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Accurate hydrological modelling to evaluate the impacts of climate and land use change on water resources 
is pivotal to sustainable management. Soil information is an important input in hydrological models but is 
often not available at adequate scale with appropriate attributes for direct parameterisation of the models. 
In this study, conducted in three quaternary catchments in the midlands of KwaZulu-Natal, three different 
soil information sets were used to configure SWAT+, a revised version of the Soil and Water Assessment Tool 
(SWAT). The datasets were: (i) the Land Type database (currently the only soil dataset covering the whole of 
South Africa), (ii) disaggregation of the Land Type database using digital soil mapping techniques (called 
DSMART), and (iii) a dataset where DSMART were complemented by field observations and interpretations of 
the hydropedological behaviour of the soils (DSMART+). Simulated streamflow was compared with measured 
streamflow at three weirs with long-term measurements, and the impact of the soil datasets on water balance 
simulations was evaluated. In general, the simulations were acceptable when compared to other studies, but 
could be improved through calibration and including small reservoirs in the model. The DSMART+ dataset 
yielded more accurate simulations of streamflow in all three catchments with Nash-Sutcliffe efficiencies 
increasing by between 9% and 67% when compared to the Land Type dataset. The value of the improved soil 
maps is, however, highlighted through the enhanced spatial detail of streamflow generation mechanisms 
and water balance components. The internal catchment processes are represented more accurately, and we 
argue that South Africa needs a detailed hydrological soil map for effective water resource management.
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INTRODUCTION

Soils play a key role in partitioning rainfall into different components of the water balance, such as 
overland flow, infiltration, deep drainage, and lateral flow, and also in storing and availing water for 
evapotranspiration. Soil information, their hydraulic properties and spatial distribution, is therefore 
an important input into physically based hydrological models (Beven, 1983; Worqlul et al., 2018) for 
effective predictions of the impacts of climate and land use change on water resources.

With enhanced computing power, spatially distributed hydrological models are capable of handling 
details of landscape heterogeneity better. Some models (e.g. SWAT and SWAT+) couple seamlessly 
with GIS interfaces such as ArcMap and QGIS (Arnold et al, 1998; Bieger et al., 2017). The models 
typically rely on layers of topography, land use and soil information to delineate hydrological response 
units (HRUs). Advances in remote sensing have resulted in improved topographical and land use 
data, which are freely available at adequate scale for hydrological modelling globally. On the other 
hand, soil information in most developing countries is seldom available at adequate scale for direct 
parameterisation of most models, despite sufficient evidence from the literature that more detailed 
soil information with more realistic hydraulic properties improves modelling accuracy and reduces 
parameter calibration uncertainty (e.g. Romanowicz et al., 2005; Bossa et al., 2012; Diek et al., 2014; 
Van Tol et al., 2015; Wahren et al., 2016; Gagkas et al., 2021; Van Tol et al., 2021).

Reasons for the lack of appropriate soil information are that soil maps are generally not produced 
for hydrological modelling purposes (Zhu and Mackay, 2001), and the costs and time involved in 
quantifying the spatial variation of important soil hydraulic properties, such as water retention 
characteristics and conductivity. In South Africa, the only soil database that covers the entire country 
is the Land Type database (Land Type Survey Staff, 1972–2002). This 30-year endeavour aimed to 
characterise the soil resources of South Africa (mainly for agricultural purposes), and divided the 
country into 7 070 ‘Land Types’ (Paterson et al., 2015). A Land Type is an area with a homogenous 
combination of terrain type, climate and consequently soil distribution pattern at a scale of 1:250 000. 
The soil distribution pattern refers to the sequence of soils from the crest to the valley bottom, also 
known as the soil catena or toposequence. Each Land Type is accompanied by an inventory which 
contains, amongst other information, the soil forms and their percentage coverage of different terrain 
morphological units (TMUs). The TMUs included are the crest, cliffs, midslope, footslope and valley 
bottom. Efforts have been made to convert these Land Types into suitable hydrological modelling 
inputs, notably by Pike and Schulze (1995) for the ACRU model. In most regional modelling studies, 
the Land Types are considered as a single unit with lumped average soil parameters as presented, for 
example, in the South African Atlas of Agrohydrology and Climatology (Schulze et al., 2007). The latter 
is the best available dataset of soil hydrological information for South Africa and. although certainly 
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useful for modelling of large areas, there are several limitations 
associated with this dataset. These limitations are discussed in 
detail by Van Tol and Van Zijl (2020), but in summary:

•	 Observation depths are limited to 1.2 m. In large areas of 
South Africa, soils are considerably deeper which will result 
in an erroneous representation of storage and flowpaths 
through the soils.

•	 The nature of the soil/bedrock interface is not described. 
This interface is important in partitioning infiltrated water 
into recharge of groundwater stores or generation of lateral 
flows.

•	 There can be considerable variation in the soils and hydraulic 
properties within a Land Type, ranging from deep, freely 
drained soils to permanently saturated soils with slow infilt- 
ration rates. This variation is not only limited to different 
terrain positions, but also within the same terrain morpho-
logical unit.

With the advances in digital soil mapping (DSM; McBratney et al., 
2003), detailed soil information at adequate scale and format for 
hydrological modelling studies can now be generated at relatively 
low costs (e.g. Zhu and Mackay, 2001; Thompson et al., 2012; Van 
Tol et al., 2015; Van Zijl et al., 2016; Wahren et al., 2016; Van Zijl 
et al., 2020). A key advantage of DSM is that legacy soil data (such 
as the Land Type database), can be remapped at finer scales and 
improved accuracy for a specific application – in this case to serve 
as modelling input. Significant progress has been made to map soils 
through machine learning, expert knowledge and disaggregation of 
Land Type approaches into soil polygons (Van Zijl, 2019), as well as 

for hydrological purposes in South Africa (e.g. Van Zijl et al., 2016; 
Van Tol et al., 2020).

We argue that it is timeous to create a hydrological soil map for 
South Africa, using a combination of legacy soil data, expert 
knowledge and DSM techniques. We present a case study where 
streamflow was simulated in three quaternary catchments in 
the KwaZulu-Natal midlands. The objectives of the study were 
to generate improved soil information using DSM techniques 
and then to evaluate the contribution of this information to 
modelling efficiency as well as to internal catchment processes. 
We also provide a suggested methodology for moving towards a 
hydrological soil map for the whole of South Africa.

MATERIALS AND METHODS

Study area

The focus area was three quaternary catchments in the KwaZulu-
Natal midlands, namely, U20A (upper uMngeni River), U20B (Lions 
River) and U20D (Karkloof River) (Fig. 1). The catchment areas are 
299, 358 and 339 km2 for U20A, U20B and U20D, respectively. The 
mean annual precipitation varies from 1 250 mm/a in U20D to  
850 mm/a. in the drier middle parts in U20B, with most of the 
rainfall received from October to March (Schulze and Lynch, 2007). 
Mean daily air temperatures are around 19°C during summer 
and 11°C during winter (Schulze and Maharaj, 2007). Natural 
vegetation forms part of the Midlands Grassland, Drakensberg 
Foothill Moist Grassland and Southern Misbelt Forests (SANBI, 
2006–2018). Commercial forestry and crop production are the 
prominent current land uses (Fig. 2).

Figure 1. The focus area, represented by Catchments U20A, U20B and U20D, together with the location of rainfall stations and DWS weirs 
draining the catchments
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Figure 2. Land cover of U20A, U20B and U20D, simplified from the 2013/14 SA National Land-Cover Dataset (GeoterraImage, 2014)

Model, simulations, and input data

The SWAT+ model was used for simulations using the QSWAT+ 
(v 1.2.3) interface. SWAT+ is a completely revised version of the 
well-known Soil and Water Assessment Tool (SWAT; Bieger et al., 
2017; Arnold et al., 1998). SWAT is widely used to simulate water 
quality and quantity to predict and assess the impacts of land 
use, climate change, soil erosion and pollution. A comprehensive 
description of the SWAT model is provided by Neitsch et al. (2009) 
and a description of changes and updates in the SWAT+ version 
is provided by Bieger et al. (2017). The model is a process-based 
semi-distributed catchment-scale model where one of the first 
steps is to divide the catchment into ‘hydrological response units’ 
(HRUs). A HRU is a homogenous area in terms of soils, land use 
and slope. The model then calculates water balance components, 
including overland flow, infiltration, lateral flow, percolation, 
evapotranspiration and discharge to the stream from each HRU. 
Model setups resulted in the creation of 2 814 and 3 597 HRUs 
for U20A, 3 831 and 4 395 HRUs for U20B, and 3 396 and 3 948 
HRUs for U20D. In each catchment the first (lower) number of 
HRUs was for the ‘Land Type’ model run and the second (higher) 
number of HRUs was for the DSMART and DSMART+ runs 
(discussed in detail later). The model was run from January 1998 
till December 2013 on the three catchments individually, using 
three levels of soil input data (i.e. 9 model runs). The different soil 
inputs are discussed under the soil data section. The first 2 years 
were used as a warm-up period, followed by 14 years of validation. 
As the aim was not optimization through calibration, we did not 
include a model calibration period.

Streamflow was recorded at Department of Water and Sanitation 
(DWS) weirs U2H013, U2H007 and U2H006 (Fig. 1). Daily 

rainfall records were obtained from 7 rainfall stations from the 
South African Weather Service (SAWS) and DWS (Fig. 1). The 
average annual rainfall recorded at these stations during our 
simulation time (2000–2013) was 675 mm. When a rainfall station 
malfunctioned, the average daily rainfall recorded at the remaining 
stations was used to infill the day/s without data. Daily minimum 
and maximum temperatures and relative humidity were obtained 
from the SAWS stations. The remainder of the climatic information 
(solar radiation and wind speed) was obtained from the Climate 
Forecast System Reanalysis (CFSR) project (Saha et al., 2010) by 
the National Center for Environmental Prediction (NCEP). Daily 
potential evapotranspiration was calculated using the Penman-
Monteith (Monteith, 1965) approach.

Land cover data were obtained from the 2013/14 South African 
National Land-Cover Map (GeoterraImage, 2014, Fig. 2). Pre-
defined SWAT values for different land-use classes were used 
as input data for the land cover. Dams were identified from the 
land cover and included in the model set-up as ‘reservoirs’ with 
estimated parameters. Here we only included relatively large 
dams (>1 ha), totalling 3, 2, and 3 for U20A, U20B and U20D 
respectively. Smaller ponds and farm dams were assigned default 
SWAT+ parameters for a ‘water’ land use class in the model.

Soil data

Three levels of soil input data were used: (i) the Land Type database 
(currently the only soil dataset covering the whole of South Africa), 
(ii) disaggregation of the Land Type database using digital soil- 
mapping techniques (called DSMART) and (iii) a dataset where 
DSMART were complemented by field observations and interpre-
tations of the hydropedological behaviour of the soils (DSMART+).
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Land type data

The Land Type database is the best, readily available soil dataset 
which covers the whole of South Africa (Land Type Survey Staff, 
1972–2002). A Land Type is a homogenous area in terms of 
climate, geology and topographical patterns, which can be mapped 
at a scale of 1:250 000 (Paterson et al., 2015). It is important to 
note that a Land Type does not represent a soil polygon but rather 
a soil distribution pattern. The Land Type dataset is widely used 
for hydrological modelling studies and efforts have been made 
to provide average hydraulic parameters for two soil horizons 
per Land Type for simulations in the ACRU hydrological model 
(Pike and Schulze, 1995; Schulze, 2007). There are 46 Land Types 
in the study area (Fig. 3). The majority of these are, however, Ac 
Land Types with little differences between them in terms of soil 

distribution patterns and hydraulic properties (Fig. 3 and Table 1).  
According to the Land Type inventories, A Land Types are 
dominated by red and yellow soils without water tables and in 
Ac Land Types, red and yellow soils cover more than 10% of the 
land area and dystrophic and/or mesotrophic soils occupy larger 
areas than their high-base-status counterparts (Land Type Survey 
Staff, 1972–2002). This implies that the soils are freely drained and 
leached. With exception of Ks, all the SWAT-required properties 
for the Land Type data are available from Schulze (2007) and are 
summarized in Table 1. ROSETTA (Schaap et al., 2001) was used 
to derive the Ks for different horizons from the texture classes. 
All the Land Types were assigned to the SWAT soil group A 
for partitioning between overland flow and infiltration, using a 
modified curve number method (Neitsch et al., 2009).

Figure 3. Land types present in the three catchments (Land Type Survey Staff, 1972 – 2002)

Table 1. Hydraulic input parameters for the Land Type soil dataset

Catchment Master 
horizon

Depth Bulk density AWC2 Clay Silt Sand OC3 Ks
4

mm g·cm-3 mm·mm-1 % % % % mm·h-1

U20D A 300 (300, 300)1 1.52 (1.49, 1.59)1 0.092 (0.071, 0.105)1 39.1 30.9 30.0 5.0 24.0

B 580 (400, 710) 1.53 (1.51, 1.57) 0.091 (0.059, 0.122) 48.4 29.3 22.0 1.5 6.0

U20B A 300 (290, 300) 1.54 (1.49, 1.60) 0.092 (0.084, 0.105) 39.1 30.9 30.0 5.0 24.0

B 520 (320, 790) 1.55 (1.52, 1.58) 0.087 (0.066, 0.122) 48.4 29.3 22.0 1.5 6.0

U20A A 300 (290, 300) 1.55 (1.49, 1.60) 0.102 (0.084, 0.105) 39.1 30.9 30.0 5.0 24.0

B 530 (430, 790) 1.55 (1.52, 1.58) 0.114 (0.066, 0.122) 48.4 29.3 22.0 1.5 6.0
1minimum and maximum values for the parameters used, 2available water capacity = field capacity – wilting point; 3organic carbon; 4saturated hydraulic 
conductivity
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DSMART and DSMART+ datasets

DSMART (Odgers et al., 2014) is an automated algorithm 
whereby soil map units, comprising of various soil types, are 
disaggregated into more detailed soil classes, thereby improving 
the representation of the spatial distribution of the soil. Flynn 
adapted DSMART for disaggregation of the South African Land 
Types (Flynn et al., 2019a, b, c).

DSMART iteratively resamples complex polygon map units in 
the proportion in which they are thought to occur within the 
polygon, and then trains a machine-learning algorithm on the 
environmental covariates at the resampled sites. Thereafter it 
applies the trained algorithm to the entire site to produce multiple 
(one for each iteration) realisations (maps) of the soil distribution.

The soils within each Land Type’s inventory were grouped into 
one of six hydropedological soil classes according to Van Tol 
and Le Roux (2019). Each Land Type’s polygon was then divided 
into TMUs by merging the Land Type data layer with a TMU 
map of South Africa (unpublished). The proportion of each 
hydropedological soil group for each Land Type–TMU unit was 
then calculated based on the proportion given for the soil types 
within the Land Type inventory.

Environmental covariates collected for the site included Landsat 
satellite imagery taken on 20201017 as well as the Shuttle Radar 
Topography Mission (STRM) 30 m DEM. These sources were 
projected and resampled to fit onto the same grid and clipped 
to the size of the three catchments studied. The indices given in 
Table 2 were derived from the Landsat image, while the channel 
network base level, altitude, the LS-factor, planform and profile 
curvature, relative slope position, slope gradient, the topographic 
wetness index and valley depth were derived from the DEM.

DSMART was run using 100 samples per polygon and applying 
the random forest algorithm. This gave 10 hydropedological 
soil group maps, of which the best realisation was used as the 
DSMART soil map for the hydrological modelling.

For the DSMART dataset, undisturbed samples were collected 
of representative soil horizons. These soils were then subjected 
to laboratory analysis where the bulk density and hydraulic 
conductivity (falling head method) were determined. Data from 
modal profiles of the Land Type database (Fig. 4) were used to 
obtain average particle size distribution and organic carbon for 
the different soil groups. These were then used in a pedotransfer 
function (PTF) for South African soils (Hutson, 1984) to derive 
‘drained upper limit’ (field capacity) and ‘lower limit’ (wilting 
point) of available water. the difference between these is the 

‘available water capacity’ (AWC). The DSMART+ dataset also 
included field observations, especially regarding soil depth and 
the hydropedological response of the soils in the input data.

Statistical analysis

Simulated monthly streamflow was compared with measured 
flow at the three stream gauges (Fig. 1). Statistical comparisons 
were made using five widely used indices, namely, the coefficient 
of determination (R2), the root mean square error (RMSE), 
percentage bias (PBIAS), the Nash-Sutcliffe efficiency (NSE) and 
the Kling-Gupta efficiency (KGE).

PBIAS indicate the degree of over- or underestimation of the 
simulations when compared to observed values (Gupta et al., 1999):

PBIAS �
� ��

�
�
�

�

�
�
�

�

�

�
�

( )

( )

Y Y

Y
i
obs

i
sim

i

n

i
obs

i

n

100
1

1

Where Yi
obs and Yi

sim are the observed and simulated value 
for a specific timestep (i), respectively. Positive values signify 
underestimation and negative values overestimation when 
compared to measured values. NSE is used to determine the 
magnitude of variance between simulated and observed values 
(Nash and Sutcliffe, 1970):

NSE � �
�

�

�

�
�
�

�

�
�
�

�

�

�
�

1
2

1
2

1

( )

( )

Y Y

Y Y
i
obs

i
sim

i

n

i
obs mean

i

n

Where Yi
obs and Yi

sim are again the observed and simulated value 
at a timestep (i), Y  mean is the average of the entire simulation 
period and n is the number of observations. In general, a value 
> 0.5 signifies satisfactory model performance when comparing 
monthly data (Moriasi et al., 2015).

The KGE is calculated using (Gupta et al., 2009):
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Where r represents the correlation coefficient, σsim and σsim the 
standard deviation in simulations and observations, respectively, 
and μsim and μobs the means of simulations and observations. 
Higher KGE values indicate better model performance and a value 
smaller than −0.41 implies that the means of the observations 
provide a better fit than the model (Knoben et al., 2019).

RESULTS AND DISCUSSION

Hydropedological soil map and DSMART input parameters

The hydropedological soil map (Fig. 4), had a 61% observation 
point accuracy in terms of mapping the hydropedological groups. 
This is comparable to the accuracy of conventional soil surveys 
(65%, Marsman and De Gruijter, 1986) and other similar digital 
soil mapping products, e.g., 69% (MacMillan et al., 2010) and 73% 
(Van Zijl and Le Roux, 2014). The majority of the error (32%) was 
between mapped recharge (shallow) soils and observed recharge 
(deep) soils. In the Land Type inventory, saprolite was deemed 
a restricting layer and the total soil depth given as the thickness 
of soil horizons above the saprolite layer. In the study area the 
saprolitic layers were very thick and chemically weathered, which 
would contribute greatly to the storage capacity of the soil profile 
(Fig. 5). This will allow more water for evapotranspiration and 
could reduce the amount of recharge to the groundwater and 
increase the time it will take for groundwater recharge (O’geen et 
al., 2005). In the observations these were consequently classified 
as recharge (deep), which contributed to the map error.

Table 2. The spectral covariates derived from the Landsat imagery 
(adapted from Flynn et al., 2019a)

Bands Wavelength (um) Landsat 8 Band 
Number

Blue (B) 0.45–0.51 2

Green (G) 0.53–0.59 3

Red (R) 0.64–0.67 4

Near infrared (NIR) 0.85–0.88 5

Index Equation Property

Brightness Index (BI) (R2 + G2 + B2)/30.5 Reflectance

Colouration Index (CI) (R − G)/(R + G) Soil colour

Redness Index (RI) R2/(B x G3) Hematite

Saturation Index (SI) (R −B)/(R + B) Spectral slope

NDVI (NIR − R)/(NIR + R) Chlorophyll
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Figure 5. Examples of deep saprolite weathering; these layers will contribute to the storage capacity of soils and is not included in the profile 
depths of the Land Type dataset. Geological hammer encircled to provide scale.

Figure 4. Hydropedological soil map created through disaggregation of the Land Type dataset using DSMART
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Mapped recharge (deep) but observed interflow (deep) 
contributed to 6% of the mapping error. Again, the observation 
depth limit of the Land Type dataset could be attributed to this. 
Gleyic or plinthic horizons below 1 200 mm were not recorded 
in the Land Type survey, but could play an important role in the 
generation of lateral flow.

For the DSMART model runs, estimated soil parameters from 
the Land Type dataset and modal profiles were used (Table 3). 
These model inputs reflected a scenario where a field visit was not 
conducted and only legacy data together with digital soil mapping 
are available. For the DSMART+ model runs, the horizon depths 
were adjusted to reflect actual depths observed during the field 
survey (Table 3).

Streamflow predictions

The accuracy of streamflow simulations differed between different 
catchments and soil input levels (Table 4). Warburton et al. 
(2010) also conducted hydrological modelling studies in these 
catchments and obtained NSE values of 0.80, 0.85 and 0.66 for daily 
streamflow simulations in U20A, U20B and U20D, respectively. 
This is considerably better than our predictions shown in Table 4. 
It should, however, be emphasised that the aim of this study was 
to evaluate the direct contribution/impact of soil information 
of simulations and not to optimize model outputs. The obtained 
R2 values are comparable with other similar studies, for example 
R2 of between 0.42 and 0.71 in West Africa (Bossa et al., 2012),  
R2 = 0.15 in Colorado (Diek et al., 2014) and R2 between 0.60  

and 0.74 in a South African case study (Van Tol et al., 2020). Moriasi 
et al. (2007) recommended that ‘satisfactory’ simulations have 
NSE values > 0.5 and PBIAS values < ±25. With this as baseline, 
all the model runs in U20D are satisfactory in terms of NSE, but 
only the DSMART+ simulations were satisfactory in U20B and 
U20A, when the same index was considered. In terms of the 
PBIAS, streamflow was overestimated in all model runs and only 
the DSMART and DSMART+ simulations in U20B were within 
the ‘satisfactory’ range. The overestimation of streamflow is likely 
the result of not including small water bodies (farm dams) in the 
model set-up. These water bodies will first need to be filled before 
significant flow can occur and also contribute to evaporation, hence 
the overestimation of streamflow when they are omitted. Including 
these reservoirs associated with realistic hydraulic parameters 
should be a key consideration in future modelling actions.

There was a definite improvement in streamflow predictions when 
more detailed soil information was used (Table 4). DSMART+ 
predictions all had higher NSE and KGE values, whereas the 
RMSE and the PBIAS were closer to zero. Interestingly, the 
DSMART simulations performed worse than the Land Type 
information in U20D and U20A (if KGE is considered). In 
all scenarios there was an overestimation of streamflow, as 
indicated by the negative PBIAS values (Table 4). Land type 
data resulted in the highest degree of overestimation in U20D 
and U20B, while DSMART soil data performed worst in this 
regard in U20A. In all the catchments the DSMART+ soil 
data yielded the lowest levels of streamflow overestimation.  

Table 3. Hydraulic input parameters for the DSMART and DSMART+ model runs

Hydro-pedological 
group and SWAT 
soil group

Master 
horizon

Depth (mm) OC1 Clay Silt Sand Bulk density AWC2 Ks
3

DSMART DSMART+ % % % % g·cm-3 mm·mm-1 mm·h-1

Recharge (deep)
   A

A 300 300 6.77 33.83 36.50 22.35 1.15 0.16 17.94

B 700 1 500 1.14 42.29 30.83 25.18 1.50 0.17 7.71

C4 3 000 0.24 35.30 34.98 28.68 1.50 0.18 3.75

Recharge (shallow)
   A

A 300 300 6.77 33.83 36.50 22.35 1.15 0.16 17.94

C 700 700 0.24 35.30 34.98 28.68 1.50 0.18 3.75

Interflow (deep)
   B

A 300 300 6.77 33.83 36.50 22.35 1.15 0.16 17.94

B 700 1 500 1.14 42.29 30.83 25.18 1.50 0.17 7.71

B24 2 000 0.35 49.25 39.35 10.50 1.50 0.19 3.79

Responsive (wet)
   C

O 300 300 9.36 34.00 48.50 12.70 1.00 0.18 37.71

G 700 2 000 0.35 49.25 39.35 10.50 1.50 0.19 3.79
1organic carbon;  2available water capacity;  3saturated hydraulic conductivity;  4C and B2-horizon only included in the DSMART+ dataset

Table 4. Statistical indices for streamflow simulations of the different catchments

Catchment Soil data R2 RMSE1 PBIAS2 NSE3 KGE4

U20D Land type 0.81 13.04 −28.32 0.58 0.54

DSMART 0.79 13.65 −30.46 0.55 0.51

DSMART+ 0.79 12.26 −26.58 0.63 0.59

U20B Land type 0.65 11.94 −25.70 0.31 0.53

DSMART 0.66 11.17 −24.54 0.40 0.58

DSMART+ 0.65 9.93 −19.13 0.52 0.69

U20A Land type 0.65 15.48 −27.36 0.44 0.56

DSMART 0.66 15.25 −28.88 0.45 0.55

DSMART+ 0.66 14.14 −25.04 0.53 0.62
1root mean square error;  2percentage bias;  3Nash-Sutcliffe efficiency;  4Kling-Gupta efficiency
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Figure 6. Measured vs simulated monthly streamflow for (a) U20D, (b) U20B and (c) U20A. Average monthly rainfall is presented in (d)

The improvement in streamflow simulations with improved soil 
information agrees with findings of other studies (e.g., Romanowicz 
et al., 2005; Bossa et al., 2012; Diek et al., 2014; Van Tol et al., 2015; 
Wahren et al., 2016; Van Tol et al., 2020, Gagkas et al., 2021). From 
the monthly streamflow data, there appears to be no definite trend 
in when streamflow is overestimated, i.e., it was overestimated 
during both wet and dry years (Fig. 6). During extreme events, 
for example, the beginning of 2009, actual streamflow exceeded 
predicted streamflow in all three catchments.

Water balance components

Catchment average components

There were marked differences in the water balance components 
in the different catchments when different soil input data were 
used (Table 5). U20D received the highest average annual rainfall 
(876 mm), followed by U20A (757 mm) then U20B (705 mm). 
Simulated overland flow was also the highest in U20D, whereas 

U20A and U20B had similar simulated overland flow volumes. 
The DSMART soil input yielded the highest overland flow in all 
catchments, followed by DMSART+ and lastly the Land Type 
data. The Land Type dataset provided only average soil parameters 
for large areas whereas the DSMART and DSMART+ datasets 
included soils which will be prone to overland flow generation 
such as responsive (wet) soils (SWAT soil group C; Neitsch 
et al., 2009). The average depth of soils in the DSMART dataset 
was shallower than that of DSMART+, explaining the higher 
simulated overland flow when using the former.

Simulated lateral flows were similar for the Land Type and 
DSMART soil inputs, but markedly lower when the DSMART+ 
input data were used. This could be attributed to the deeper soils 
in the DSMART+ dataset. Water draining vertically through the 
soil to the soil/bedrock interface, where lateral flow will occur, is 
available for plant root uptake. It will take longer for the water to 
drain through the deeper soils to the bedrock (Asano et al., 2002), 
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and more water will be transpired and consequently there will 
be less lateral flow. This is supported by the higher transpiration 
rates (Table 5) when using the DSMART+ dataset. Simulated 
transpiration was higher, and evaporation generally lower, when 
using the DSMART+ input data compared to the other two datasets. 
The exception was U20D where the DSMART data resulted in the 
lowest simulated evaporation. Evapotranspiration (ET) is by far 
the largest water balance component, accounting for between 55% 
and 64% of the rainfall. Simulated percolation to groundwater was 
18–25% higher in U20D when using the DSMART+ input data 
compared to the Land Type and DSMART soil data, although the 
absolute differences were relatively small (7.2 mm). The increased 
percolation when using the DSMART+ dataset could be attributed 
to less lateral flow; the soils are deeper and lateral flow not generated 
as easily as with the other datasets (Table 5). For the other two 
catchments, differences in the percolation were not noteworthy.

Average soil water storage is expressed as millimetres (mm) 
of available soil water for the entire profile and the top 300 mm 
(topsoil horizon) in Table 5. Differences in the soil water were the 
most pronounced of all the water balance components. For the 
entire profile, simulations using the DSMART+ dataset stored 
194% (U20D), 673% (U20B) and 542% (U20A) more water than 
simulations using the Land Type dataset. Similarly, the DSMART+ 
dataset resulted in increased simulated soil water of 62%, 261% and 
212% for U20D, U20B and U20A, respectively, compared to the 
DSMART dataset. The DSMART soil data also resulted in increased 
soil water when compared to the Land Type data; increases of 81%, 
114% and 106% for U20D, U20B and U20A, respectively. Topsoil 
water contents showed similar trends as that of the entire profile  

i.e., DSMART+ > DSMART > Land Type. The differences in available 
water in the topsoil were not as large as for the profile average water. 
The differences in soil water content are the consequence of the soil 
input data (Table 1 and 2), where the deeper soils of the DSMART+ 
input data will have a higher storage capacity.

Water balance of different land uses

Marked differences were observed in how different soil inputs 
impact simulated water balance components for different land 
uses, as shown in Fig. 7. For agricultural land use, evaporation 
was the dominant component of the water balance (55%) when 
the Land Type data was used, followed by transpiration (24%) 
and lateral flow (16%). The DSMART and DSMART+ input 
data predicted that evaporation comprised 40% and 39% of the 
water balance, respectively. The high evaporation is presumably 
related to fallow periods or evaporation between rows in planted 
crops. Future work should determine if these values are realistic 
given the shift towards residue retention to reduce evaporation. 
Simulated lateral flows were the highest using the DSMART 
dataset for agricultural, forestry, wetland and urban land uses. 
for the grassland (dominant land use), the Land Type dataset 
yielded the highest lateral flow simulations (48% of precipitation). 
Percolation to the groundwater was also highest in grasslands, 
presumably due to relatively shallow rooting depth when 
compared to agricultural and forestry. Water draining past the 
rooting zone will be able to recharge the groundwater. The Land 
Type dataset also resulted in the highest predicted overland flow 
in the urban land use (69%), compared to 56% and 57% for the 
DSMART and DSMART+ dataset, respectively.

Table 5. Simulated yearly average water balance components (mm) of the different catchments using different soil inputs

Component U20D U20B U20A

Land Type DSMART DSMART+ Land Type DSMART DSMART+ Land Type DSMART DSMART+

Rainfall 876.4 876.7 876.7 705.3 705.8 705.8 756.8 757.0 757.0

Overland flow 23.5 33.3 31.0 8.1 13.8 9.0 4.9 16.6 13.0

Lateral flow 308.8 309.9 293.3 244.4 234.0 221.8 306.1 301.0 288.3

Percolation 37.6 39.7 46.9 27.4 25.1 26.8 31.1 27.7 30.4

ET: 505.7 497.8 509.0 428.3 436.7 445.1 419.0 415.5 420.7

    Transpiration 422.6 417.7 427.1 314.1 328.1 338.4 349.9 349.0 355.8

    Evaporation 83.2 80.0 82.0 114.2 108.6 106.7 69.1 66.5 64.9

Soil water 30.4 55.3 89.6 28.7 61.6 222.3 35.6 73.2 228.5

Topsoil water 14.5 22.8 24.5 15.2 25.0 29.3 17.2 28.5 33.2

Potential ET 1 276.2 1 276.2 1 276.2 1 291.3 1 291.1 1 291.1 1 273.2 1 273.1 1 273.1

Figure 7. Water balance components simulated using different soil inputs
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Figure 8. Average annual HRU scale water balance components using different soil inputs. Simulations of Land type inputs are presented for 
overland flow, transpiration and topsoil water content by a, c, and e, whereas the same components are presented by b, d, and f using the 
DSMART+ soil inputs.

Spatial distribution of water balance components

The spatial detail of water balance components using the 
DSMART+ is considerably higher than that using the Land 
Type soil inputs (e.g. Fig. 8a vs 8b). This is especially true for 
the soil-driven components, such as overland flow and topsoil 
water content (we only presented the Land Type and DSMART+ 
datasets to illustrate differences between datasets; similar 
differences in trends were observed between the Land Type and 

DSMART dataset). The difference in the level of detail is due 
to the higher number of HRUs which were generated when the 
detailed soil map (Fig. 4) was used. For example, in U20A, 2 779 
HRUs were generated with the Land Type dataset compared to  
3 597 when using the DSMART+ dataset. The spatial distribution 
of the different soils is also better represented in the DSMART 
and DSMART+ datasets than in the Land Type dataset, where the 
latter only use average values for large polygons.
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Overland flow was higher near the stream channels in the 
DSMART+ dataset, leading to greater volume of overland flow 
simulated (Table 4). Transpiration simulations were generally 
higher for the DSMART+ dataset, especially along wetlands 
and stream channels. The largest difference was observed in 
simulations of the soil water content. We only show the topsoil 
(top 300 mm) of simulated water content (Fig. 8e and f). There are 
drastic differences in the total profile water content (Table 4), but 
this is strongly related to the soil depth assigned to the DSMART+ 
dataset which will result in considerably higher available water. 
Figure 8e and f show that the topsoil water content simulated with 
the DSMART+ dataset is markedly higher than that simulated 
with the Land Type dataset. It further shows that the spatial 
resolution of the DSMART+ simulations are more detailed.

Although supporting data to verify the simulations of the spatial 
distribution of water balance components (e.g., measured soil water 
contents) are not available for the catchments at this stage, we believe 
that the detailed soil map provides an improved representation of 
the internal catchment structure and hence reflects the processes 
more accurately. Failure to represent these processes could lead 
to faulty conclusions and potential mismanagement of water 
resources (Yen et al., 2014). Reflecting internal catchment processes 
accurately becomes increasingly important when changes in land-
use and climate are simulated (Kirchner, 2006; Arnold et al., 2015).

Pathway to a hydrological soil map for South Africa

From this work it is evident that:

•	 A methodology exists to create detailed soil information for 
large areas as input for hydrological models.

•	 Improved detailed soil information leads to improved 
modelling outcomes (DSMART vs Land Types)

•	 The best improvement comes with an improved soil map 
together with hydrological parameters for the soil mapping 
units (DSMART+ vs DSMART)

Creating a hydrological soil map of South Africa is possible 
through the use of DSM tools, which have been used in South 
Africa for improved hydrological modelling for fairly large areas 
before (Van Tol et al., 2020, Van Zijl et al., 2016, Van Tol et al., 
2015). We propose a hybrid approach using both legacy soil data 
and data collected in dedicated field campaigns. The rough steps 
to create a national hydrological soil map would be:

1.	 Collect all available soil point data for South Africa.
2.	 Collect and derive the required environmental covariates 

for South Africa (as used in this paper).
3.	 Using the two datasets collected above, together with 

machine-learning algorithms, create a first-edition hydro-
logical soil map for South Africa, complete with spatial 
certainty prediction.

4.	 Determine national and area-specific (where data is available) 
pedotransfer functions to determine the hydraulic parameters 
for the soils within the area.

5.	 Assign hydraulic properties to the soils mapped in Step 4. 
Where local PTFs exist, they are used, but where not, the 
national PTFs would be used.

6.	 Conduct specific field campaigns to collect data in priority 
areas where the map and PTFs are found wanting.

7.	 Update the map and PTFs to improve the first edition of the 
hydrological soil map of South Africa in a second edition.

Steps 6 and 7 should be repeated continuously to improve the 
mapping products and the resultant hydrological models.

CONCLUSIONS

Here we showed that improved soil information can improve 
streamflow predictions. Merely disaggregating existing soil data 

is, however, not sufficient, and needs to be supported by in-
situ observations, measurements, and interpretations of the 
hydrological behaviour of the soils. Although the improvement 
in streamflow simulations is encouraging, the real benefit of the 
more detailed soil information is through representing internal 
catchment processes better. This is shown through an enhanced 
spatial resolution of different water balance components and 
streamflow generation mechanisms. We believe that the improved 
resolution represents how water reaches the stream channel, more 
accurately. Capturing these processes in hydrological models is 
important, especially for climate and land-use change predictions 
for impacts on water resources. These predictions are pivotal 
for sustainable water management. With the advancements of 
computing power and remote sensing, we simply cannot allow 
that the efficiency of modelling outputs is jeopardised by outdated, 
inadequate soil information which is not comparable with spatial 
resolutions of other inputs such as topography and land-use. 
Methods exist with which the spatial distribution of soil classes 
and properties can be accurately determined. We therefore argue 
that there is an urgent need to use the DSM methods to create user-
friendly hydrological soil maps for the whole of South Africa. These 
maps should also be accompanied by hydrological properties of the 
dominant soil types for parameterisation of a range of hydrological 
models. These properties could be derived from locally developed 
pedotransfer functions (PTF’s) or measured in-situ. The accuracy 
of these maps should also be determined through dedicated field 
campaigns to capture uncertainty in modelling input parameters.
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