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To achieve informed integrated water resource management and sustainability, an understanding of the 
quantity of water available for use within a spatial and temporal context is needed. This study was consequently 
focused on the estimation of water levels with the use of geospatial techniques. The availability of water data 
is a significant challenge, especially for smaller dams used by farmers. The lack of consistent water data in 
turn poses a problem by limiting the estimation of the overall water availability in water strategy models. 
This challenge is attributed to the cost of modeling all available water resources and the lack of complete 
records of all available water resources, as some small dams are not officially registered. This paper provides a 
simple protocol that can be implemented to reliably derive water levels for dams that are yet to be registered 
or accounted for, using the Katrivier Dam as a case study. Three main datasets were used which enabled the 
calculation of water levels – a 12.5 m digital elevation model, Sentinel-2 optical images, and water data from 
the Department of Water and Sanitation (DWS), as in-situ data. The resulting water level values were derived 
using a proposed model that includes two correction factors, k and s. The results obtained showed that the 
estimated water levels from the model proposed in this paper are analogous with those observed by the 
DWS. Therefore, the proposed method can serve as an additional cost-effective method in water accounting 
procedures as it requires less expensive equipment than alternatives such as bathymetric methods.
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INTRODUCTION

The continued increase in the world’s population, as well as increasing temperatures, have placed the 
world’s, as well as South Africa’s, available freshwater resources under severe pressure through rising 
water demand. All relevant population dynamics and their respective water needs are placing all water 
resources under stress and in some cases lead to water supply problems due to low water reservoir levels. 
The availability of freshwater resources is changing rapidly, and in some instances has already created 
a fragile future, requiring major attention from scientists, policymakers and the public, especially in 
terms of the monitoring of water reservoirs, as these are important for managing and developing water 
resources for river basins regardless of their size (Liebe et al., 2005; Leemhuis et al., 2009).

Reservoir volumes are important contributors to the physical, chemical, and biological processes of 
water ecosystems (Lu et al., 2013). Reservoirs such as dams are the main source of water supply in many 
economic sectors, which primarily include, but are not limited to, agriculture, industries and municipal 
water use (Mustafa and Noorie, 2013). The balance between climate variables and their interactions 
with ecosystems, particularly between surface and groundwater, affects the state of dams and creates 
variability, especially in terms of its volume and total surface area (Medina et al., 2010; Lu et al., 2013).

A dam’s volume and surface area are usually established through mathematical equations by relating 
them to depth using morphometric data (Brooks and Hayashi, 2002; Liebe et al., 2005; Gleason et al., 
2007; Rodrigues et al., 2012). Water level or depth data are used as preliminary information in storage 
capacity models and for shallow water restoration programmes (Coops and Hosper, 2002). The 
variability of depth can be used as an indication of possible water quality issues as these could result 
in shoreline erosion during rising periods and amplify sediment depositions within a dam during 
receding periods, leading to imbalances in the biology of water resources due to high eutrophication 
and making it difficult for water managers to design appropriate countermeasures (Pasquini et al., 
2008; Wildman et al., 2011). Depth is also useful in determining inter-annual and seasonal transient 
activities within dams (Crase and Gillespie, 2008; García Molinos et al., 2015). Understanding the 
characteristics of a dam ensures that informed water resource management decisions are made to try 
to guarantee continued water security under increased anthropogenic and environmental pressures 
(Gamble et al., 2007; Gleason et al., 2007; Medina et al., 2010).

The most frequently used methods to calculate the physical characteristics of a dam include radar 
altimetry, bathymetry, echo-sounders, and global positioning systems (GPS). Bathymetry is used 
to measure the depth of a water body at different points, to map its surface area and underwater 
topography (Peng et al., 2006; Lu et al., 2013; Arsen et al., 2014). Echo-sounders estimate the depth 
of water bodies by sending waves through water, which is not always reliable as the velocity of the 
wave is greatly influenced by the chemical and physical composition of the dam under study (Annor  
et al., 2009). A GPS is used to collect field survey data on elevation around a water basin, together 
with a telescopic stadium and a rope to determine the depth of the specific water body. These methods 
can be used to develop surface area–volume predictive models to gain further insight into a specific 
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water body (Liebe et al., 2005; Gleason et al., 2007; Rodrigues  
et al., 2012). In other cases, the depth of dams is measured utilizing 
in-situ gauging stations installed near river mouths, bridges, 
weirs, and sluices, where records of water level are obtained by 
systematic observations on manual recording gauges (Close et al., 
2000; Sauer and Turnipseed, 2010). These gauges are limited in 
terms of spatial coverage and are only suitable for stable as well 
as less turbid rivers, lakes, and dams (Close et al., 2000; Chawira  
et al., 2013; Dube et al., 2014; Shumba et al., 2018).

Although developed for continental water bodies and monitoring 
changes in sea level, the altimetry method has been used together 
with satellite images to determine variations in water volumes 
of large lakes/reservoirs (Crétaux and Birkett, 2006; Frappart 
et al., 2006; Calmant et al., 2008; Gao et al., 2012; Arsen et al., 
2014), to determine the slope of a river (Seyler et al., 2009), and 
to calculate lake water volume using the five products of radar 
altimetry data, namely, T/P (Topex/Poseidon), Jason-1, Jason-2, 
GFO (Geosat Fellow-On), ICESat, and ENVISAT (Duan and 
Bastiaanssen, 2013). However, the accuracy of these methods 
relies on the altimeter and the size of the water body (Calmant 
et al., 2008; Zhang et al., 2014). Regardless of the effectiveness of 
these methods, they have a low temporal resolution, are unable 
to accurately monitor steep slopes, and are expensive (Peng et 
al., 2006; Seyler et al., 2008; Lu et al., 2013). The development of 
remote sensing (RS) and geographical information systems (GIS) 
has addressed the overall cost issue and made it easier to evaluate 
the physical characteristics of reservoirs by relating depth, volume, 
and surface using numerical modelling, free high-resolution RS 
data, and RS methods that require less field work (Lu et al., 2013; 
Mustafa and Noori, 2013).

The study reported on in this paper used GIS and RS to estimate 
water levels of the Katrivier Dam through spatial model;ing. It 
provides a simple yet efficient method that is adaptable and cost-
effective. It can be used to evaluate fluctuations in the target dam, 
providing detailed information about physical changes in water 
levels.

Literature suggests that Sentinel-2 has better characteristics 
than multiple other commonly accessible images, such as SPOT, 
Landsat, SAR, RADARSAT, and ASTER, based on spatial, 
temporal and spectral resolution, as well as cost (Gao et al., 2012; 
Rodrigues et al., 2012; Duan and Bastiaanssen, 2013; Eilander  
et al., 2014; Solander et al., 2016). Water index–based techniques 
are the most convenient methods to extract water features. These 
techniques are intuitive, effective and take less processing time 
(Ryu et al., 2002). Therefore, the modified normalized difference 
water index (MNDWI) has been recommended to be the best 
method for extracting water features (Xu, 2006; Singh et al., 2014; 
Dörnhöfer et al., 2016; Du et al., 2016; Müller et al., 2016; Kaplan 
and Avdan, 2017).

The Katrivier Dam was selected for this research due to it being 
the primary bulk water infrastructure for the whole Kat River 
valley. The dam supplies water to the numerous villages in the 
valley that lack access to potable water, and caters for an intense 
irrigation of commercial citrus farms, small-scale subsistence 
farms and livestock, as well as domestic activities. The increase 
in citrus farming by emerging farmers has caused an increase in 
water demand and has worsened the water-stressed status of the 
valley due to the high amount of water required for the orchards 
(Farolfi and Abrams, 2005; Holtzhausen, 2006). The provision 
of basic services will in turn increase the water requirements for 
domestic purposes dramatically and have a significant negative 
effect on the Katrivier Dam, the rural communities and small-
scale farmers which depend on it for domestic purposes as well as 
their livelihoods, if current water use trends continue. Therefore, 
the valley often faces unequal access to water that weighs heavily 

on most farmers as well as rural communities (Mniki, 2009; 
Kaphayi and Celliers, 2016), insufficient supply of water leading to 
land degradation due to land use and land cover changes (LULC), 
as well as unstable climate conditions (Manyevere et al., 2014; 
Dube et al., 2016), and the loss of most of the distributed water 
due to poor local water management systems (Hay et al., 2012). 
A model such as the one proposed in this paper constitutes a 
significant contribution in the formulation of adaptable methods 
that can be applied locally for improved water management (Hay 
et al., 2012; Turpie and Visser, 2012; Donnenfield et al., 2018). 
This is important for farmers, especially as better accounting for 
water can improve water distribution mechanisms and reduce 
the constant conflict over water access due to water injustice that 
usually favors large-scale commercial famers while neglecting 
small-scale farmers (Kaphayi and Celliers, 2016).

Therefore, the primary aim of this paper was to develop a 
reliable method capable of estimating water levels and their 
temporal variations within the Katrivier Dam using GIS and RS, 
consequently obtaining and updating information regarding the 
characteristics of the Katrivier Dam in a more affordable manner, 
and ultimately expanding the water management toolbox which 
will be needed in the near future due to continued escalating 
water demands, particularly from the agricultural and domestic 
water use sectors.

Study area

The Katrivier Dam is located in the Kat River valley, in the Raymond 
Mhlaba Local Municipality (RMLM), Eastern Cape Province, 
South Africa (Fig. 1). The valley consists of various settlements 
including villages and larger urban areas. The total capacity of 
the dam is approximately 24.9 million m³ with a surface area of 
2.129 km2, and the dam’s maximum water level is estimated to be 
52 m. The dam is primarily used for irrigation and domestic needs 
(Farolfi and Abrams, 2005). Although some of the water from 
the dam can be accounted for through billing systems by water 
managers, a large part of the valley consists of rural areas accessing 
water for domestic use using buckets and cannot be accounted for 
(Turpie and Visser, 2012; Manyevere et al., 2014). Therefore, there 
is a need to understand the dynamics in water availability and its 
use. Thus, it is necessary to build a local water monitoring system 
that will help in understanding water variability (Turpie and Visser, 
2012). This includes developing cost-effective models to monitor 
water availability and water usage using physical properties of the 
dam and its associated water dynamics.

METHODOLOGY

Optical satellite imagery was used to map the Katrivier Dam 
surface area, a digital elevation model (DEM) was used to model 
underwater terrain, and in-situ data was used for validation 
purposes.

The optical satellite Sentinel-2 is a multispectral instrument (MSI) 
that provides images with fine spatial resolutions of 10-, 20- and  
60 m (Du et al., 2016). The satellite has a total of 13 spectral bands, 
with 4 (green, blue, red, and Near-infrared (NIR)) having 10 m 
spatial resolution, 6 (3 red-edge bands, narrow NIR, including 
two SWIR bands) having 20 m spatial resolution, and 3 with 60 m  
resolution (Drusch et al., 2012). The Sentinel-2 mission has two 
satellites orbiting the earth (Sentinel-2A and Sentinel-2B) and is 
designed to provide large coverage of land surface features and major 
islands around the world after each 5 days (Drusch et al., 2012).

The images downloaded were carefully selected based on the 
available water data provided by the DWS, to ensure that the 
values obtained from the proposed model were comparable to 
the in-situ data (Fig. 2). Thirty-two images were downloaded for 
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Figure 2. Plot showing acquisition dates of the Sentinel-2 images compared to water data requested from DWS

Figure 1. Map showing the topography around the Katrivier Dam and multiple variations of the surface area of the dam, extracted using selected 
Sentinel-2 image between 2018 and 2020

dates varying from January 2019 to January 2020. It should be 
noted that, since the data provided by the DWS was weekly, some 
dates did not coincide for the satellite images and measured data. 
To reduce errors and bias, dates were selected to allow at most 
a 3-day difference between in-situ and Sentinel-2 images. Water-
level data obtained from DWS were expressed in metres.

Therefore, a refined high-resolution Advanced Land Observing 
Satellite-1 (ALOS) phased array type L-band synthetic aperture 
radar (PALSAR) DEM, with terrain- and hydrologically corrected 
imagery obtained from the Alaska Satellite Facility (ASF), was 
used. The DEM has a spatial resolution of 12.5 x 12.5 m, and was 
created on 28 January 2008 on Path 599 (https://earthdata.nasa.
gov/eosdis/daacs/asf).

The primary methodology followed 4 main steps: surface water 
mapping (SWM), underwater terrain construction (UTC), 
computing false water volume (CFWV), and the derivation of 
water levels (DWL). Thereafter, model correction coefficients 
(MCC) were used to adjust the derived water levels to obtain the 
true depth (Fig. 3).

To evaluate the accuracy of the model estimates, the root mean 
squared error (RMSE), the Nash-Sutcliffe efficiency (NSE), and 
simple linear regression (SLR) were used as validation tools, as 
has been applied in other studies (Lu et al., 2013; Gumindoga  
et al., 2018). The model was said to show a good fit if the RMSE 
was close to zero and the NSE close to 1. In addition, if the 
regression line was determined to fit the relationship y = x, then 

https://earthdata.nasa.gov/eosdis/daacs/asf
https://earthdata.nasa.gov/eosdis/daacs/asf


154Water SA 48(2) 151–160 / Apr 2022
https://doi.org/10.17159/wsa/2022.v48.i2.3890

it was concluded that the data obtained from the proposed model 
are similar to the in-situ data, assuming x is the model and y is 
the in-situ data. Each method is discussed in detail in subsequent 
sections.

Surface water mapping

The MNDWI was used to map changes in the surface area of the 
Katrivier Dam. Its formula for Sentinel-2 is given as:

MNDWI band 3 band 11
band 3 band 11

�
�
�

                            (1)

The MNDWI values were computed on the SNAP software using 
Band 3 and Band 11, setting water features to positive values 
while other features had negative values as soil reflects more in 
SWIR than in NIR light (Xu, 2006). To reduce processing time, all 
images were sub-set to extract only the dam extent. The resulting 
MNDWI were then converted into binary images separating the 
water body from other features. The binary images were later 
vectorized, to extract the water body as a surface feature.

Underwater terrain construction

To model the underwater terrain, this research used a GPS to 
collect elevation data. Multiple points were collected around the 
dam and the mean level obtained was arbitrarily selected as the 
overall height above sea level of the dam and estimated to be  
752 m. The maximum depth (52 m) of the dam was obtained from 
the published data of the DWS. To reconstruct the underwater 

terrain, all pixels around the dam were edited by reducing the 
captured height by 52 m. The resulting DEM was used to build 
contour lines with an interval of 10 m, which were later used 
to create the triangulated irregular network (TIN) surface as a 
required standard procedure in ArcGIS under the spatial analysist 
extension for computing water volumes (Hollister and Milstead, 
2010; Lu et al., 2013).

The DEM was corrected using a pixel-level adjustment; hence, three 
main assumptions were made in the process. The first assumption 
was that the dam reflecting on the DEM is the total surface area 
of the dam. Therefore, the adjustment was done only within those 
pixels outlining the dam. This resulted in the correction walls 
indicated in Fig. 4, instead of the expected slope. Consequently, 
instead of a trapezoid shape outlined by the dashed line in Fig. 4, 
the DEM is left with a square-like shape formed by the correction 
walls. This becomes a problem, given that the dam surface layer 
extracted from Sentinel-2 might not necessarily match the size 
of the dam at every x and y point on the DEM. Secondly, it was 
assumed that the dam was full (100%) at the time of development 
of the DEM. Considering that the height captured in the DEM 
was 782 m amsl consistently around the dam, the pixel correction 
process reduced the pixels around the dam to 730 m amsl. In this 
manner, it was then possible to set the dam surface layer obtained 
from Sentinel-2 at 752 m to be able to compute the false water 
volume in ArcGIS. Thirdly, both the surface and underwater 
terrain were treated as smooth topographical features. Hence, it 
was necessary to use correction coefficients to account for the gaps 
between the correction wall and the expected slope (Fig. 4).

Figure 3. Conceptual framework to calculate the depth of water, adapted to the Katrivier Dam in the RMLM, South Africa

Figure 4. The correction concept of the DEM using pixel adjustment for the Katrivier Dam
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Estimating the water level

The false water volume of the dam was calculated with the polygon 
volume tool in ArcMap 10.4 using the 3D Analyst toolbox (Ahmed 
et al., 2021). The TIN layer was used as the input surface layer, and 
the dam surface layers as input features set consistently at a height 
of 752 m, as recorded during the field survey. The obtained water 
volumes were then converted to metres using the proposed basin 
correction coefficient k = 0.1326 and a constant s = 4.5 to correct 
for resolution differences between input layers and account for 
possible gaps. Therefore, the resulting model to compute water 
levels became Eq. 2:

l k v s� � �3                                           (2)

where l is the corrected water level and v the false water volume 
obtained from ArcGIS.

Statistical validation

Three model performance indicators were used, namely, the 
RMSE, the NSE, and the linear regression analysis. These 
indicators constitute a recommended combination for validating 
hydrological models (Krause et al., 2005; Hwang et al., 2012; 
Baloch et al., 2015; Xiaohui and Utpal, 2015).

The RMSE was computed by taking the square root of the squared 
sum of the residuals between the measured levels (m) and the 
estimated levels (e) divided by the sample size (n) (Eq. 3). The 
measured levels were obtained from the DWS, while the estimated 
levels were obtained from the proposed model.

RMSE � � �( )m e
n

2                                    
(3)

However, the RMSE is limited in that it is highly influenced by the 
unit size of the datasets being compared and the lack of an agreed 
upon accuracy threshold, leaving the decision as to whether 
the errors are acceptable to the subjective assessment of the 
researcher. Therefore, the NSE method was used in association 
with the RMSE, in order to offset the limitations of the RMSE and 
improve on model evaluation (Xiaohui and Utpal, 2015). Based on 
its original design, when NSE = 1 the model matches the observed 
data. When NSE = 0, the model predictions are not better than the 
observed mean, although acceptable. However, if the NSE < 0, the 
model is said to be inadequate (Gumindoga et al., 2018).

NSE � �
�� �
�� �

�
�

1 1

2

1

2

n

n

m e

m m
                                 (4)

The Pearson’s correlation coefficient (r) and the regression 
parameters were used to describe the linear relationship between 
two variables. The two datasets were considered to be identical 
(follow the relationship y = x) if the intercept (β0) is equal to zero, 
the slope (β1) equal to 1, and r equal to 1 (Lu et al., 2013; Ahmed 
et al., 2021).

RESULTS AND DISCUSSION

The descriptive statistics for the datasets under investigation 
showed strong similarities (Table 1). The differences between the 
minimum, maximum, mean, and standard deviation, were below 
0.7 m, whereas the median the difference was 0.8 m. The sample 
variances of the two datasets under analysis were closely similar, 
with nearly equal standard deviations, which suggests that the two 
samples vary similarly around the mean.

The two samples are also negatively skewed with identical range 
and standard error. Although the values of the in-situ data are 
somewhat higher than those estimated by the model, the expected 

difference between the two datasets should not be greater than a 
maximum of a metre in length.

While plotting the values obtained from the model compared 
to the ones obtained in-situ, it was determined that the largest 
difference in the trend was measured on 2019/10/29 at 1.31 m 
(red dot in Fig. 5). While most of the estimated errors were below 
1 m, but within the range of 0.1–0.86 m, the minimum error was 
estimated at 0.03 m on 2019/01/27 and 2019/06/11 (green dots 
in Fig. 5).

Further analysis showed that the RMSE was 0.69 m. This suggests 
that, overall, there is a <1 m length difference between the two 
datasets. The NSE was 0.92 ≈ 1, which proves that the proposed 
model is efficient and performs better than the observed mean 
as an estimator. Further evaluation, using regression analysis 
based on the RMSE and NSE of the predicted values, was done to 
determine how the proposed model performs as an estimator of 
storage volume. The relationship established between depth and 
volume from the in-situ data suggests that the two variables fit an 
exponential relationship better than a linear one:

Volume e depth� �0 5736 0 0897. .                              (5)

If the depth obtained from the proposed model is fitted to the 
regression model, the RMSE of the estimated volume is 0.9 x  
105 m3 which, if balanced with the expected volume when depth 
is 0, becomes 0.3264 x 105 m3 and the NSE = 0.92. These results 
suggest that the proposed model estimates depth within an 
acceptable range. Therefore, the model in its current form could 
also be a good predictor of water volume for the Katrivier Dam 
and can consequently be used as a water management tool by 
providing insight to enable informed decision-making.

To assess the linearity of the proposed model, the regression 
line was computed with β0 initialized to zero, while observing 
the resulting β1 and r. The results showed that if β0 = 0, then  
β1 = 1.018 ≈ 1 (significant, α = 0.05), and r = 0.9969 ≈ 1. This 
indicates a strong positive linear relationship between the 
proposed model and the in-situ data. Even though this is not a 
causal relationship, it does suggest that the expected variations of 
the two datasets are similar in at least one dimension in addition 
to their strong linear relationship. Therefore, both datasets could 
be explained in that dimension by the same variables (Fig. 6).

Therefore, it follows that the two datasets follow a relationship that 
can be closely expressed as y = x. This expression implies that y 
(the in-situ data) is not different from x (the proposed model), or 
at the very least, the proposed model produces accurate (similar) 
information about the Katrivier Dam’s water level. The fact that 
the slope is not exactly equal to 1, implies that the proposed model 

Table 1. Comparison of descriptive statistics for data estimated by the 
proposed model versus the in-situ data

Model DWS Difference

Mean 35.95 36.61 −0.65

Standard error 0.46 0.44 0.01

Median 36.17 36.97 −0.80

Standard deviation 2.58 2.51 0.07

Sample variance 6.67 6.29 0.37

Kurtosis −0.19 0.20 −0.39

Skewness −0.66 −0.86 0.20

Range 9.66 9.66 0.00

Minimum 30.14 30.62 −0.48

Maximum 39.79 40.28 −0.49

Count 32 32 0.00
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Figure 5. A trend plot of the model-estimated depth versus in-situ data from DWS, and their respective errors in metres

will differ slightly from the in-situ data in the manner in which 
it estimates depth (Fig. 5). This does not however imply that the 
proposed model is invalid. Differences are to be expected between 
the estimates and the in-situ data, however minimal. Applying 
the regression estimates to the model showed that it is possible 
to reduce the differences between the proposed model and the in-
situ data and improve the estimation of water levels. Therefore, 
Eq. 2 can be rewritten as Eq. 6:

cL = 0.135 4 5813� �v .                                  (6)

Instead of 0.1326, k becomes 0.135, and s is adjusted to 4.581 with 
cL the calibrated depth. The RMSE of the embedded formula 
reduces to 0.23 m from the previous 0.69 m estimated using Eq. 2. 
The largest error was reduced to 0.30 m (red dot in Fig. 7) and the 
minimum error to 0 m. This shows that Eq. 6 is an improvement 
of Eq. 2 and displays better similarities to the DWS dataset.

Using the regression coefficient to optimize the model did 
however create some disadvantages. The proposed model will 
only be valid for the current dam and cannot be universalised, i.e., 
the model is context-specific. Although applying the regression 
coefficient improves the estimations, it is only helpful when one 
has in-situ data to regress the model. A better model is one that 
independently and reliably provides accurate data. Nevertheless, 
the results presented in this paper are satisfactory both before and 

after model calibration. Therefore, the choice of which estimate 
of k and s to use is left to the user if, and only if, the model is 
applied within the context of the Katrivier Dam. This paper 
focused on establishing a model specifically for this dam due to 
its importance, and did not engage with transferability issues of 
the model. The model can thus not be advocated for other dams. 
Furthermore, the calibrated coefficients were derived using the 
in-situ data, and thus may not be useful when applied to other 
dams.

Several issues could cause concern regarding this model and 
should be noted. These issues include the strength of the index 
used to map water features, as well as the spectral and spatial 
limitations of the satellite images used. Although studies have 
identified the MNDWI to be a better method than the NDWI 
or the NDVI, there is still a limit to the method’s ability to 
differentiate certain spectral clusters such as shallow water and 
wet soils sharing a common boundary (Xu, 2006; Crétaux et al., 
2015; Gao et al., 2012; Müller et al., 2016; Kwang et al., 2018). 
Therefore, one should evaluate which index better extracts water 
features within the context of one’s research. Spatial resolution 
should also be considered as it can affect the accuracy when 
mapping spatial features in terms of their physical properties. 
The appropriate spatial resolution for the specific research study 
should also be considered when mapping specific spatial features.

Figure 6. Regression plot between adjusted water levels from the proposed model against the in-situ (measured water level) data obtained 
from DWS
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Figure 7. A trend plot of the calibrated proposed model estimated water levels (depth) versus in-situ data from DWS, and their respective errors 
in metres

Zhang et al. (2006) indicate that spatial resolution constitutes a 
significant influence in outlining hydrological variables presented 
in a DEM. This is also true for water data, especially shallow 
water resources (Erena et al., 2020). Thus, depending on the 
spatial resolution, the precision of results will vary as well. Ideally, 
combined images should be of the same spatial extent and spatial 
resolution before they can be used. Although in practice raster 
images will not process when combined with different extent 
and spatial resolution, their products can still, carefully, be used 
together when either one is vectorized. However, errors can still 
be expected when products derived from raster layers of different 
spatial resolutions are overlayed. Hence, within this research, 
correction factors were applied in an attempt to resolve these 
possible limitations with differences in the spatial resolutions 
of the input layers, which was successful based on the results 
obtained. Furthermore, the practice of combining images of 
various spatial resolutions is not new. In the majority of cases, 
this process is employed when the main objective is to enhance 
the spatial resolution of one image to match another (Wald et al., 
1997; Chen et al., 2019). Therefore, to address the issue of spatial 
differences, images are usually fused to produce a better spatial 
model (Kim et al., 2020).

It is often emphasised when performing data comparisons 
between derivatives and measured data that all variables must 
be standardized in a comparable format. This also includes the 
temporal aspect. The information being monitored can only be 
validated if both the in-situ and model data are temporally in 
agreement (Loew et al., 2017). In the case of this paper, the data 
derived from the model was acquired through the use of satellite 
images that were captured on days that in some cases did not 
coincide with the dates of measurements provided by the DWS. 
Therefore, it is logical to assume that these temporal differences 
could have contributed to the differences in the estimated values. 
To resolve this issue, one should rely strongly on minimizing the 
temporal differences between the compared datasets, considering 
the potential of the variable under study to change over time 
(Loew et al., 2017). In the case of this study, changes in water levels 
were assumed to be minimal within the first 3 to 4 days; beyond 
that, and especially during dry periods, the changes become 
considerable and therefore may not be comparable. Hence, a limit 
of a 3-day difference between the date of the relevant satellite 
image and in-situ data was imposed in this research.

Despite the identified challenges and limitations highlighted above, 
there are strong merits to the proposed methods that should be 
emphasized and promoted. The procedure proposed in this paper 
ensures that the spatial and temporal resolution of the input variables 
is not significantly different to completely compromise the results. 
The proposed procedure further accounts for the challenges of 
spatial resolution differences by introducing correction coefficients 
that resolve this unique issue, making it possible to combine the 
input layers without risk of information loss. The issue of spatial 
differences can also be avoided if one uses input data of similar 
resolution, either through the acquisition of such data or through 
resampling. In addition, both the in-situ and Sentinel-2 images were 
carefully selected to minimize temporal differences. It should also 
be noted that the proposed model can reliably reduce estimation 
errors, producing data that competes with well-established 
entities that use sophisticated methods, without compromising on 
timespan or quality. The correction coefficients proposed in this 
paper can amend the limitations discussed earlier, consistently 
accounting accurately for water levels. This consequently makes the 
proposed model highly valuable as it is capable of providing reliable 
information about the depth aspect of the physical properties of 
a dam while smoothly resolving limitations. Hence, this method 
is recommended as an additional tool to frequently monitor the 
Katrivier Dam, due to its cost-effective implementation.

CONCLUSION

The research was conducted to develop a model that would be 
able to estimate water levels for the Katrivier Dam, through the 
use of no-cost protocols. Sentinel-2 data was used to map surface 
area variability of the dam and ALOS PALSAR’s 12.5-m DEM 
was used to manipulate the underwater terrain of the dam. The 
research showed good agreement between the proposed model 
and in-situ data provided by the DWS. Therefore, the proposed 
model proved to be a possible tool to be included in the water 
management toolbox when attempting to calculate water levels 
of water bodies in a timely and cost-effective manner, which in 
turn can be used by water resource managers to provide guidance 
on water usage to domestic users and farmers, especially during 
periods of extended droughts. This proposed model can benefit 
overall water resource management within the region through 
the provision of accurate real-time information, enabling the 
equitable supply of water to all stakeholders.
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The main limitations identified throughout the process of 
developing this proposed model included spatial resolution and 
atmospheric interference. However, these limitations can be 
minimised with appropriate correction factors. Spatial resolution 
limitations can be resolved; atmospheric interference then 
remains the only limitation which can be expected. Nevertheless, 
depending on the interference coverage on the obtained satellite 
image, this can be atmospherically corrected. Alternatively, in 
cases where atmospheric interferences could not be corrected, 
this can create missing values within the dataset, creating possible 
errors. In such cases, appropriate interpolation or forecasting 
techniques can be used to estimate the missing values. Issues of 
transferability of the model to other dams can be raised; cross-
validation of the model is needed to ensure its fitness is not a 
product of pure chance. The study presented in this paper focused 
on the formulation of a model and did not seek to establish 
whether it could be standardized for all dams. This is however 
recommended as future research which should be undertaken 
to determine the cross-validity of the data. A larger dataset will 
however be needed to perform this cross-validation.

Save the issue of transferability, other issues such as the application 
of the model in terms of what it represents with respect to water 
usage, water safety programmes, and its implementation within 
existing water monitoring systems are yet to be explored. Future 
studies will also include the development of methods to evaluate 
all physical characteristics of a water body, expanding from depth 
to additionally estimate water volume.

Therefore, this research developed a possible model which can 
be adapted, with future research, to be used as a cost-effective 
method to monitor the variability of water resources.
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