial 
algorithm (419 514 GBP, 985 000 function evaluations) and is 
a new best solution. It represents a potential saving of 48.3% 
compared to the existing network. The average number of 
function evaluations to reach the best solution achieved in each 
optimization run (within the specified upper limit of 1 000 000 
function evaluations) was 981 000.

Figure 3 also shows the optimized pipe diameters achieved by the 
parallel algorithm. The solution had collectively 43 velocities in 27 
pipes that exceeded the 3.5 m/s guidance value, with an arithmetic 
mean of 4.7 m/s. As mentioned previously, the high velocities 
were localised at the pipe junctions in the short pipes/sections of 
about 1.0 m in length.

Accuracy and reliability of the solutions achieved

The Pareto-optimal front was approximated by merging the 
solutions from all the non-dominated sets achieved herein and 
in Seyoum et al. (2015). Figure 4 compares the individual non-
dominated fronts achieved to the Pareto front. The final Pareto 
front achieved comprised NPO = 989 solutions while the fronts 
of the individual optimization runs had Np = 1 000 solutions 
each. This is the reason that some of the generational distance 
values (e.g. Run 9 in Fig. 4) are seemingly relatively high, which 
is somewhat misleading. Such values were nevertheless retained 
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herein for completeness. The minimum generational distance 
value achieved was 0.00005 for both the serial and parallel 
algorithms. This demonstrates the algorithm’s effectiveness and 
reliability as well as the accuracy of the results clearly. The accuracy 
and consistency of the results is therefore remarkable, considering 
that the fraction of the solution space that was sampled in each 
optimization run was only 106/10251 = 10-245. In other words, only 
one solution in every 10245 was simulated in each optimization 
run. Indeed, the convergence characteristics in Fig. 5 show that 
the algorithm’s progress is very quick and steady, with the bulk of 
the reduction in cost occurring early on.

CONCLUSIONS

An efficient multi-objective genetic algorithm for the design 
optimization of water distribution systems was developed and 
demonstrated using a real-world case study with hundreds of 
decision variables. In terms of the computational efficiency, only 
one solution in every 10245 candidate solutions was sampled in 
each optimization run. Thus, the fraction of the solution space 
that was evaluated was an impressive 10-245.

A controller-worker parallel algorithm developed for use on a 
Workstation achieved an average speed-up of 15, thus reducing 

a 30-day optimization run to 2 days on average. Nevertheless, 
the additional results obtained using a supercomputer and a 
serial algorithm took only 13.17 h on average to complete one 
optimization run. It should be noted, however, that HPC facilities 
are very scarce.

The quality of the solutions was assessed (i) by comparing the 
optimized designs achieved to the existing network, which was 
previously optimized using commercial software, and (ii) by 
spatial analysis of the Pareto-optimal fronts using the generational 
distance. Highly competitive solutions were obtained consistently, 
with a very high degree of reliability. The best feasible solution 
achieved a cost 48.3% less than the previously optimized solution 
of a real-world case study and is a new best solution. The  
coefficient of variation of the least cost achieved by the parallel 
algorithm for a feasible solution was 0.024. The best generational 
distance value achieved was 5 × 10-5, based on the normalised 
objective function values.

The effectiveness of the multi-objective genetic algorithm 
developed is due to the co-evolution and preservation of both 
feasible and infeasible frontier-optimal solutions from the 
beginning to the end of the optimization process. In this way, the 
full range of the genetic materials are retained in the gene pool 

Figure 5. Evaluation of the convergence characteristics of the multi-objective genetic algorithm



473Water SA 46(3) 465–475 / Jul 2020
https://doi.org/10.17159/wsa/2020.v46.i3.8657

throughout the optimization run which, therefore, promotes 
diversity and avoids stagnation and premature convergence. This 
follows naturally from the strict interpretation and application of 
the Pareto-optimality principle employed in the genetic algorithm 
developed, which ensures that infeasible frontier optimal 
solutions are not discarded arbitrarily and too quickly during the 
optimization.

Except for the maximum and minimum decision variable vectors 
that were always included by default in each optimization run, 
an inherent feature of the solution methodology, the initial 
populations were generated randomly. The role of the minimum 
and maximum decision variable vectors is that they help to reinforce 
and expand the population diversity through recombination 
as the optimization progresses (Saleh and Tanyimboh, 2014). 
However, unlike the minimum solution (decision variable) vector, 
the maximum solution (decision variable) vector generally does 
not survive until the last generation. The reason is that a more 
economical non-inferior solution that has essentially the same 
hydraulic properties as the maximum solution (decision variable) 
vector tends to prevail at the expense of the maximum solution 
(decision variable) vector.

Having demonstrated the effectiveness and reliability of the 
genetic algorithm as a free-standing procedure, self-evidently, it 
could be used readily in a memetic algorithm, for example, or 
in combination with other approaches and solution-enhancing 
techniques. However, these aspects were not considered in this 
investigation. It would be instructive, nevertheless, to investigate 
additional mechanisms to address other factors and constraints, 
e.g., excessively low velocities, with the potential to extend the 
algorithm’s functionality. A key issue is that the fitness assessment 
of the solutions that violate any additional constraints should 
avoid any built-in bias that favours the feasible solutions. This 
is a necessary condition that enables frontier optimal infeasible 
solutions to survive from the start to the end of the evolutionary 
search process, thus focusing the search around the feasibility 
boundaries.
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