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Modelling groundwater level fluctuation in an Indian coastal aquifer

Safieh Javadinejad', Rebwar Dara' and Forough Jafary’

'Department of Geography, Environment and Earth sciences University of Birmingham, Edgbaston St.,, B152TT, United Kingdom

Estimating groundwater level (GWL) fluctuations is a vital requirement in hydrology and hydraulic engineer-
ing, and is commonly addressed through artificial intelligence (Al) models. The purpose of this research was
to estimate groundwater levels using new modelling methods. The implementation of two separate soft
computing techniques, a multilayer perceptron neural network (MLPNN) and an M5 model tree (M5-MT), was
examined. The models are used in the estimation of monthly GWLs observed in a shallow unconfined coastal
aquifer. Data for the water level were collected from observation wells located near Ganjimatta, India, and
used to estimate GWL fluctuation. To do this, two scenarios were provided to achieve optimal input variables
for modelling the GWL at the present time. The input parameters applied for developing the proposed
models were a monthly time-series of summed rainfall, the mean temperature (within its lag times that
have an effect on groundwater), and historical GWL observations throughout the period 1996-2006. The
efficiency of each proposed model for Ganjimatt was investigated in stages of trial and error. A performance
evaluation showed that the M5-MT outperformed the MLPNN model in estimating the GWL in the aquifer
case study. Based on the M5-MT approach, the development of this model gives acceptable results for
the Indian coastal aquifers. It is recommended that water managers and decision makers apply these new
methods to monitor groundwater conditions and inform future planning.

INTRODUCTION

Analysis of groundwater levels (GWL) within hydrological and hydraulic studies, particularly in
developing countries where overexploitation is a problem, is crucial. This will also lead to effective
and integrated management and planning for groundwater resources in the future (Javadinejad et
al.,, 2019a).

Accurate assessments of groundwater levels allow water directors, engineers, and stakeholders to
improve policies designed to prevent or decrease detrimental impacts, e.g., a pumping deficit in
water wells, land surface collapse, aquifer compression, and poor water quality (Prinos et al., 2002).
Furthermore, these evaluations, along with predictive modelling, are beneficial in developing a
better understanding of the dynamics and underlying factors that affect groundwater (Javadinejad et
al., 2019b). This understanding can help to balance the needs of urban, agricultural, and industrial
water uses, and to trade off profits and prices of water protection (Adamowski and Fung Chan, 2011;
Moosavi et al., 2013).

While theoretical and physically based models are significant tools to define the physical progressions
and variables of hydrology, they have practical restrictions and limitations (Nourani et al., 2008,
2011). Calibrations of these models are very difficult, since many parameters need to be controlled,
particularly in chalky media. Additionally, these models need an enormous quantity of good data and
a complete realisation of the essential physical processes in the system (Chen et al., 2009). Sometimes
data are not adequate, and more precise forecasts are easier to achieve than real data. In this case,
empirical models may be suitable substitute techniques, where some data are accessible over an
extended period of time.

In the current decade, soft computing methods, including artificial neural networks (ANN), gene
expression programming (GEP), group methods of data handling (GMDH), adaptive neuro-fuzzy
interference systems (ANFIS), and support vector machine (SVM) techniques, have been utilized
as suitable approaches to estimate complex non-linear time-series in hydrological processes and
hydraulic engineering (Shiri and Kisi, 2011; Etemad-Shahidi and Taghipour, 2012; Kisi et al., 2013;
Najafzadeh and Zahiri, 2015; Hosseini and Mahjouri, 2016; Kisi and Parmar, 2016; Najafzadeh et
al., 2016; Rahimikhoob, 2016; Zeroual et al., 2016). Among these soft computing techniques, ANNs
provide an interesting means to model systems of water supplies (Maier and Dandy, 2000). Multilayer
perceptron (MLP) feed-forward network types have been extensively used to model hydrological
processes (Isik et al., 2013). Additionally, soft computing methods have been used for assessment
of GWL fluctuations. For example, Shiri and Kisi (2011) evaluated the implementation of genetic
programming (GP) and an adaptive neuro-fuzzy inference system (ANFIS) to predict groundwater
level fluctuations using several benchmarks. According to their findings, the performance of GP was
relatively better than that of the ANFIS model.

A second example is the work of Shiri et al. (2013), who investigated the performance of adaptive
ANFIS, support vector regression (SVM), GEP, and also ANN models to estimate the depth of
GW. They concluded that GEP provided the most precise prediction compared with other models.
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Another example is Mohanty et al. (2015), who made use of ANN
in order to forecast the levels of GW in multiple wells within a
river basin. Their results showed that the ANN model was a
useful method for GWL prediction. The model performed better
and even outperformed in a shorter period of time those which
ran over a longer period. Many AI approaches based on data-
driven models, such as a multilayer perceptron neural network
(MLPNN) and the M5 model tree (M5-MT), can obtain a robust
correlation between predicted and observed values to estimate
monthly GWL fluctuations.

Successful applications of black-box models in water resource
considerations have inspired the exploration of their ability
to estimate GWL fluctuations. Extending the previous studies
reviewed in the introduction, the focus of this research was to
examine the capability of the MLPNN and M5-MT to estimate
monthly GWL fluctuations. The previous studies did not analyse
and compare the MLPNN and M5-MT results, and did not
monitor the groundwater level fluctuations. So, the purpose of
this study was to estimate groundwater-level fluctuations using
the new models, MLPNN and M5-MT. This paper presents
some important points regarding the MLPNN and M5-MT; it
documents the development of the proposed models for GWL
estimation; and it describes this further using a case study.

METHODOLOGY

Forecasting hydrological processes is one of the important
elements in providing reliable and accurate applications for
water resource management. The M5 MT has rarely been used
for hydrological issues (e.g. rainfall-runoff modelling, flood
forecasting, groundwater modelling). It should be noted that
one of the key aspects in using M5 MT is its capability to provide
mathematical functions that show the relationship between the
variables of input-output; which is not the case for the MLPNN
model. The development of the two different soft computing
techniques, the traditional MLPNN and M5 MT approaches,
applied to estimate monthly GWL fluctuations, is briefly described
in this section.

Multilayer perceptron neural network (MLPNN)

The ANN computational method is inspired by the biological
nervous system which is the basis of the human brain. The most
noteworthy benefit of this method compared to conventional
hydrological models is its ability to successfully identify both
the linear and non-linear hydrologic relationships between the
inputs and outputs. Furthermore, the ANN model can adapt
itself to altering conditions which lead to model implementation
improvement; it reduces computation time and accelerates
simulation enhancement (Cigizoglu et al., 2004). Though there are
various kinds of ANN, the multilayer perceptron neural network
(MLPNN) is the most widely used in resolving hydrological
problems (McGarry et al., 1999). The network of the MLPNN can
be comprised of one or many neurons and layers, but generally
contains three layers: (i) the input layer, through data entering the
network; (ii) the unseen layer or layers, where data are processed;
and (iii) the output layer, which is responsible for producing a
suitable reaction to the particular inputs.

To construct a neural network, the number of layers, the
number of neurons in each layer, and the incitement occupation
of each neuron, should be determined to minimize errors.
Various methods are available to minimize errors, such as the
Levenberg-Marquardt algorithm, steepest descent, conjugating
the gradient algorithm, the Bayesian approach, and the
momentum approach. These methods can also increase the
speed of analysis, and follow a back-propagation approach.
Firstly, some random principles are appointed to the weight
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and bias of each neuron. Subsequently, the preliminary testing
sample vector is fed into the network and the output computed
and contrasted to the available observed data. This process is
followed by modifying weights or parameters using an iterative
algorithm in order to reduce the error size (Abbasifarfani et al.,
2015). More information on ANN structures can be found in
Haykin (2004).

M5 model tree (M5-MT)

The M5 model tree is a supervised learning technique which has
been widely used in numeric modelling. This method was first
presented by Quinlan (1992), and then Wang and Witten (1997)
improved the technique in an algorithm named M5 (Esmaeilzadeh
etal., 2017). The model tree is a tree that contains a root node and
leaves with functions of linear regression at the top and bottom
of the tree. The main purpose of this model is to determine the
relevance of independent and dependent variables (Witten and
Frank, 2005). The distribution interval of input variables can help
to create a better linear regression and is one of the benefits of a
model tree that can increase the model’s precision. (Najafzadeh
etal., 2016).

The algorithm follows two separate steps: (i) the development of
the tree; and (ii) the tree pruning. Firstly, the M5 algorithm builds
a tree of regression through repeated splitting of the example
interval. The splitting circumstance can decrease the intra-subset
changeability in the principles down from the root, over the
division to the node. The changeability is assessed through the
standard deviation of the principles that lead from the root to the
node via the branch. The projected decrease in error is computed
due to the examination of each element at the node. Afterwards,
the element which causes the projected error to decrease is
selected. If the elements of all output examples that receive a node
change marginally, or just a small number of data records remain,
then the splitting progression ceases (Witten and Frank, 2005).

To organize the basic tree, standard deviation reduction (SDR) is
applied as a splitting criterion in the M5 model tree. This criterion
is computed as:

i

SDR =sd(K)-Y" I]i

xsd(K,) (1)

where K indicates a series of data that receive the node; K
represents the subdivisions of data that have the i result of the
possible set; and sd is the standard deviation (Witten and Frank,
2005). The splitting progression drives the child node to have
minor principles of standard deviation, in contrast to the parent
node; therefore, they are purer (Quinlan, 1992). After assessing
all the probable splits, the design of the M5 model tree selects
the split that increases the projected error decrease. This data
dissection created throughout the M5 algorithm process creates
a large tree, which can be the reason for the over-matching with
the examined data. To solve the problem of over-fitting, Quinlan
(1992) proposed applying some reducing methods to cut back the
too widely spread branches. Generally, pruning is done through
substituting a subtree with a linear regression occupation. More
information in this regard can be found in Quinlan (1992) and
Witten and Frank (1997).

Description of the study region and data analysis

In this research, the selected well for the development of the
proposed model is located in a neighbouring micro-watershed,
under the Gurpura river basin. The well in Ganjimatta is located
at 12°59'02" N and 74°57'15"E (Fig. 1). The study region is
affected by the southwest monsoon (June-September) and a
non-monsoon episode (October-May). The mean annual rainfall
across the basin is approximately 3 500 mm.
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Figure 1. Case study location and observation well
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Table 1. Descriptive statistics for estimation of GWL in Ganjimatt location
Dataset Variable Statistical parameters
Xmean Xmax Xmin Sd
Training GWT 4.4 9.45 0.95 2.25
Rainfall 305.32 1466.30 0.00 424.95
Temperature 27.53 31.21 23.81 1.51
Testing GWT 4.4 9.55 1.32 1.96
Rainfall 269.71 992.80 0.00 349.54
Temperature 2741 30.10 25.90 112

The principal soil in this investigation is lateritic, which is
extremely porous and permeable in nature. Because of its
characteristics, the rate of penetration is maximum and any
shallow wells react quickly to rainfall; thus increase the water
table. However, its reaction to a decreasing trend is also fast.

The quality of groundwater in this area depends on the amount of
time between it being concentrated in the atmosphere and being
discharged through a well. Any decrease in the water level leads
to an increase in groundwater salinity. Groundwater salinity levels
vary with respect to the aquifer recharge quantity, together with the
depth of the freshwater layer and the level of pollution. Figures 2 and
3 show a relationship between the water level and quality (indicated
by electrical conductivity and sodium) for 1996-2006. From 1996 to
2006, water quality has decreased. Also, the value for R (>0.5) shows
a strong relationship between the water level and water quality.

The main input to the groundwater level in the small catchment is
from the monsoon rainfall data. The rainfall data that was estimated
for the rain gauge stations and used in this study came from the
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National Institute of Technology Karnataka (NITK) campus.
The rainfall data from this station for 1996-2006 was applied in
this research. The average temperature and monthly rainfall data
points within their lag times, and previous groundwater level
observations, were applied in order to associate these with the
magnitude of the groundwater level in the observation wells, on a
monthlyscale. The data were divided into two phases: approximately
70% (84 data points) of the dataset was applied for the training
phase; whereas the remaining dataset (30%, 41 data points)
was used for testing of the objectives.

The water-table data for the observational well at Ganjimatta
used in this study, between 1996 and 2006, was obtained from
the Department of Mines and Geology, Dakshina Kannada
District. From the data analysis, the maximum, minimum, mean,
and standard deviation for all the variables that affect the GWL
fluctuation for each of the training and testing phases are shown
in Table 1. The time series of the observed rainfall and GWL
fluctuations for the 1996-2006 period are indicated in Fig. 4.
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Figure 4. Time series of observed rainfall and GWL data points

Table 2. Test performance measures of the MLPNN model in groundwater level forecasting: (NSE = Nash-Sutcliffe efficiency)

Scenario Best structure of the ANN model RMSE NSE R R? RAE

S1 2-2-1-1 1.514 0.65 0.763 0.60 0.882

S2 5-3-1-1 1.151 0.77 0.856 0.73 0.51
Functional assessment criteria (S1) GWL(Y) = f(T(#),R(2)) (5)

In order to compare the rainfall-runoff simulation performance
of the advanced models, various statistical indices (Eqs 2-4) were
applied. The indices included correlation coefficient (R), root

mean square error (RMSE) and relative absolute error (RAE):
M

Yool )
[So-o Sn-7)

i=1 i=1

Z(R -0, )2
RMSE=L 3
M
M
>|p-0|
RAE= T @)

;|0,. —5|

where O and P signify the observed run-off and projected run-off
through the model, correspondingly; P is the average observed
value; O indicates the average predicted value; and M indicates
the whole number of dataset examples. R calculates how well the
deliberated independent variables are credited for the calculated
dependent variable. The RMSE is applied in order to calculate
the estimated accuracy. The RMSE increases from zero as the
precision of the evaluations increases, to large positive values,
as the difference between modelled and observed values grow.
The minor value of the RMSE and the major value of R (up to 1)
indicate the high proficiency of the model. The RAE is the
ratio of the absolute error in the measurement to the accepted
measurement; a lower value of the RAE illustrates a good
performance of the proposed model (Kisi and Parmar 2016;
Rezaie-Balf and Kisi, 2017).

RESULTS AND DISCUSSION
Development of GWL simulation approaches

In this study, the MLPNN and M5-MT approaches were
investigated to present monthly GWL forecasting at Ganjimatta.
As there is no defined procedure for selecting the relevant inputs
to forecast monthly GWL, two scenarios were applied using the
MLPNN in the case study. These two scenarios (S1 and S2) are
given below:

Water SA 46(4) 665—671/ Oct 2020
https://doi.org/10.17159/wsa/2020.v46.i4.9081

(S2) GWL(t)=f(GWL(t-1),(T(),T(t—1),R(¢),R(t-1)) (6)

where GWL,,,, T, and R, represent previously recorded
monthly groundwater levels, temperature, and rainfall values,
respectively; the output corresponds to the GWL value at the
current time (¢).

Thereafter, with calculating the statistical measures presented
in Table 2, the optimal input combination was selected for
forecasting the monthly GWL fluctuations in Ganjimatta.

The assessment of the MLPNN technique via the R, RMSE, and
RAE is shown in Table 2. Two different MLPNN models with
different configurations were applied for this location. The best
structure of the ANN model, shown by ‘5-3-1-1’ in the 2™ column
of Table 2, which represents an ANN model having 5 inputs,
3 non-linear hidden, 1 linear unseen, and 1 output node.

It is noteworthy that the optimal amount of neurons in the unseen
layers, calculated via trial and error, began at 2 neurons. The
number of neurons in each layer rose to 10 with a step size of 1.

Based on the performance evaluation (Table 2), it is clear that S2
(Scenario 2) for Ganjimatta has the higher correlation (R = 0.856),
and the lower errors in terms of RMSE (1.151), and RAE (0.511)
compared to S1 (R =0.763, RMSE = 1.514 and RAE = 0.882).

The M5-MT procedure for estimation of GWL was applied by using
open-source machine learning, Weka 3.6 software. The capability
of M5-MT was evaluated in order to find the mathematical
formulation in the form of linear relationships for GWL fluctuations’
forecasting. The delinquency elements of the M5-MT method are
designed for their delinquency values, a pruning factor of 4.0, and
smoothing preference. After classifying, the model tree included
5 input and 1 output parameter, which was implemented to forecast
the monthly GWL using several linear rules. These rules are based
on conditional relationships presented as follows:

If R, <156.15 then GWL(,=0.7362 GWL .+ ()

0.383 T, ~0.0041 R+ 0.0004 R ,_,

I R (), > 156.15 then GWL,= 03061 GWL\+ o

0.105 T, —0.0025 R, + 0.004 R,

From these rules, it is clear that all input parameters except T/,
were taken into account in the estimation of GWL, and were also
significant in the development of the proposed linear models.
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Comparison of the proposed models

Two different artificial intelligence techniques were developed
to forecast the monthly GWL fluctuations in Ganjimatta’s
observational well, which falls within the Gurpura River
catchment. The performance of the tested approaches, analysed
by computing the statistical error functions for monthly GWLs, is
presented in Tables 3 and 4.

From the training phases, it can be seen that the M5-MT estimated
the GWL with a higher correlation (R = 0.96) and lower statistical
error (RMSE = 0.636) and RAE (0.173) compared to the MLPNN
(R =92, RMSE = 0.933 and RAE = 0.298). It should be noted that
one of the key aspects of using M5-MT is the capability of this
method to show the mathematical difference between the input
and output variables, which is not the case in the MLPNN model.

From the results for the testing phase given in Tables 3 and 4,
it can be noted that the proposed equation given by M5-MT
estimated the monthly GWL with a higher accuracy than the
MLPNN technique, similarly to the training phase.

Figures 5 and 6 show the proposed models forecasts and detected
GWL values for the training and testing phases, respectively. Also,
the RMSE values (>0.05) indicate a good performance of the
models.

It can be shown that M5-MT predicts the groundwater level data
more precisely than the MLPNN model; the projections of the
M5-MT model are less dispersed and nearer to the trend-line than
those of the MLPNN.

Figure 7 also illustrates the time-series of the observed versus cal-
culated monthly GWL fluctuation, using the MLPNN technique
in the training and testing phases. The figure indicates that the
model is less precise for the large values than for the mid-values.

Figure 8 illustrates the time-series graphs of the predicted and
observed monthly GWL forecasts in the training and testing
phases, for the Ganjimatta case study with M5-MT. In contrast to
MLPNN, M5-MT performed better in forecasting extreme values
of GWL fluctuations. Also, RMSE values (>0.05) indicate a good
performance of the model.

CONCLUSION

In this study, the MLPNN and M5-MT models were employed to
model monthly groundwater level fluctuations using input from
present and previous GWLs, temperatures, and rainfall from an
observational well, located in Ganjimatta, Dankshina Kannada
region of India.

The MLPNN model was tested by being applied to various input
mixtures of the monthly groundwater levels, temperatures,
and rainfall data points. After applying the MLPNN to select
the optimal combination of inputs, the performances of the
two proposed methods were evaluated based on R, RMSE, and
RAE. The outcomes obtained indicated that the M5-MT model
performed better than the MLPNN model in forecasting monthly
GWLs for the studied well. The MLPNN model could not
simulate the monthly GWL values for the observational well and
the accuracy of this predictive model was generally found to be
low. On the other hand, the M5-MT approach provided a better
forecast for the extreme values than the MLPNN technique. The
main advantage of the M5-MT model is its explicit mathematical
formulations. It is simple to use in practical applications. By
contrast, the MLPNN is a black-box model with concealed
formulations. The proposed techniques may also be used in
other hydrological applications (e.g. short-term wind speed
predictions, seawater level forecasting, and prediction of daily
evapotranspiration).

Table 3. Performance of the MLPNN model: (NSE = Nash-Sutcliffe efficiency)

MLPNN model
RMSE R R? NSE RAE
Training phase 0.933 0.92 0.84 0.77 0.298
Testing phase 1.151 0.85 0.72 0.67 0.511
Table 4. Performance of the M5-MT model: (NSE = Nash-Sutcliffe efficiency)
M5-MT model
RMSE R R? NSE RAE
Training phase 0.636 0.96 0.92 0.87 0.173
Testing phase 0.693 0.94 0.89 0.83 0.252
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© MLPNN (RMSE=0.053) © MLPNN (RMSE=0.053)
12 MS5-MT (RMSE=0.086) 12 M5-MT (RMSE=0.086)
10 10
£ *Ce E °
= 8 © o = 8 € »
= ° s o ] b
(G Mo .’ o )
- Ce 0 -
g 4 v o (<] ? 6 L - b
g Al g o . o 0
a8 (<) 2 [
O g %’3 o 4 ‘__-; 3 ©
A ° 060
2 (9% o 2 Oheq0 =
r.ﬁ ° @® © e
0 o 0
0 2 4 6 8 10 12 14 0 2 a4 6 8 10 12 14
Predicted GWL (m) Predicted GWL (m)

Figure 5. Scatter plot of observed and estimated values for the
training phase
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Figure 6. Scatter plot of the observed and calculated values for the
testing phase
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Figure 8. Time-series for the observed vs. estimated GWL fluctuations using M5-MT

As an expansion to the present work, various data-derived
methods such as GMDH and GEP can be applied and contrasted
for GWL modelling in future studies.
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