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Urban water managers, engineers and conservation ecologists in the Western Cape (WC) Province of South 
Africa are faced with a major environmental and human health challenge, with urbanisation, industrialisation, 
population growth and agricultural development placing pressure on the limited water and soil resources. 
In addressing this resource degradation an effective, affordable and sustainable solution is required. The 
implementation of ‘green infrastructure’ (GI), such as phytoremediation, involves the use of plants to hinder 
pollutant transport and attenuate runoff flow, protecting the health of the human population and the 
environment. However, care must be taken when selecting plant species due to possible invasive behaviour, 
affecting ecosystem dynamics. As a result of the need for resource remediation in both urban and rural areas, 
the use of non-invasive indigenous species is vital to an efficient and sustainable technology, as urban areas 
are often the initial sites for introduction from which invasions spread. This paper proposes indigenous WC 
species for potential use in GI, identified from global bioremediation literature, as an aid to the practicing civil 
engineer and water manager responsible for the design and management of the phytotechnology. These 
indigenous species offer potential as phytoremediators in local GI, as well as suggest the types of plants that 
should be investigated further as alternatives to effective exotics. The investigation returned 56 non-invasive 
WC plant species likely to aid resource remediation without jeopardising the conservation and biodiversity 
of the administered area. The selected vegetation is potentially capable of increasing heterogeneity and 
adjusting to the dynamic biogeographic conditions of the recipient habitat. Thus, distinct species capable 
of remediating a wide range of environmental contaminants for GI, into the diverse habitats of the WC, at a 
fraction of the cost of conventional techniques, are promoted.

Exploring the use of indigenous Western Cape plants as potential water and soil 
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INTRODUCTION

Persistent and excessive release of heavy metal, organic and inorganic pollutants from anthropogenic 
activities is blamed for destroying entire natural ecosystems, posing a major human and environmen-
tal health problem (Cunningham et al., 1995; Salt et al., 1995; Dhir et al., 2009; Abhilash et al., 2012, 
Choudhary et al., 2015; Tripathi et al., 2015). The Western Cape (WC) Province of South Africa has been 
subjected to similar deleterious impacts, with increased urbanisation, high population growth, agricul-
tural development, dysfunctional water and wastewater treatment works, and industrialisation placing 
enormous pressure on the limited soil and water resources (Giliomee, 2006; Nomquphu et al., 2007).

The widespread contamination of soil, a non-renewable natural resource in the short term and 
very expensive to reclaim once physically or chemically degraded, has for decades been a global 
remediation and management challenge (Ali et al., 2015; Rada et al., 2019). This rampant degradation 
is evident with more than 25% of global soil resources highly degraded and roughly 44% moderately 
degraded, predominantly as a result of pollution (Peuke and Rennenberg, 2005). Alarmingly, South 
Africa is recognised as one of the regions experiencing the most rapid environmental degeneration 
(Abhilash, 2015). The WC receives various pollutants of anthropogenic origin to the soils, which 
include significant amounts of bioavailable heavy metals (Schloemann, 1995), fertilisers, pesticides, 
herbicides and fungicides (Malan et al., 2015), as well as stormwater, wastewater and sewage runoff 
(Chen et al., 2008; Müller et al., 2014).

Similarly, pollutant deposition deteriorates water-quality in urban and rural watercourses and 
groundwater aquifers, raising a plethora of public and environmental health concerns (Constantine 
et al., 2014; Sibanda et al., 2015; Pakdel and Peighambardoust, 2018). In South Africa, main 
rivers classified as having a poor ecological condition increased by 500% between 1999 and 2011, 
with some beyond the point of recovery, posing a threat to the country’s potable water resources 
(Oberholster and Ashton, 2008; DWS, 2018). This is as a result of the nationwide failure to properly 
treat wastewater, where 56% of the sewage treatment works are failing and 11% are dysfunctional 
(DWS, 2018). De Villiers and Thiart (2007) found that 6 of the 20 largest river catchments in South 
Africa that are under eutrophication are located in the WC. In addition, the findings of Musingafi 
and Tom (2014) and Milandri et al. (2012) point to the fact that urban effluent discharge contributes 
a wide range of pollutants to freshwater ecosystems.

Green infrastructure (GI) is the interconnected set of natural and engineered ecological systems 
providing environmental services (Fletcher et al., 2015). In comparison with traditional grey 
infrastructure, these systems have been found to reduce financial costs by up to 42% (Vineyard et 
al., 2015). These systems offer a novel and sustainable approach to polluted water and soil systems, 
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reducing pollutant transport and reducing resource toxicity, by 
combining resource remediation with sustainable civil engineering 
methods (Choudhary et al., 2015; Kondo et al., 2015; Malan et 
al., 2015; Malherbe et al., 2018). The GI engineered approach 
has the ability to complement or replace existing technological 
or grey infrastructure designs, presenting a more cost-effective, 
self-sustaining and versatile long-term alternative (Nel et al., 
2014). In South Africa, GI is currently an under-realised asset  
(DWS, 2018).

Critical to GI efficiency, phytoremediation uses appropriately 
selected plants for the in-situ treatment of environmental 
contaminants from soils, sediments and water (Terry and 
Banuelos, 1999; Dietz and Schnoor, 2001; Visoottiviseth et 
al., 2002; Peuke and Rennenberg, 2005; Payne et al., 2014). A 
large number of plants possess potential to detoxify, degrade 
and/or remove pollutants from the environment, and have 
gained importance globally, receiving significant scientific and 
commercial attention (Salt et al., 1998; Gleba et al., 1999; Guerinot 
and Salt, 2001; Krämer and Chardonnens, 2001; Meagher, 2000; 
Peuke and Rennenberg, 2006). This green engineering solution is 
popular due to its cost-effectiveness, aesthetic advantages, long-
term applicability, employment generation capacity and scope 
of pollutant remediation efficacy (Raskin et al., 1994; Abhilash, 
2015; Marrugo-Negrete et al., 2015). Although effective, plants 
and their rhizosphere organisms phytoremediate in different 
ways, with various mechanisms suitable for different pollutants 
(Read et al., 2010). The use of field and vegetable crops cultivated 
for commercial use as phytoremediators has proven valuable 
in bioremediating municipal and industrial discharge from 
failing sewage treatments works, as well as rehabilitating old 
and abandoned mining sites (Poonam et al., 2014; Rizwan  
et al., 2016).

In designing a sustainable GI remediation technology, the 
responsible engineer must assess the potential adverse impacts 
induced by the introduction of chosen effective pollutant-specific 
remediators, based on the findings of previous investigations 
(Leguizamo et al., 2017). Prior to plant selection for use in 
remediation projects, the ecosystem-related and ecological 
functions of the plants need to be established (Budelsky and 
Galatowitsch, 2004). For instance, failure to consider invasion 
threat may lead to creating an artificial or altered environment in 
which alien species thrive (Castro-Diez et al., 2014). In particular, 
remediation measures must endeavour to utilise plants that are 
indigenous to the site, in an attempt to return the resource to a 
sustainable state (Peer et al., 2005). A practicing civil engineer who 
lacks expertise in plant behaviour or ecosystem dynamics which 
regulate plant’s potential future invasiveness in phytogeographic 
environments may be ill-equipped to design an effective yet 
sustainable engineered remediation technology.

It is for this reason that this study focused on indigenous plant 
species naturally occurring in the WC for potential use in 
pollutant bioremediation technologies. The plants were selected 
on the basis of their presence in global phytoremediation 
literature, phytogeographic distribution, conservation status 
and invasiveness. This article discusses the phytoremediation 
process and WC vegetation whilst emphasising the impact their 
introduction may have on the recipient ecosystem. Finally, after 
investigating plant species from relevant literature, potential 
indigenous species and cultivated crops effective for GI 
technologies in the WC are recommended.

Phytoremediation processes within green infrastructure 
engineering

The term phytoremediation is applied to a technology that makes 
use of both wild and transgenic plant species for the treatment 

of contaminated soils, sediments, water and air, with the aim to 
effectively restore, protect or ameliorate environmental degradation 
by removing pollutants or rendering them harmless (Salt et 
al., 1998; Terry and Banuelos, 1999; Dietz and Schnoor, 2001).  
These pollutants are predominantly generated by agricultural and 
industrial products and practices, urban pollution, stormwater 
runoff and defective wastewater treatment facilities (Khan et al., 
2000). All plants have the ability to accumulate heavy metals that 
are essential for growth and development from soil and water, 
including Cu, Fe, Mg, Mn, Mo, Ni and Zn, with some plants able 
to accumulate heavy metals such as Ag, Cd, Co, Cr, Hg, Pb and 
Se, that offer no biological function (Dhir et al., 2009). Various 
phytoremediation processes exist, making use of different species 
of plants for each contaminant (Cunningham et al., 1997; Dietz 
and Schnoor, 2001). There is, however, a limit to the extent to 
which plants can accumulate these metals, beyond which they 
become toxic, with plants varying in removal efficiency and 
tolerance (Read et al., 2010). The intricate planning and design 
of GI technologies must consider both the type of pollution and 
habitats of the specific site, to appropriately identify and select 
potential species for optimised phytoremediation. Therefore, the 
use of non-invasive species, adept at remediating the pollution at 
hand whilst limiting the risk of biodiversity loss, should always 
be promoted (Payne et al., 2015). Numerous laboratory and field 
assessments have developed a better understanding of heavy 
metal, petrochemical, ammunition waste, chlorinated solvent, 
landfill leachate, non-point source agricultural runoff (pesticides 
and fertilisers) and urban stormwater runoff phytoremediation 
(Salt et al., 1995; Chaney et al., 1997; Macek et al., 2000; Pilon-
Smits, 2005; Abhilash et al., 2012; Milandri et al., 2012). GI 
capitalises on the innate abilities of photosynthetic plants to 
eliminate a variety of pollutants, by destruction, inactivation, 
extraction, volatilisation or immobilisation, with some extracted 
metals even recycled for value (Raskin et al., 1994; Peuke and 
Rennenberg, 2006; Leguizamo et al., 2017).

The effect of biological invasion

Biological invasions alter the structure and function of the natural 
ecosystem, causing the loss of an ecoregion’s characteristic species, 
and may result in loss of indigenous biota (Yang et al., 2015).  
South Africa has a long history of plant introduction and invasion 
transforming ecosystems, posing a major threat to the country’s 
biodiversity, impacting negatively on the ecosystem’s capacity to 
deliver goods and services, and in some cases severely threatening 
human livelihoods (Le Maitre et al., 2020). Alien plant invasion 
costs the country 2 billion ZAR annually for its control (Van 
Wilgen et al., 2020; Zengeya and Wilson, 2020). This widespread 
degradation is particularly evident in the WC Province with the 
most extensive as well as the greatest number of invasive species, 
notably reducing the value of fynbos ecosystems by over 195 
billion ZAR due to a loss in ecosystem services (Van Wilgen et 
al., 2001; Pyšek and Richardson, 2010; Van Wilgen et al., 2020).

The WC is home to 70% of the Cape Floristic Region (CFR), 
recognised as one of the richest habitats in the world, regarding 
its floristic heterogeneity and endemism (Von Hase et al., 2003). 
With a prominent diversity of over 9 000 species of which 70% are 
endemic, the CFR is one of only 25 globally accepted biodiversity 
hotspots (Giliomee, 2006). For its tiny size, the area most likely 
has the richest flora worldwide (McDowell and Moll, 1992).

METHODOLOGY

This paper investigated 800 literature sources to guide the selection 
of proven effective phytoremediation species for potential use 
in GI technologies in the WC. In compiling a list of potential 
phytoremediators, peer-reviewed articles, books, reports, case 
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studies, conference proceedings, theses and dissertations, as 
well as online databases, were investigated. The findings related 
to various studies of bioremediation initiatives for stormwater 
quality improvement, sustainable urban drainage systems, water-
sensitive urban designs, water and soil rehabilitation initiatives 
and plant affinity for heavy metal accumulation. From these 
findings, potential endemic and indigenous candidates for the 
WC were identified by comparing herbarium records from 
the South African National Biodiversity Institute’s Red List of 
South African Plants (SANBI) and Plants of Southern Africa 
(POSA), Plants of the Greater Cape Floristic Region (PGCFR), 
and Stellenbosch University Botanical Garden (SUNBG) with the 
species from literature. Plants displaying invasive characteristics, 
whose introduction may threaten the sustainability of a 
phytoremediation project and increase ecosystem vulnerability, 
were excluded, based on local and international standards. 
Regional and online records from the Centre for Agriculture and 
Bioscience International Invasive Species Compendium (CABI), 
the Global Invasive Species Database (GISD), the Alien Invasive 
Plant List for South Africa (AIPLSA), the National Environmental 
Management: Biodiversity Act, 2004 – Alien and Invasive Species 
List (NEM:BA A&IS), the Status of Biological Invasions and their 
Management in South Africa (SBIMSA), Biological Invasions in 
South Africa (BISA), the Information Retrieval and Submission 
System of the Centre for Invasion Biology (CIB) and the South 
African Plant Invaders Atlas (SAPIA), also provided a basis for 
exclusion of certain plants.

By considering existing recommendations and reported presence 
in literature, spatial distribution, invasive threat and vulnerability 
to extinction, erroneous introduction of potential plants into 
engineered designs and natural ecosystems is minimised.

RESULTS AND DISCUSSION

The investigation delivered 1 410 plant species, from 582 genera 
with 136 subspecies and variations, for potential use in GI 
phytoremediation initiatives. Analysis returned 257 indigenous 
and naturalised South African plant species of which 174 were 
distributed phytogeographically throughout the WC Province. 
Of the species, 80 were found to be registered as either endemic 
or indigenous to the province, with 56 of these regarded as 
non-invasive and of least conservation concern (Table 1). These 
plants are likely to aid remediation without jeopardising the 
conservation and biodiversity of the recipient ecoregion. In 
reporting, emphasis is placed on effective phytoremediators, their 
distribution as endemics or indigenous to the WC, conservation 
status and invasiveness.

Of the 56 phytoremediators, 3 are endemic, and 53 are indigenous 
to the WC. None of the species are registered as invasive to the 
WC. The list includes both aquatic and terrestrial plants with 
varying seasonal activity, which benefit GI initiatives, by resisting 
dormancy during periods of drought. Although the species 
listed are registered as non-invasive, caution must be taken when 
introducing plants, as they may with new evidence be found to 
threaten the sustainability of the recipient ecosystem. In addition, 
the behaviour of non-endemic species should be assessed prior 
to introduction in recipient habitats, whereafter approval from 
relevant ecologists must be sought. The practising civil engineer 
is cautioned to enlist the help of plant experts when choosing a 
species for application in GI.

Phytoremediation and Western Cape vegetation

The results showed several WC plant species that are effective 
across a range of pollutants, which include urban and rural 
stormwater runoff, agricultural effluent in the form of 
pesticides, herbicides and fertilisers, heavy metals, explosives 

and ammunition wastes, radionuclides, organic pollutants, 
carcinogenic air, water and soil, chlorinated aliphatic 
hydrocarbons, petroleum contaminants, domestic and industrial 
wastewater effluent, landfill leachate, sewage discharge and 
tannery waste. The list in Table 1 includes 10 endemic South 
African species, which are: Agapanthus africanus, Agapanthus 
praecox subsp. minimus, Arctotis acaulis, Aristea capitata, 
Berkheya zeyheri subsp. rehmannii var. rogersiana, Carpobrotus 
edulis subsp. edulis, Carpobrotus edulis subsp. parvifolius, Cyperus 
textilis, Elegia tectorum and Prionium serratum. The number of 
endemics, in proportion to total indigenous species identified, 
suggests immense potential for South African phytoremediators 
yet to be investigated, specifically in the WC, which offers 
unparalleled biodiversity richness.

The risk of invasive plants in green infrastructure

The use of non-invasive indigenous plants in bioremediation 
technologies supports plant acclimatisation, alleviates specimen 
sourcing and contributes to ecosystem conservation initiatives, 
bolstering the biodiversity and heterogeneity of a habitat by 
limiting exposure to invasive species. A dynamic resident 
biota influenced by natural factors, as well as the recipient 
site’s conditions, must be accounted for in order to determine 
potential invasiveness of introduced species. Thus, consultation 
with a number of disciplines within science and engineering is 
imperative to promote an amalgamation of knowledge for the 
creation of a sustainable design science for GI.

From the findings, some species can be selected based upon their 
agressive growth properties and hardiness, common traits shared 
among efficient remediators. The species demanding caution are 
Ceratophyllum demersum, Panicum repens, Phragmites australis 
and Pteris cretica, which have been identified as prospective 
problematic species. This, however, does not excuse caution for 
the remaining plants, which may be classified as invasive with 
new evidence. The traits linked to invasiveness in ecosystems, 
mirrored in traits supporting phytoremediation efficiency, 
e.g., rapid growth and spread, hardiness and disease and pest 
resistance, as well as interactions with resident biota in prevailing 
environmental conditions, were considered (Le Roux et al., 2020).

In investigating WC crops, 8 species were identified for potential 
phytoremediation from reported literature (not shown). These 
species are Beta vulgaris subsp. vulgaris, Brassica rapa subsp. 
rapa, Cannabis sativa, Daucus carota subsp. sativus, Linum 
usitatissimum, Nicotiana tabacum, Sorghum bicolor and Vigna 
unguiculata subsp. protracta. Although the WC crops offer 
prospects for phytoremediation, it is the authors’ opinion that 
they should not be considered for animal feed or human con-
sumption, pending continuation of research on environmental 
toxin accumulation. The removed toxins are stored in different 
vascular compartments of the plant until mortality (Vamerali et 
al., 2010). During cultivation, these toxins may still pose a threat 
to environmental and human health (Khan et al., 2015). For a site 
exposed to extreme contamination, the use of cultivated crops 
can, however, mitigate the immediate environmental threat, 
supporting their inclusion as potential remediators.

Various environmental factors to consider that contribute to 
a dynamic ecosystem include nitrogen pollution, atmospheric 
carbon dioxide concentration, inter-species interactions, and 
rhizospheric fluctuations due to pollutant deposition. The 
climate change scenario assessing future vulnerability in a 
dynamic environment seeks to mitigate plant characteristic 
adaptations of introduced species. Reported non-invasive species 
may exhibit greater aggressiveness and, with new evidence, be 
designated as invasive, which may warrant their exclusion for 
use in green infrastructure initiatives. Selection of plants for 
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resource remediation, assisted by the recommended indigenous 
plant list, must consider ecosystem dynamism in fluctuating 
biotic conditions and a changing climate. The assessment of 
ecosystem characteristics and plant specific invasiveness, whilst 
incorporating precautionary principles of plant introduction, 
are crucial prerequisites for effective planning, demanding a 
multidisciplinary approach between engineering and science 
(Richardson et al., 2020). It is for these reasons that the civil engi-
neer assessing plant species inclusion in the proposed species list 
for phytoremediation initiatives must consult relevant specialists 
in environmental science, field botany, conservation ecology 
and soil science, prior to introducing plant species into GI. In 
considering the habitats and context of plant species located in 
the WC, this interdisciplinarity will equip the practising engineer 
with the necessary skills and knowledge backed by scientific 
literature to design an effective but sustainable phytoremediation 
system for runoff remediation and site rehabilitation initiatives.

CONCLUSIONS

Increased anthropogenic activities have exposed the urban and 
rural WC to sustained environmental degradation, posing a major 
environmental and human health problem (Malherbe et al., 2018). 
In an effort to sustainably remediate soil and water polluted by 
deleterious contaminants, engineered strategies of an effective 
and affordable nature are required. GI offers a sustainable and 
cost-effective solution for various environmental contaminants 
in soil, sediment and water (Terry and Banuelos, 1999). In 
combating biodiversity loss, the selection of potential plants for 
bioremediation initiatives must consider species that are naturally 
acclimatised to the recipient ecosystem, and which do not threaten 
the natural biodiversity. This is particularly important for urban 
remediation technologies as urban areas are often the initial sites 
for introduction, and from which invasions spread (Zengeya and 
Wilson, 2020). Reduced ecosystem biodiversity poses one of the 
greatest ecological engineering challenges (Tilman and Lehman, 
2001). The need to use effective plant species for remediation cannot 
overshadow the need to protect and conserve the ecosystem. Thus 
the use of indigenous plant species that ameliorate the degraded 
environment and contribute to preservation must be considered. 
Although a specific species may not be recorded as invasive to the 
WC phytogeographic area, with introduction to a new habitat, 
the non-invasive species may threaten habitat sustainability 
(Richardson et al., 2020). For this reason, species sourced from 
similar habitat conditions must be preferred.

The listed potential phytoremediators may aid in regulating 
the natural ecosystem, maintain equilibrium, and increase 
heterogeneity. They are also capable of adjusting to dynamic 
biogeographic conditions of various recipient habitats. This 
heterogeneity between species and phytogeographic distributions 
creates opportunities for the introduction of distinct vegetation 
into the diverse habitats of the WC, capable of remediating a 
wide range of environmental contaminants, at a fraction of the 
cost of conventional techniques. The non-invasive plants offer 
an attractive alternative to known invasive alien plants, while 
supporting natural biodiversity and conservation initiatives 
(Pyšek and Richardson, 2010).

In selecting potential phytoremediators the dynamic factors 
that mediate plant species’ interactions with resident biota and 
prevailing conditions, affecting potential invasiveness within a 
specific ecosystem, need to be considered. It is imperative that the 
practicing engineer receives input from relevant specialists, and 
that plant introduction is only undertaken with their satisfaction. 
It would be advantageous for the Water Research Commission 
(WRC) to work towards establishing a guideline, accounting for 
different pollution and ecosystem contexts, with input from the 
following specialists: hydrologists, town and regional planners, 

disaster management practitioners, ecologists and soil scientists, 
environmental and municipal managers, and landscape architects, 
which engineers could use with less oversight.

In decontaminating sites exposed to extreme and continuous 
pollution, field crops potentially contribute to phytoremediation 
in toxic conditions due to their short life cycle, large biomass 
production and adaptability to the changing environment (Ciura 
et al., 2005), in turn, mitigating severe environmental effects 
and greatly reducing environmental cost (Santos-Jallath et al., 
2012). This can, however, only be done with greater monitoring 
of pollutant toxicity tolerance and rotation over a number of 
cropping cycles under strict circumstances.

Acknowledging the WC’s global biodiversity richness status 
(Von Hase et al., 2003), the absence of research relating to the 
phytoremediation potential of the WC plant species for GI 
initiatives reinforces the need for further studies. In highlighting 
the remediation efficacy of endemic species, the vegetation 
may be granted an additional economic value that could aid 
the decisions which encourage protection and development  
(Barbier et al., 1997).
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