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Abstract

Rock-pools have specific environmental characteristics, usually with multiple short and unpredictable hydroperiods in 1 
season. This requires a specific set of life-history adaptations of their permanent inhabitants, which affects species occur-
rence. In Southern African rock-pools, large branchiopods are usually represented by Branchipodopsis species. During an 
intensive sampling campaign in 2004 in the Western Cape of South Africa, a population of Streptocephalus purcelli Sars, 
1898 was discovered for the first time in a clear rock-pool with a short hydroperiod. Its usual habitat is a more turbid mud-
pool with a longer hydroperiod. We investigated under standard laboratory conditions the differences in early life-history 
traits between the rock-pool population and a conspecific mud-pool population. Dormant eggs of the rock-pool population 
were smaller than those of the mud-pool population. The smaller larvae also hatched earlier. These characteristics are in 
accordance with what is expected for populations living in ephemeral systems. The rock-pool population, on the other hand, 
also exhibited a higher total hatching percentage, a longer hatching duration, a longer maturation time and a lower mortal-
ity. Although, deduced from the last mentioned life-history traits, S. purcelli seemed not well-adapted to unpredictable and 
ephemeral rock-pool habitats, they could probably occur due to the absence of the competitively stronger species in the 
region or due to dispersal and mass effects. 
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Introduction

Local pool characteristics, such as �����������������������hydroperiod������������, conductiv-
ity and temperature, are main factors determining species 
occurrence. In temporary aquatic habitats, the duration of 
time that pools contain water (hydroperiod) is one of the 
most important variables impacting population and com-
munity characteristics (Bilton et al., 2001, Eitam et al., 
2004; Tavernini et al., 2005; Williams, 2006; Waterkeyn 
et al., 2008). Despite being subjected to time pressure and 
unpredictability, temporary pools often contain a rather 
diverse assemblage of permanent and temporary residents 
(Eitam et al., 2004; Williams, 2006). Some of the most strik-
ing permanent inhabitants are anostracans (fairy shrimps, 
Crustacea: Branchiopoda). To persist in temporary wetlands 
that have a short hydroperiod and are often irregularly filled, 
anostracans are characterised by a specific set of life-history 
traits (Wiggins et al., 1980; Lahr et al., 1999). Fairy shrimps 
survive the dry period by forming a resting egg bank that 
buffers the population from catastrophic events. Especially 
their early life-history traits (such as hatching fraction, 
maturation time and size of first brood) experience a strong 
time pressure in systems with a short hydroperiod (Hildrew, 
1985; Brendonck et al., 2000; Mura et al., 2003). To counter 
the unpredictability of their habitat, anostracans exhibit a 
risk-spreading strategy, as not all eggs of 1 generation hatch 

within the next inundation. As such, the long-term fitness of 
a genotype is increased by spreading the high risk of mor-
tality (Philippi and Seger, 1989; Simovich and Hathaway, 
1997). This bet-hedging strategy is expected to occur in 
highly variable habitats, where there is a high possibil-
ity of abortive hatching (reproductive failure of a cohort) 
(Simovich and Hathaway, 1997). 

Rock-pools in arid and semi-arid areas are very specific 
temporary habitats, because of their often extremely short 
hydroperiod and irregular hydrological regimes, which 
depend on their size and the local climate (Ranta, 1982; 
Jocqué et al., 2006; Hulsmans et al., 2008). Some examples of 
such rock-pool habitats are the outcrops in arid and semi-arid 
Southern Africa (Hamer and Martens, 1998), the gnammas 
of Australia (Bayly, 2001) and the potholes in the USA (Chan 
et al., 2005). On account of their specific environmental 
characteristics, rock-pools usually contain a small set of 
highly specialised (usually congeneric) anostracan species 
in a certain region. In North Africa and Europe these are 
Tanymastix species, in North America Branchinecta species, 
while in Southern Africa Branchipodopsis species are known 
as the rock-pool specialists (Thiéry, 1986; Brendonck et al., 
2000). Branchipodids cope with the time pressure of their 
habitat by reaching maturity within the 1st week after inunda-
tion and producing almost daily small broods of resting eggs 
(Brendonck et al., 2000). 

In many parts of the world Streptocephalus species are not 
generally known to occur in unpredictable rock-pool habitats 
with a short hydroperiod. In Texas, in a region with both low-
land- and rock-pools, S. texanus Packard, 1871 did not occur in 
the rock-pools, which were inhabited by Branchinecta pack-
ardi Pearse, 1912 (Belk, 1991). According to Belk (1991), this 
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streptocephalid could not mature and reproduce fast enough to 
survive the short and variable hydroperiod of rock-pools.  
In general, Streptocephalus species usually need at least 10 
days to mature (Hamer and Brendonck, 1997). A similar pat-
tern was discovered in Branchinecta sandiegonensis Fugate, 
1993 and Streptocephalus woottoni Eng, Belk and Eriksen, 
1990 in California (Hathaway and Simovich, 1996). S. woottoni 
was never found in shallow, potentially short-lived wetlands. 
The 2 species only co-occurred (but never simultaneously) in 
deeper wetlands, as B. sandiegonensis reaches maturity quickly 
(1 to 2 weeks) and dies before S. woottoni matures. In north-
eastern Natal (South Africa), Streptocephalus species inhabit 
the central, deeper, unvegetated regions of pools, while Triops, 
conchostracans and Branchipodopsis, adopting a typical 
r-selected life-history, live in the early drying littoral zone of 
the pools (Hamer and Appleton, 1991). 

In this paper, the presence of S. purcelli in a rock-pool is 
documented for the first time. To explore the characteristics 
of this unusual population, the early life-history traits of this 
relatively short-lived South African rock-pool population 

(hydroperiod of about 1 month) are explored and compared 
with a S. purcelli population occurring in a nearby mud-pool 
with a longer hydroperiod (about 3 months). 

Study area

The studied rock-pool (33° 25′ 12.9ʺ S; 18° 17′ 46.5ʺ E) and 
mud-pool (33° 27′ 14.7ʺ S; 18° 49′ 55.3ʺ E) are situated,  
respectively, in and close to Rondeberg Private Nature Reserve, 
along the West Coast of the Western Cape, South Africa  
(Fig. 1). The rock-pool is situated on top of a granite outcrop. 
In the rainy season of 2004, the rock-pool contained water for 
about 1 month, while the water in the mud-pool lasted for about 
3 months. The study area lies within the winter rainfall region, 
where the climate is Mediterranean (Fuggle and Ashton, 1979) 
and most of the rain falls from May to August. In these months, 
the average rainfall over the last 7 years was 56.3 mm per 
month. The mean annual rainfall was 362 mm at Rondeberg 
Nature Reserve (M Duckitt, 2006). 

No other rock-pools containing large branchiopods were 
found in the area, but the region does contain many scattered 
mud-pools, usually inhabited by Streptocephalus dendyi 
Barnard, 1929 and S. purcelli (De Roeck et al., 2007).

Materials and methods 

Several environmental conditions that were measured in the 
rock and mud-pool in the rainy season of 2004 are summarised 
in Table 1. For materials and methods used for these measure-
ments refer to De Roeck et al. (2007). Additionally, ammonium, 
nitrite and nitrate were analysed at the Scientific Services Branch 
of the Cape Town Unicity. These samples were taken in a similar 
way as the other nutrients (see De Roeck et al., 2007).

The 2 wetlands were sampled for large branchiopods at the 
beginning of September 2004. To make sure that no other large 
branchiopod species were missed in the active communities,  
sediment from the studied pools was collected and incubated 
under laboratory conditions. For materials and methods refer to 
De Roeck et al. (2007).  For both wetlands, hatching of the rest-
ing egg bank did not yield large branchiopod species that were 
not detected in the active population. 

Figure 1
Localities of the investigated rock- and mud-pools, 

Western Cape, South Africa

Table 1
Environmental conditions of the rock-pool and mud-pool, 

measured in the summer of 2004 
Environmental condition Rock-pool Mud-pool
Maximum depth (cm) 4 21
Surface (m2) 7.1 353.4
Oxygen (mg∙ℓ -1) 2 9
pH 6.9 6.8
Conductivity (µS∙cm-1) 1 219 219
Temperature (°C)  18.9  15.9
Sneller tube (cm) 7 3
Total suspended solids (mg∙ℓ -1) 290 500
Chemical oxygen demand (mg∙ℓ -1) 279 115
Total persulphate oxidised nitrogen (mg∙ℓ-1) 27.4 10.1
Ammonia nitrogen (mg∙ℓ -1) 23.9 5
Nitrate and nitrite (mg∙ℓ -1) 0 0.2
Soluble reactive phosphorus (mg∙ℓ -1) 4.7 0.1
Total phosphorus (mg∙ℓ -1) 5.8 3.5
Chlorophyll a concentration (µg∙ℓ -1) 125.8 227.5
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About 30 S. purcelli females with filled brood pouches 
were collected in the field at both study sites as material for the 
life history experiment. They were kept in separate vials until 
egg deposition. Afterwards, the eggs were kept wet for about 
a week before drying at room temperature. After drying, these 
resting eggs were stored for 20 weeks in darkness at 30°C. 
Three sets of 180 resting eggs∙pool-1 were incubated in 
2 ℓ aquaria filled with 1.5 ℓ EPA medium. They were inundated 
at predetermined optimal conditions (for both populations, at 
a conductivity of 100 µS∙cm-1, temperature of 13°C, and under 
constant illumination and aeration). The optimal conditions 
were deducted from unpublished data comparing the hatching 
frequency of S. purcelli larvae at 4 different conductivities 
(20, 100, 200 and 400 µS∙cm-1) and 2 different temperatures 
(13°C and 20°C), which are representative for the situation in 
the field after first filling. 

The investigated life-history traits included: diameter 
of resting eggs, cumulative hatching percentage, day of first 
hatching, hatching period, size of the freshly hatched nauplii, 
day when half of the population was mature and mortality 
after 27 d. The resting egg size of randomly chosen eggs was 
determined for 30 eggs∙pool-1. The diameter of these eggs was 
measured after 1 d of inundation, with a calibrated eyepiece 
under a set of binoculars. After first hatching, the light regime 
was switched to 12 h of darkness and 12 h of illumination. The 
animals were fed 105 algae cells per mℓ (50% S. obliquus and 
50% R. subcapitata) daily. Life-history traits were assessed 
daily, together with the removal of any dead individuals. For 
both populations, 3 aquaria containing 180 resting eggs each 
were inundated to assess the hatching variables. For each 
wetland 54 nauplii from the same developmental stage, which 
were freshly hatched in the laboratory, were randomly selected 
and their size was measured on a digital microscopic image 
taken by means of the program Das (Cam2Disk). The length 
from the eye to the beginning of the telson was calculated by 
the programme Image Pro Plus 5.0 (Media Cybernetics). Per 
population, all nauplii were afterwards randomly divided over 
6 aquaria to determine total mortality and the day when half of 
the female population was mature. Mortality was determined 
27 d after the start of the experiment. 

Results

Results of the life-history trait comparison between the rock- 
and mud-pool populations are presented in Table 2. The rock-
pool population had smaller eggs, started hatching earlier 
(1 d) and revealed a longer (about 3 d) hatching period. This 
population, moreover, had a higher total hatching percentage 
(about 40%) and smaller larvae. The rock-pool population also 

matured later and had a lower mortality. Rock-pool organisms 
finally had a strikingly darker colour, in juveniles as well as in 
the adult stage. 

Discussion 

The occurrence of S. purcelli in a rock-pool in Rondeberg 
(Western Cape, South Africa) is peculiar, since to our 
knowledge no other streptocephalids have been found in 
rock-pools in Southern Africa. The dominant anostracan 
genus usually encountered in Southern African rock-pools is 
Branchipodopsis (Hamer and Martens, 1998; Brendonck et al., 
2000). They exhibit peculiar life-history traits, making them 
well-adapted to such ephemeral and highly diluted habitats. 
They hatch and mature fast and deposit an almost daily brood 
of relatively small resting eggs (Brendonck et al., 2000). In 
other parts of the world, streptocephalids were found in rock-
pools with longer hydrocycles. In Algeria, Streptocephalus 
torvicornis (Waga, 1842) and Streptocephalus rubricauda-
tus (Klunzinger, 1867) were found in deep rock-pools with 
a long hydroperiod (Beladjal and Mertens, 2003). In North 
America and Australia, however, there were also some reports 
of Stretocephalidae occurring in rock-pools with a shorter 
hydroperiod, as exemplified by Streptocephalus texanus 
Packard, 1871 and Streptocephalus sp., respectively (Eng et al., 
1990; Graham, 1994; Bayly, 2001). These occurrences prove 
that Streptocephalus species have the potential to adapt to 
ephemeral rock-pool environments. 

None of the three other known rock-pools in the area 
around Rondeberg contained anostracans (De Roeck, personal 
observation). Other S. purcelli populations occurred in many 
mud-pools in the area, all with a longer hydroperiod than 
the studied rock-pool (personal observation). No other large 
branchiopod species hatched from the resting egg bank, which 
indicates that S. purcelli was the only species occurring in the 
rock- and the mud-pool.

The boundaries of the geographic distribution of the 
Southern African rock-pool specialist Branchipodopsis are sit-
uated more than 150 km to the east of the studied rock-pool and 
lie mostly within semi-arid and arid Southern Africa (Hamer 
and Brendonck, 1997; De Roeck et al., 2007). Possibly they 
could not adapt to the local Mediterranean climate. In Southern 
Africa, climate appears to be an important determinant for 
the distribution of anostracans (Hamer and Brendonck, 1997). 
The rock-pool in Rondeberg is very small and isolated, which 
furthermore minimises the chance for successful colonisation 
by these obligatory sexual and bet-hedging Branchipodopsis 
species. Field experiments with Branchipodopsis wolfi Daday, 
1910 indicate that long-distance wind dispersal by means of 

Table 2
Overview of the investigated life-history traits of S. purcelli Sars from the rock-pool and 

mud-pool with indication of the mean, 1st and 3rd quartile and standard deviation 
Life-history trait Rock-pool Mud-pool

Mean Std 1st quart 3rd quart Mean Std 1st quart 3rd quart
Resting egg size (mm) 0.35 0.02 0.32 0.36 0.48 0.02 0.47 0.50
Start hatching (d) 1 0 1 1 2 0 2 2
Hatching period (d) 6.0 0.0 6.0 6.0 3.3 0.6 3.0 3.5
Total hatching (%) 75 11 70 81 32 1.4 31 32
Size nauplii (mm) 0.79 0.05 0.80 0.80 0.91 0.06 0.90 0.91
Maturation time (d) 19.8 3.2 17.5 22.3 15.7 1.4 15.0 16.0
Mortality adults (%) 29 14 18 39 62 11 54 69
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resting stages is limited (Brendonck et al., 2000). This was 
confirmed indirectly by the patterns of genetic variation in the 
rock-pool populations; gene flow between metapopulations 
was seriously constrained by distances of 2 km or even less 
(Hulsmans et al., 2007). 

The resting eggs of the Rondeberg rock-pool population 
were smaller than those of the mud-pool population. Other 
authors have also discovered notable differences in resting egg 
size of conspecific streptocephalid populations: Brendonck et 
al. (1993) for Streptocephalus proboscideus (Frauenfeld, 1873), 
Hildrew (1985) for Streptocephalus vitreus (Brauer, 1877) 
and Belk (1977) for Streptocephalus sealii Ryder, 1879. These 
authors state that different selection pressures amongst habitats, 
such as food availability, competition, predation pressure or 
environmental certainty, could explain these size differences. 
In the investigated rock-pool, the relatively short hydrope-
riod (about 1 month) is likely the dominant selection factor, 
although more extensive research is necessary to confirm 
this. S. dendyi occurring in mud-pools in the same region also 
revealed a positive correlation between the hydroperiod and 
the resting egg size of its inhabitants (Waterkeyn, 2005). To 
maximise the amount of offspring in an unpredictable habitat, 
the best strategy for a female is to quickly produce many, small 
resting eggs instead of a few large ones. An extensive egg bank 
is also needed to increase its buffering capacity through bet-
hedging under a regime with a high risk of subsequent abortive 
hatchings. Linked to the smaller egg size, hatched larvae of the 
investigated rock-pool population were also smaller than those 
from the mud-pool. 

The rock-pool anostracans started hatching earlier  
(1 d after inundation). Early hatching is characteristic for 
Anostraca from ephemeral rock-pools as it reduces the chance 
for abortive hatching (Brendonck et al., 2000). Surprisingly, 
the total hatching period was longer for the rock-pool popula-
tion (6 d) than for the mud-pool population (3.3 d). This may 
seem maladaptive because the individuals that hatch late have 
less time to complete their life cycle if the rock-pool dries up 
quickly. It remains to be tested whether ‘late hatching eggs’ 
and their nauplii were also larger, therefore being more resist-
ant to invertebrate predation, which becomes important later 
during the hydrocycle of pools. 

In total, more eggs hatched from the rock-pool (75%) 
than from the mud-pool population (32%). In case of an 
abortive hatching this would result in a serious depletion of 
the egg bank, which again seems to be disadvantageous for 
inhabitants of short-lived pools. Theoretically, the hatch-
ing fraction should correspond with the chance for growth 
and reproduction (principle of bet-hedging) (Cohen, 1966; 
Brown and Venable, 1986). The hatching percentage of the 
Rondeberg rock-pool population is similar to the hatching 
fraction (80%) of B. wolfi eggs from rock-pools in the semi-
arid southeast of Botswana, but only when inundated under 
laboratory conditions that usually do not occur in the field 
(Brendonck et al., 1998). When B. wolfi eggs were hatched 
under circumstances imitating the natural conditions of tem-
perature, the hatching fraction was indeed much lower (less 
than 20%) (Brendonck and Riddoch, 2001). As hatching 
seems to be conditional, it is possible that the experimental 
hatching conditions were more favourable for the rock-pool 
individuals. In any case, although absolute values derived 
under artificial conditions should be interpreted with care, 
the data gathered under common garden conditions point at 
differences in triggers and hatching patterns between the 
studied S. purcelli populations. 

The rock-pool population showed a slower maturation 
time than the mud-pool population, which is in contrast to 
expectations for organisms living under time stress. In con-
trast to streptocephalids, most Branchipodopis species reach 
maturity within less than a week, making them well adapted 
to short living pools (Brendonck et al., 2000). Streptocephalus 
species on the other hand usually need more than 10 d to 
mature (Belk, 1991; Hamer and Brendonck, 1997), although 
laboratory experiments also revealed some very fast matur-
ing (within 5 d after inundation) streptocephalids (Ali and 
Dumont, 1995). The absence of S. texanus in rock-pools, 
which were instead inhabited by B. packardi, was explained 
by the slow maturation of the streptocephalid (Belk, 1991). 
Analogously, Beladjal et al. (2003) concluded that Branchipus 
schaefferi Fischer, 1834 was better adapted to short living 
pools than S. torvicornis, due to its shorter maturation time. 
A Chirocephalus diaphanus Prévost, 1820 population occur-
ring in a predictable semi-permanent pool, was also charac-
terised by slower growth than a population from a shorter-
living, irregularly-filled pool (Mura et al., 2003). Hathaway 
and Simovich (1996) also indicated that a slower maturation 
rate helps to explain the absence of S. woottoni Eng, Belk and 
Eriksen, 1990 from pools with a short hydroperiod. On the 
other hand, Eulimnadia texana (Packard, 1871), a conchos-
tracan from North America, showed a later age at maturity 
in ponds with a shorter duration (Marcus and Weeks, 1997), 
which, as in the case of S. purcelli, seems to be maladaptive. 
Although the rock-pool in Rondeberg had a relatively short  
(1 month in the rainy season of 2004) and variable hydrope-
riod, the hydroperiod was still longer than in many other 
rock-pools in arid and semi-arid regions of Southern Africa (a 
few days to a few weeks). The life-history patterns observed 
in the Rondeberg population are probably caused by this 
relatively longer hydroperiod, which may often exceed matura-
tion time, or by other selection pressures such as predation, 
competition and food availability. The lower mortality of the 
rock-pool population was probably associated with its late 
maturation time. A similar association was demonstrated for 
the conchostracan E. texana (Marcus and Weeks, 1997). 

The rock-pool anostracans had a darker colour than those 
of the mud-pool. Like most rock-pools on a granite substrate, 
the studied rock-pool contained clear water and was rather 
shallow. Transparency and UV-permeability of aquatic sys-
tems are positively correlated (Sommaruga, 2001) and a high 
UV-radiation can be disadvantageous for zooplankton (Tollrian 
and Heibl, 2004). The darker colour may therefore have a 
protective function (Williams, 1985; Tollrian and Heibl, 2004). 

Our results suggest that there are differences between both 
studied populations, which are possibly genetic or related to 
an impact of maternal effects on the hatching patterns of the 
offspring. The food availability of the mother may, for instance, 
influence the hatching pattern, size or maturation time of the 
offspring. To test the cause of the life-history differences, 
research on more populations and generations is necessary, 
which was not possible since only one S. purcelli rock-pool 
population is presently known and since we have experienced 
that it was difficult to breed these animals in the laboratory. In 
general, S. purcelli seemed less adapted to the rock-pool hydro-
logical regime than real rock-pool specialists such as many 
branchipodids. Despite this, S. purcelli was still sufficiently 
adapted to survive the harsh conditions. Another possibility 
is that the rock-pool population is sustained by dispersal from 
neighbouring (mud-) pools through mass effects (a population 
living in a habitat with unsuitable conditions for reproduction 
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can survive due to frequent dispersal of individuals from 
another habitat with suitable conditions for reproduction). This 
explanation is, however, less plausible since the rock-pool site 
is situated on a rather isolated mountain top. Due to the absence 
of any branchipodids in the area, S. purcelli was probably safe 
from competition by better-adapted rock-pool specialists. 

Acknowledgments

This project was supported by the VLIR-project ’Sustainable 
utilisation of subterranean water resources for improvement 
of quality of life’ (VLIR IUC University of the Western Cape, 
South Africa) and by the FWO grant G.0443.05 ’Impact of 
hydrology on diversity of aquatic organisms in temporary 
wetlands in the Cape Region (South Africa)’. This research was 
also funded by a Ph.D. grant of the Institute for the Promotion 
of Innovation through Science and Technology in Flanders 
(IWT Vlaanderen). Special thanks go to Tom Van Engeland, 
Tom Callens and Bram Vanschoenwinkel for helping with the 
fieldwork and to Professor Breugelmans for his grammati-
cal comments during the preparation of this work. We thank 
Scientific Services (Cape Town) for analysing the water sam-
ples. We also thank the Western Cape Nature Conservation and 
Mr. and Mrs. Duckitt of Rondeberg Private Nature Reserve for 
giving permission to sample large branchiopods and for the 
supply of information about the region.

References

ALI JA and DUMONT HJ (1995) Larviculture of the fairy shrimp, 
Streptocephalus proboscideus (Crustacea: Anostraca): effect of 
food concentration and physical and chemical properties of the 
culture medium. Hydrobiol. 298 159-165. 

BAYLY I (2001) Invertebrate occurrence and succession after episodic 
flooding of a central Australian rock-hole. J. R. Soc. West. Aust. 84 
29-32. 

BELADJAL L and MERTENS J (2003) Interstitial remains for fauna 
reconstruction of desert pools using fairy shrimps as example 
(Anostraca). J. Crustac. Biol. 23 60-68.

BELADJAL L, PEIREN N, VANDEKERCKHOVE TTM and 
MERTENS J (2003) Different life histories of the cohabiting fairy 
shrimps Branchipus schaefferi and Streptocephalus torvicornis 
(Anostraca: Crustacea). J. Crustac. Biol. 23 300-307.

BELK D (1977) Evolution of egg size strategies in fairy shrimps. 
Southwest. Nat. 22 99-105.

BELK D (1991) Why only one of two common Central Texas 
Anostraca atop enchanted rock. Hydrobiol. 212 83-86.

BILTON D, FOGGO A and RUNDLE S (2001) Size, permanence 
and the proportion of predators in ponds. Arch. Hydrobiol. 154 
451-458.

BRENDONCK L, CENTENO DM and PERSOONE G (1993) 
Fecundity and resting egg characteristics of some subtropical fairy 
shrimp and clam shrimp species (Crustacea, Branchiopoda), reared 
under laboratory conditions. Arch. Hydrobiol. 126 445-459.

BRENDONCK L, HAMER M, RIDDOCH B and SEAMAN M (2000) 
Branchipodopsis species – specialists of ephemeral rock pools. Afr. 
J. Aquat. Sci. 25 98-104. 

BRENDONCK L and RIDDOCH B (2001) Hatching characteristics of 
the fairy shrimp Branchipodopsis wolfi in relation to the stochastic 
nature of its habitat, desert rock pools. Verh. – Int. Ver. Theor. 
Angew. Limnol. 27 3931-3935.

BRENDONCK L, RIDDOCH B, VAN DE WEGHE V and VAN 
DOOREN T (1998). The maintenance of egg banks in very short-
lived pools – a case study with anostracans (Branchiopoda). Arch. 
Hydrobiol. Spec. Issues Adv. Limnol. 52 141-161.

BROWN JS and VENABLE DL (1986) Evolutionary ecology of 
seedbank annuals in temporally varying environments. Am. Nat. 
127 31-47.

CHAN MA, MOSER K, DAVIS JM, SOUTHAM G, HUGHES K and 
GRAHAM T (2005) Desert potholes: ephemeral aquatic microsys-
tems. Aquat. Geochem. 11 279-302.

COHEN D (1966) Optimizing reproduction in a randomly varying 
environment. J. Theor. Biol. 12 119-129.

DE ROECK E, VANSCHOENWINKEL BJ, DAY JA, XU Y, RAITT L 
and BRENDONCK L (2007) Conservation status of large branchi-
opods in the Western Cape, South Africa. Wetlands 27 (1) 162-173.

DUCKITT M (2006) Personal communication, 6 January 2006. 
Rondeberg Private Nature Reserve, PO Box 70, Darling, 7345, 
South Africa.

EITAM A, BLAUSTEIN L, VAN DAMME K, DUMONT H and 
MARTENS K (2004) Crustacean species richness in temporary 
pools: relationships with habitat traits. Hydrobiol. 525 125-130.

ENG LL, BELK D and ERIKSEN CH (1990) Californian Anostraca – 
distribution, habitat, and status. J. Crustac. Biol.  10 247-277. 

FUGGLE RF and ASHTON ER (1979) Climate. In: Day J, Siegfried 
WR, Louw GN and Jarman ML (eds.) Fynbos Ecology: A 
Preliminary Synthesis. South African National Scientific 
Programmes Report No. 40, CSIR, Pretoria, South Africa. 

GRAHAM TB (1994) Predation by dipteran larvae on fairy shrimp (Crus
tacea, Anostraca) in Utah rock-pools. Southwest. Nat. 39 206-207.

HAMER M and APPLETON C (1991) Life-history adaptations of 
phyllopods in response to predators, vegetation, and habitat dura-
tion in North-Eastern Natal. Hydrobiol. 212 105-116.

HAMER M and BRENDONCK L (1997) Distribution, diversity and 
conservation of Anostraca (Crustacea: Branchiopoda) in Southern 
Africa. Hydrobiol. 359 1-12.

HAMER M and MARTENS K (1998) The large branchiopoda (Crusta
cea) from temporary habitats of the Drakensberg region, South 
Africa. Hydrobiol. 384 151-165.

HATHAWAY SA and SIMOVICH MA (1996) Factors affecting 
the distribution and co-occurrence of two southern californian 
anostracans (branchiopoda), Branchinecta sandiegonensis and 
Streptocephalus woottoni. J. Crustac. Biol. 16 669-677.

HILDREW AG (1985) A quantitative study of the life history of a fairy 
shrimp (Branchiopoda: Anostraca) in relation to the temporary 
nature of its habitat, a Kenyan rainpool. J. Anim. Ecol. 54 99-110.

HULSMANS A, MOREAU K, DE MEESTER L, RIDDOCH BJ and 
BRENDONCK L (2007) Direct and indirect measures of dispersal 
in the fairy shrimp Branchipodopsis wolfi indicate a small scale 
isolation-by-distance pattern. Limnol. Oceanogr. 52 676-684.

HULSMANS A, VANSCHOENWINKEL B, PYKE C, RIDDOCH 
BJ and BRENDONCK L (2008) Quantifying the hydroregime of a 
temporary pool habitat: A modelling approach for ephemeral rock 
pools in SE Botswana. Ecosyst. 11 89-100.

JOCQUÉ M, MARTENS K, RIDDOCH B and BRENDONCK 
L (2006) Faunistics of ephemeral rock pools in southeastern 
Botswana. Arch. Hydrobiol. 165 415-431.

LAHR J, DIALLO AO, NDOUR KB, BADJI A and DIOUF PS (1999) 
Phenology of invertebrates living in a Sahelian temporary pond. 
Hydrobiol. 405 189-205.

MARCUS V and WEEKS SC (1997) The effects of pond duration on 
the life history traits of an ephemeral pond crustacean, Eulimnadia 
texana. Hydrobiol. 359 213-221.

MURA G, FANCELLO G and DI GUISEPPE S (2003) Adaptive 
strategies in populations of Chirocephalus diaphanus (Crustacea, 
Anostraca) from temporary waters in the Reatine Apennines 
(Central Italy). J. Limnol. 62 35-40.

PHILIPPI T and SEGER J (1989) Hedging ones evolutionary bets, 
revisited. TREE 4 41-44.

RANTA E (1982) Animal communities in rock pools. Annales 
Zoologici Fennici 19 337-347. 

SIMOVICH MA and HATHAWAY SA (1997) Diversified bet-hedging 
as a reproductive strategy of some ephemeral pool anostracans 
(Branchiopoda). J. Crustac. Biol. 17 38-44.

SOMMARUGA R (2001) The role of solar UV radiation in the ecology 
of alpine lakes. Photochem. Photobiol. 62 35-42.

TAVERNINI S, MURA G and ROSSETTI G (2005) Factors influenc-
ing the seasonal phenology and composition of zooplankton com-
munities in mountain temporary pools. Int. Rev. Hydrobiol. 
90 358-375.



Available on website http://www.wrc.org.za
ISSN 0378-4738 (Print) = Water SA Vol. 36 No. 3 April 2010

ISSN 1816-7950 (On-line) = Water SA Vol. 36 No. 3 April 2010

328

THIÉRY A (1986) Les crustacés branchiopods (Anostraca, Notostraca 
et Conchostraca) du Maroc occidental. 1. Inventaire et repartition. 
Bull. Soc. Hist. Nat. Toulouse 122 145-155.

TOLLRIAN R and HEIBL C (2004) Phenotypic plasticity in pigmen-
tation in Daphnia induced by UV radiation and fish kairomones. 
Funct. Ecol. 18 497-502.

WATERKEYN A (2005) Levensgeschiedeniskenmerken van Grote 
Branchiopoden in Relatie tot de Hydrologie van Tijdelijke Wet-
lands in de Kaapstreek. M. Thesis., K.U. Leuven.

WATERKEYN A, GRILLAS P, VANSCHOENWINKEL B and 
BRENDONCK L (2008) Invertebrate community patterns in 

Mediterranean temporary wetlands along hydroperiod and salinity 
gradients. Freshwater Biol. 53 1808-1822. 

WIGGINS GB, MACKAY RJ and SMITH IM (1980) Evolutionary and 
ecological strategies of animals in annual temporary pools. Arch. 
Hydrobiol. Suppl. 58 97-206. 

WILLIAMS DD (1985) Biotic adaptations in temporary lentic waters, 
with special reference to those in semi-arid and arid regions. 
Hydrobiol. 125 85-110. 

WILLIAMS DD (2006) The Biology of Temporary Waters. Oxford 
University Press, Oxford. 337 pp.


