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A survey of the quality of water flowing from micro-system types to the ocean, along the subtropical east 
coast of South Africa, showed a wide variation in the concentrations of total nitrogen, phosphorus and 
phytoplankton biomass in the different systems located, in many cases, only a short distance from each other 
along the coastline. The origins of the high phytoplankton growth indicate pollutants caused by the land-use 
in this highly populated coastal region. The main agricultural activities in the area are sugarcane, permanent 
orchards, and forestry. The levels of N and P in the water varied from ‘good’ to ‘poor’, i.e., TN 0.15–3.99 mg·L−1,  
TP 0.02–0.33 mg·L−1 and chlorophyll-a from 0 to almost 45 µg·L−1. Rapid coastal population densification 
appears to have been the cause of the pollution levels measured for total nitrogen, phosphorus, and 
phytoplankton biomass. Most of the micro-systems with a total modified peri-catchment above 80% were 
enriched by both TN and TP. While the hypothesis tested was that the main cause was residential development 
(e.g., septic tank effluent), it was not possible to show any statistical significance to support such a specific 
conclusion. Although these systems are small individually, the great number along the coastline warrants 
recognition as important sources of freshwater inflow and nutrients to the marine environment.
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INTRODUCTION

Nine estuary types and three micro-system types are nationally recognised in South Africa. Of these 
ecosystem types, micro-systems include micro-estuaries and micro-outlets (Bate et al., 2017), as well 
as coastal waterfalls, which have only recently been included in the formal classification scheme 
for estuaries (Van Niekerk et al., 2019a). These small systems (< 2 ha in area or < 200 m in length) 
are characterised by small permanent or ephemeral coastal waterbodies with limited estuarine 
functionality (Bate et al., 2017; Magoro et al., 2020a; Van Niekerk et al., 2020). While most of these 
systems fall within the subtropical bioregion, previous ecological assessments have largely been 
focused within the southern warm-temperate bioregion. In that region the diversity and abundance 
of biotic assemblages (i.e., phytoplankton, microphytobenthos, zooplankton, macrozoobenthos, 
and fish) were found to differ between micro-estuaries and micro-outlets (Dalu et al., 2018, 2020;  
Magoro et al., 2019, 2020a, 2020b).

Of the 127 South African subtropical micro-systems identified, 63 are situated along the KwaZulu-
Natal (KZN) coastline (Van Niekerk et al., 2020). Of these, 13% are micro-estuaries and 87% are the 
smaller micro-outlets. The preponderance of micro-systems in KZN, in comparison to the rest of 
South Africa, is likely caused by the steep coastal topography, the high mean annual precipitation 
(600–1 200 mm), and the permeable sandy soils associated with coastal dunes (King, 1997; Van 
Niekerk et al., 2019a). The economic development in coastal cities has increased the demand for 
urban housing (Adams et al., 2020). Rapid land-use change and expansion in urban coastal areas 
causes both non-point and point-source pollution (Nie et al., 2018). Thus, differentiating between 
whether these KZN micro-systems are just an effect arising from catchment characteristics or the 
result of increased anthropogenic run-off requires investigation.

A qualitative assessment by Bate et al. (2017) was the first study to describe the KZN subtropical micro-
systems that emphasised the need for fine-scale spatial delineation of catchment land-use practices 
and water quality assessments. It was suggested that while these systems are small individually, the 
great number along the coastline warrants recognition as important sources of freshwater inflow 
and nutrients to the marine environment. Changes in freshwater inflow, land-use alterations, and 
the influx of dissolved and particulate loads into estuaries and coastal waters are key anthropogenic 
stressors (Mitchell et al., 2015).

Sensitive and broadly applicable indicators are routinely used to detect ecological change (Paerl et al., 
2010). Since microalgae form a critical base component of estuarine food webs, these communities 
are usually among the first to respond to anthropogenic impacts and, thus, these primary producers 
are generally used as indicators of ecosystem health (Lemley et al., 2016). Therefore, the aims of this 
study were to (i) assess the water quality and phytoplankton characteristics of the micro-systems 
along the KZN coast, and (ii) identify any potential source of pollution through the analysis of land-
use change within the micro-system peri-catchments. The initial hypothesis was that micro-systems 
impacted by residential development close to the ocean (i.e., seepage from septic tanks) would be 
more affected by a higher availability of total nitrogen and phosphorus compared to those impacted 
by agriculture or natural habitat.
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MATERIALS AND METHODS

Study site description

The KZN Province is situated on the north-east coast of South 
Africa (Fig. 1). The 570 km of coastline extends across the 
subtropical and tropical biogeographical regions, encompassing a 
variety of independent outlet drainage systems (Begg, 1978, 1984). 
These include six of the nine primary estuary ecosystem types and 
the recently described micro-system types (Bate et al., 2017; Van 
Niekerk et al., 2020). Habitat degradation driven by urbanisation 
has contributed to the poor condition of many of the small, 
sensitive estuaries in this province. These systems are impacted 
by poor water quality and changes in mouth state associated 
with existing wastewater discharges, polluted catchment run-off 
(i.e., agricultural return-flow and diffuse urban runoff), and flow 
modification (Van Niekerk et al., 2019b; Adams et al., 2020).

Single point sample collections were conducted in August 
2021 at 42 pre-selected micro-systems across one metropolitan 
(eThekwini) and two district (Ugu and iLembe) municipalities 
(Fig. 1). The KZN coastline is divided into north and south coasts, 
with the north coast stretching from Ballito to Thukela Mouth 
and the south coast stretching from Port Edward to Scottburgh. 
The micro-system type selection criteria were based on the spatial 
representations of the entire KZN coastline and the presence of a 
freshwater outlet/seep. Other considerations in the data-collection 
strategy included ease of access and safety. Table A1 with the 
coordinates of each study system is provided in the Appendix.

Water quality variables

The physico-chemical variables, including temperature (°C), 
salinity, dissolved oxygen (mg·L−1) and pH, were measured using 
a Hanna HI98194 multiprobe at the mid-point of the water 
column. Because of the long distances between sampling points, 
there was only time during the field visits for a single point to be 
measured within each micro-system. Depth measurements (m) 
were done using a measuring stick. A single water sample for total 
nitrogen (TN) and total phosphorus (TP) were collected in each 
microsystem at the mid-point of the water column using a 500 mL 

weighted pop-bottle. The collected water samples were stored in 
250 mL acid-washed polyethylene screw-cap bottles and frozen to 
−20°C until analysis. The persulphate digestion method was used 
for the simultaneous detection of TN and TP (Koroleff, 1983).

Phytoplankton biomass and community composition

Using chlorophyll-a (Chl-a) concentration as a proxy for 
phytoplankton biomass and phytoplankton taxa for community 
composition, water samples were collected at the mid-point of 
the water column using a 500 mL weighted pop-bottle at a single 
point within each micro-system. For Chl-a, duplicate water 
samples were gravity-filtered through plastic Millipore towers 
using Munktell MGC glass fibre filters (1.2 µm pore size). The 
duplicate filters were kept cool in the field and then frozen once 
sampling was completed. The Chl-a was extracted overnight in 
the laboratory with 10 mL of 95% ethanol (Merck 4114) at 1–2˚C. 
The extract was filtered, and the light absorbance of the filtrate 
was read at 665 nm before and after acidification with 1N HCl, 
using a GBC UV/VIS spectrophotometer (GBC UV/VIS 916, 
GBC Scientific Equipment Pty Ltd., 1995). The equation used to 
calculate Chl-a concentration was that of Hilmer (1990), derived 
from Nusch (1980):

Chlorophyll-a biomass (μg·L−1)
= (Eb665 − Ea665) x 29.6 x (v/(V x l))

where:

Eb665 = absorbance at 665 nm before acidification

Ea665 = absorbance at 665 nm after acidification

v = volume of solvent used for the extraction (mL)

V = volume of sample filtered (L)

l = path length of spectrophotometer cuvette (cm)

29.6 = constant calculated from the maximum acid ratio

(1.7) and the specific absorption coefficient of

chlorophyll a in ethanol (82 g·L−1·cm−1).

Figure 1. A map indicating the position of the 42 micro-systems and 3 municipal districts along the KwaZulu-Natal coastline, South Africa
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A presence–absence approach was applied to record the 
occurrence of benthic algal growth within each micro-system. 
This method is routinely used for surveying individual plants or 
vegetation communities and consisted of a simple observation of 
whether benthic algae were present in the micro-system or not 
(Bonham, 2013).

For phytoplankton community composition, the water samples 
(250 mL) were preserved with 1 mL of 25% glutaraldehyde 
solution. Two drops of Rose Bengal were added to a known 
volume of preserved water sample and poured into a 26.5 mm 
internal diameter Utermöhl settling chamber. The cells were 
allowed to settle for 24 h before identification using a Zeiss IM 
35 inverted microscope at the maximum magnification of 630 X. 
Either a minimum of 200 frames or 200 cells were counted for 
each sample. The cells were classified according to phytoplankton 
classes and cell densities were calculated using the equation 
described by Snow et al. (2000):

Cells·mL−1 = ((πr2)/A) x C/V
where:

r = radius of settling chamber (mm)

A = area of each frame (mm2)

C = number of cells in each frame

V = volume sample in the settling chamber (mL)

Land-use types

The 2017 KZN Land-Cover Sentinel 2 Equivalent dataset was used 
to extract and calculate (in hectares) the land-use type distribution 
landwards of each micro-system, using ESRI ArcMap 10.5.1 
software. The total land-use for each micro-system was obtained 
using a 1 km contour area (Taljaard et al., 2017). A 1 km contour 
area was selected to ensure the inclusion of intensive land-use 
activities – particularly agricultural – which occur outside the 
immediate adjacent catchment (i.e., 500 m) to these systems. 
Size and intensity of land-use upstream of a system may, in some 
instances, supersede the water quality signal from the larger 
catchment and subsequently become the key determinant of the 
water quality status of the micro-system inflow (Taljaard et al., 
2017). The 2017 KZN Land-Cover Sentinel 2 Equivalent dataset 
was selected as it represents an overall mapping accuracy of 97.7% 
due to the incorporation of enhanced spectral content provided 
by the Sentinel 2 imagery, as well as multi-seasonal imagery that 
covers the full dynamic range of seasonal landscape characteristics. 
A total of 47 different land-cover classes have been delineated, of 
which the individual class mapping accuracy level ranges between 
86% and 100% (EKZNW and GeoTerraImage, 2018).

Data analyses

The R programming language (Version 4.1.3, R Core Team, 2022) 
was used for all data analyses. The Shapiro-Wilks test was used to 

test for data normality. The association between the concentrations 
of the water quality variables and selected microalgal variables 
(phytoplankton biomass, community composition and benthic 
algae presence-absence) was tested using the parametric Pearson 
correlation coefficient, or Spearman’s rank correlation when 
data were non-parametric. All data analyses were tested at a 
significance level of   < 0.05.

RESULTS

Water quality variables

A total of 38 micro-systems were sampled along the length of the 
KZN coast in August 2021. Four of the pre-selected 42 micro-
systems were unable to be sampled due to a lack of a measurable 
water body (see Table A1, Appendix). Water chemistry data 
were summarised according to the municipal division because 
development plans and service delivery (e.g., sewage and 
sanitation) are likely different between the governing authorities 
(Table 1).

Results of the chemistry measurements for each micro-system 
are presented in Table A2 (Appendix). Water temperatures 
within the micro-systems ranged between 17.0˚C and 19.6˚C. 
Mean salinity values for most of the micro-systems were 
characteristic of oligohaline conditions (0.5–5), but with 
maximum salinity values in eThekwini and iLembe representing 
mesohaline conditions (5–18) and with polyhaline conditions 
(18–30) in Ugu. These shallow micro-systems (0.1 m ≥ but 
≤ 0.75 m) were generally well oxygenated (>8 mg·L−1) with 
hypoxia (minimum < 3 mg·L −1) only evident in eThekwini 
(i.e., Subtropical 84) and Ugu (i.e., Subtropical 57) systems. The 
pH values were within the typical range (7.0 to 8.5, see Snow 
and Taljaard, 2007) for estuarine waters, with the exception 
of Subtropical 46 (9.0) and 91 (6.6). Total nitrogen (TN) and 
phosphorus (TP) concentrations exceeded eutrophic thresholds 
(TN > 1.2 mg·L−1 and TP > 0.07 mg·L−1; see Paulic et al., 1996) 
in both Ugu and eThekwini. Despite the evident enrichment of 
TN in the iLembe systems, mean TP concentrations were low 
(< 0.07 mg·L−1) indicating a good water quality. Maximum TN 
and TP concentrations were recorded in Ugu and eThekwini in 
Subtropicals 51, 57, 81, and 82 (see Table A2, Appendix). Both 
TN and TP showed a negative association (P < 0.05) with pH 
(rTH= −0.43, rTP = −0.32) and DO (rTH = −0.63, rTP= −0.81), 
suggesting biochemical cycling, i.e., in situ-remineralisation and 
biological uptake.

Land-use types

Three primary land-use types were identified within the 1 km 
peri-catchment of the micro-systems using the KZN Land-
Cover Sentinel 2 Equivalent dataset. These include agriculture, 
development and natural habitat. Agriculture was further 
sub-divided into plantations, permanent orchards, sugarcane 

Table 1. Water quality variables of the 38 micro-systems (mean ± SE [min:max]) recorded per municipal district 

Municipal district Temperature 
(˚C)

Salinity Dissolved 
oxygen (mg·L−1)

pH Depth 
(m)

Total nitrogen 
(mg·L−1)

Total phosphorus 
(mg·L−1)

Ugu District Municipality 
(n = 26)

17.0 ± 0.4 
[13.8:25.9]

2.1 ± 0.8 
[0.1:24.7]

8.4 ± 0.4 
[2.4:11.9]

7.6 ± 0.1 
[7.0:9.0]

0.2 
[0.1:0.7]

1.47
[0.15:3.98]

0.14
[0.001:0.71]

eThekwini Metro
(n = 6)

18.3 ± 0.5 
[15.7:20.8]

1.4 ± 0.8 
[0.2:6.4]

8.5 ± 1.3
[1.1:14.8]

7.7 ± 0.1 
[7.1:8.4]

0.2 
[0.1:0.3]

2.81
[0.6:5.41]

0.37
[0.01:0.9]

iLembe District Municipality
(n = 6)

20.3 ± 0.5 
[17.6:23.1]

2.5 ± 1.1 
[0.1:9.2]

10.2 ± 1
[6.1:18.5]

8.1 ± 0.2 
[6.6:9.0]

0.3 
[0.1:0.6]

2.77
[1.04:6.29]

0.06
[0.03:0.09]
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farming and mixed farming practices (Table 2). Most of the peri-
catchments of the micro-systems in Ugu District consisted of 
development (49%), natural habitat (46%) and sugarcane farming 
(3%). In eThekwini, which also had the highest population density 
(1 616 per km2), the micro-system’s peri-catchment consisted of 
development (43.2%), natural habitat (43.8%) and mixed farming 
(10.2%). Sugarcane farming (26.5%), development (29.5%) and 
natural habitat (43.3%) were characteristic of the micro-system 
peri-catchments in the iLembe District.

The micro-systems were grouped according to the total modified 
catchment (Figs 2 and 3). The trophic classifications for TN and 
TP were used to visualise any possible association between the 
anthropogenic land-use change (i.e., catchment modification of 
agriculture and development) and total nutrient concentrations. 
The ratio of micro-systems impacted by nutrient pollution 
increased concomitant with the size of modified catchment. Most 
of the micro-systems with a total modified peri-catchment above 
80% were enriched by both TN and TP (Figs 2 and 3).

Table 2. Land-use type partitioning of the peri-catchments of the 38 micro-systems (mean [min:max]) recorded in each municipal district 

Municipal 
district

Population Area 
(km2)

Population density 
(people ▪ km−2)

Agriculture (%) Development 
(%)

Natural 
habitat 

(%)
Plantation 

(%)
Permanent 

orchards 
(%)

Sugarcane 
(%)

Mixed farming 
practices 

(sugarcane and 
tree nuts) (%)

Ugu District 
Municipality

753 336 5 047 149 0.9
[0.6:2]

0.3
[0:6.9]

3
[0.5:3]

0.9  
[5.4:18.4]

49
[0:70.6]

46 
[0.1:66.3]

eThekwini 
Metro

3 702 231 2 291 1 616 0.1
[0:0.5]

0
[0:0]

2.8  
[0:16.5]

10.2  
[21.6:39.3]

43.2
[0:63.9]

43.8 
[0:55.2]

iLembe District 
Municipality

657 612 3 269 201 0.5
[0:1.8]

0
[0:0]

26.5 
[0:78.2]

0
[0:0]

29.6
[0:54.4]

43.3 
[0:40.1]

Figure 2. The trophic classification for total nitrogen concentrations recorded in the micro-systems and grouped according to the total modified 
catchment area (%)

Figure 3. The tropic classification for total phosphorus concentrations recorded in the micro-systems and grouped according to the total 
modified catchment area (%)
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Phytoplankton biomass and community composition

Mean phytoplankton Chl-a concentrations in the micro-systems 
ranged between 2.3 and 8.5 µg·L−1 (Fig. 4). High mean Chl-a 
concentrations were recorded in the eThekwini systems (8.5 ±  
2.8 µg·L−1), while the lowest were recorded in the Ugu District 
systems (2.3 ± 0.4 µg·L−1). Subtropical 81 in eThekwini was 
the only micro-system where bloom concentrations (> 20 
µg·L−1) were observed (Table A3, Appendix). A total of 6 
phytoplankton functional groups were recorded. These included 
Bacillariophyceae, Cryptophyceae, Chlorophyceae, Cyanophyceae, 
Dinophyceae, and Euglenophyceae (Table 3). The dominant 
phytoplankton functional groups differed between the municipal 
districts. The micro-systems in the Ugu District were characterised 
by a co-dominant phytoplankton community of Bacillariophyceae  
(224 cells·mL−1) and Chlorophyceae (115 cells·mL−1). In the 
eThekwini metro systems, Bacillariophyceae (1 935 cells·mL−1) 
primarily dominated the phytoplankton community, with 
Cyanophyceae (62 cells·mL−1) and Chlorophyceae (35 cells·mL−1) 
identified as sub-dominant groups. No Dinophyceae were recorded 
in eThekwini. The micro-systems in iLembe were characterised by 
a co-dominant phytoplankton community of Bacillariophyceae  
(349 cells·mL−1) and Cyanophyceae (287 cells·mL−1). 
Bacillariophyceae showed a positive association (P < 0.05) with 
temperature (r = 0.3) and mean Chl-a (r = 0.3). A negative 
relationship was recorded between Cryptophyceae and 
temperature (r = −0.43), while increased salinity (r = 0.3) appeared 
to favour Cryptophyceae growth (P < 0.05). A positive relationship 
was recorded between Cyanophyceae and TN (r = 0.4).

Micro-estuaries versus micro-outlets

Mean water temperature, salinity, DO, and pH were similar 
between systems (Table 4). Micro-estuaries and micro-outlets 
(Fig. 5) were generally fresh to oligohaline (> 0.5 but < 5) with 

an isolated instance of increased salinity (~ 9) recorded in micro-
outlet Subtropical 38. According to the DO range, micro-estuaries 
were categorised by well-oxygenated (> 4 mg·L−1) conditions, 
whereas 33% of micro-outlets experienced near-anoxic  
(2.5 mg·L−1) to supersaturated (10 mg·L−1) DO levels. Mean total 
depth (m), phytoplankton Chl-a concentrations, Bacillariophyceae, 
and Cyanophyceae abundance were higher in the micro-estuaries 
compared to the micro-outlets. Micro-outlets presented with 
a higher availability of TP and had an increased abundance of 
Euglenophyceae (Table 4). With regards to land-use change, 
both micro-estuaries and micro-outlets were approximately 
equally impacted by development (42–46%), but the incidence of 
agricultural activities within the peri-catchment of micro-outlets 
was higher (11%) compared to micro-estuaries (1%).

DISCUSSION

Development (i.e., urbanisation) contributed the largest fraction 
(> 40%) of land-use change for the micro-systems situated within 
the Ugu and eThekwini areas (Nie et al., 2018). Nobre et al. (2020) 
showed that the percentage of anthropogenic land-use adjacent 
to small and shallow lakes was the key factor related to impaired 
lake water quality. Both the Ugu and eThekwini Metro micro-
systems were characterised by oligohaline conditions. High 
levels of impervious surfaces associated with urbanisation can 
lead to localised increased surface runoff (Han et al., 2017). In 
KZN, many small estuaries receive nutrient-enriched freshwater 
effluent discharges and diffuse runoff that increases the nutrient 
concentrations and reduces salinity (Adams et al., 2016).

The mean TP concentrations (~0.37 mg·L−1) recorded within micro-
systems in eThekwini were 2 to 6 times higher than other muni-
cipal areas. A study on regions of a subtropical microtidal lagoon 
showed phosphorus enrichment to be higher in urbanised rivers 
compared to non-urbanised rivers (Cabral and Fonseca, 2019). 

Figure 4. The phytoplankton Chl-a (mean ± SE) of the micro-systems per municipal district along the KwaZulu-Natal coast  

Table 3. The phytoplankton community composition (mean [min:max]; cell·mL−1) of the micro-systems per municipal district along the  
KwaZulu-Natal coast 

Municipal district Bacillariophyceae Cryptophyceae Chlorophyceae Cyanophyceae Dinophyceae Euglenophyceae

Ugu District 
Municipality

224 
[0:1376]

34 
[0:122]

115
[0:1462]

83
[0:1617]

4
[0:75]

15
[0:206]

eThekwini  
Metro

1 935
[0:10925]

23
[0:129]

35
[0:131]

62
[0:371]

0
[0:0]

9
[0:24]

iLembe District 
Municipality

349 
[65:903]

36 
[0:76]

33
[0:76]

287
[0:1303]

4
[0:22]

183
[0:765]
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The population density and human-led development are 
substantially higher in the eThekwini area, with approximately 
1 616 people per km2 (Table 2). Nutrient enrichment in South 
African estuaries is generally caused by the disposal of municipal 
wastewater and diffuse urban runoff (Adams et al., 2020). This is 
especially evident in densely populated coastal settlements that 
lack reticulated sewage systems, where untreated sewage enters 
rivers and estuaries via stormwater runoff.

The mean TN concentrations observed in the micro-systems in the 
Ugu area were lower compared to the micro-systems in eThekwini 
and iLembe despite having the largest contribution of development 
(49%) within the peri-catchment. Anthropogenic pollutants 
carried along surface or subsurface pathways can be reduced when 
large proportions of land covered by forested areas and natural 
vegetations are present within the catchment (Nobre et al., 2020). 
Of all the municipal areas, Ugu had the highest percentage natural 

Figure 5: Micro-estuaries (A, C) and micro-outlets (B, D) found along the south and north coasts of KwaZulu-Natal.

Table 4. A comparison of the water quality variables, land-use type and phytoplankton community dynamics (mean [min:max]) between the 
micro-estuaries and micro-outlets

Variable Micro-estuary (n = 5) Micro-outlet (n = 33)

Temperature (˚C) 18 [15:20] 17 [14:21]

Salinity 1 [0:3] 1 [0:9]

DO (mg·L−1) 9 [6:10] 9 [1:12]

pH 8 [8:8] 8 [7:9]

Depth (m) 0.4 [0:1] 0.2 [0:1]

TN (mg·L−1) 1.18 [0.60:2.58] 1.93 [0.03:6.29]

TP (mg·L−1) 0.09 [0.04:0.19] 0.32 [0.01:4.69]

Development (%) 42 [0:64] 46 [0:70]

Agriculture (%) 1 [0:27] 11 [0:78]

Natural habitat (%) 49 [0:59] 42 [0:72]

Phytoplankton Chl-a (µg·L−1) 12.1 [0:44] 2.3 [0:14.2]

Bacillariophyceae (cells·mL−1) 2 322 [10:10 925] 240 [0:1 376]

Cryptophyceae (cells·mL−1) 28 [0:129] 34 [0:122]

Chlorophyceae (cells·mL−1) 11 [0:31] 101 [0:1 462]

Cyanophyceae (cells·mL−1) 262 [0:1 303] 88 [0:1 617]

Dinophyceae (cells·mL−1) 15 [0:75] 1 [0:22]

Euglenophyceae (cells·mL−1) 0 [0:0] 46 [0:765]
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habitat (46%). This, coupled with the overall lower population 
density (i.e., 149 persons per km2), likely contributed to the lower 
concentrations of TN exported to the Ugu waterbodies.

Instances of hypoxia were recorded in Subtropical 57 (Ugu) and 
Subtropical 84 (eThekwini). Increased nutrient availability is well 
known to stimulate higher phytoplankton growth that can lead 
to bloom formation. Hypoxic conditions develop once the bloom 
organic material sinks to the bottom water where it decomposes. 
Yet, phytoplankton biomass (< 5 ug Chl-a·L−1) was low and 
Cyanophyceae abundance (dominant phytoplankton group) was 
less than 400 cells·mL−1 in both systems (see Table A3, Appendix). 
Results showed an inverse relationship between the total nutrients, 
DO, and pH, suggesting that in-situ remineralisation processes 
may be responsible for the hypoxic incidences. Remineralisation 
of organic matter not only increases nutrient availability but also 
causes hypoxia and lower pH (Snow and Taljaard et al., 2007; 
Feely et al., 2010). The iLembe micro-systems were characterised 
by higher DO (>10 mg·L−1) and pH (>8). Benthic algal mats were 
visible in 50% of these micro-systems (see Table A3). In the southern 
warm-temperate micro-systems, higher pH corresponded with 
increased algal growth (Human at al., 2018). Benthic algal mats are 
often dominated by filamentous cyanobacteria or by biofilms of 
epipelic diatoms that can be macroscopically recognisable when the 
microphytobenthos is abundant (Spetter et al., 2015). Benthic algae 
at the sediment surface produce oxygen. In turn, pH is affected 
by the photosynthetic CO2 assimilation (Revsbech et al., 1988; 
MacIntyre et al., 1996). As a result, supersaturated DO conditions 
typically coincide with higher pH (Revsbech et al., 1988), as was 
observed in the iLembe micro-systems during this study.

Mesohaline conditions were unique to the micro-systems 
within iLembe, where sugarcane farming practices (26.5%) 
and development (29.5%) contributed almost equally to the 
recorded land-use change. Additionally, and in contrast with the 
micro-systems south of the iLembe District, only TN exceeded 
the eutrophic threshold. Agricultural return-flow is the highest 
contributor to water quality deterioration in South African 
estuaries, but it often causes moderate nutrient pollution in 
estuaries nationally. Diffuse urban runoff and wastewater effluent 
discharge are responsible for heavy to severe nutrient pollution 
(Adams et al., 2020). As human activities have altered the N:P ratio 
in water, the global ratio of anthropogenic inputs is now estimated 
at up to 30:1, which is much higher than the average for ocean 
water and plankton, i.e., up to the 16:1 Redfield ratio (Peñuelas 
and Sardans, 2022). This anthropogenic N:P ratio was exceeded 
in 50% of the micro-systems recorded in the iLembe District (see 
Table A2, Appendix). A similar nitrogen–phosphorus imbalance 
was observed in northern Queensland (Australia) where the use 
of fertilizer for sugarcane and banana cultivation increased the 
nitrate concentrations into adjacent streams and rivers which 
led to a much higher N:P ratio than the Redfield ratio, causing 
possible P limitation (Tanaka et al., 2021).

Variations in algal abundance and community composition 
are largely driven by bottom-up controls such as temperature, 
salinity, turbidity, hydrodynamics, and nutrient concentrations 
(Lemley et al., 2016; Wang and Zhang, 2020). With the 
exception of Subtropicals 50 and 81, the phytoplankton Chl-a 
concentrations for the micro-systems (see Table A3, Appendix) 
were within the range (0 to 10 µg·L−1) reported for temporarily 
closed estuaries (TCEs) (Perissinotto et al., 2010). These findings 
are in line with the observations of phytoplankton biomass in the 
southern warm-temperate (winter rainfall areas) micro-systems 
that were also reported as comparable to smaller TCEs. Higher 
phytoplankton biomass coincided with the winter season, when 
increased nutrients were available following catchment flooding 
(Dalu et al., 2018). Despite the excess TN (> 0.5 mg·L−1) and TP 

(> 0.05 mg·L−1) availability in most of the KZN micro-systems, 
phytoplankton biomass remained below bloom concentrations 
(< 20 µg·L−1). This highlights the influence of other factors 
that facilitate the loss of phytoplankton biomass (e.g., grazing, 
flushing, cell death, and sedimentation), and which were not 
accounted for due to the limitations of a single spatial ecological 
assessment (Lemley et al., 2015; Roelke and Spatharis, 2015; 
Chorus and Spijkerman, 2021). However, benthic algal mats 
on the sediment surface were observed in some micro-systems 
(see Table A3). Microalgal biomass in the sediment has been 
shown to be substantially higher in comparison to the water-
column in subtropical TCEs (Perissinotto et al., 2010). Therefore, 
future research efforts should include investigating the benthic 
microalgal community and their link to groundwater-sourced 
nutrients, as it may also be contributing a significant fraction of 
the total primary biomass within these micro-systems.

Bacillariophyceae (i.e., diatoms) were identified as the dominant 
phytoplankton group in the micro-systems, followed by 
Cyanophyceae, Chlorophyceae, and Euglenophyceae. Diatoms 
thrive in warmer temperatures and are generally the predominant 
phytoplankton group in estuaries (Lemley et al., 2016; Bharathi 
et al., 2022). However, due to their r-selected strategies it can be 
expected that diatoms would respond to a lower N:P ratio and 
would be outcompeted if N:P in the environment increases (Glibert, 
2020). This was observed in Subtropical 59 and 85 (see Table A3), 
where Cyanophyceae reached abundances above 1 000 cells·mL−1 
and out-competed Bacillariophyceae when the N:P ratio peaked 
at 30:1, which coincided with oligohaline conditions. Globally, 
Cyanophyceae inhabits the widest variety of freshwater habitats 
(Wehr et al., 2015). In addition, increases in N loads tend to favour 
the proliferation of Cyanophyceae, while the excessive N availability 
can lead to a decline in the dissolved silicate (DSi) to nitrogen 
ratio required by diatoms for growth (Wehr et al., 2015; Wang and 
Zhang, 2020; Chorus and Spijkerman, 2021). When phytoplankton 
communities become dominated by non-diatom species due to a 
potential shift in the DSI:N ratio (< 1), the risk of the occurrence of 
harmful algal blooms increases (Kaiser et al., 2013).

Despite the similarities in mean temperature, salinity, DO and 
pH, the phytoplankton community dynamics were found to differ 
between micro-estuaries and micro-outlets. The small size and 
shallow depth of the micro-systems increases their susceptibility 
to anthropogenic activities (Suari et al., 2019). Concomitant 
with the shallower water depths, higher mean TN and TP 
concentrations were observed in the micro-outlets. Similarly, a 
study by Human et al. (2018) reported higher availability of total 
oxidised nitrogen in micro-outlets compared to micro-estuaries 
during winter. However, the southern warm-temperate micro-
outlets are located within relatively pristine catchments (Human 
et al., 2018), whereas the KZN micro-outlets are largely impacted 
by urbanisation and agricultural activities. Results from this 
study showed that the trophic classification of the micro-systems 
was associated with the severity of the catchment modification, 
i.e., >80% modified for TN and >20% modified for TP. Total 
phosphorus typically increases with wastewater discharge, 
artificial drainage, and erosion (Tanaka et al., 2021). The excess 
catchment-derived nutrient availability was evidenced by the 
composition of phytoplankton communities in the micro-outlets, 
consisting of Chlorophyceae, Cyanophyceae and Euglenophyceae. 
These phytoplankton groups share habitat preferences by 
favouring standing or slow-flowing freshwater, rich in nutrients 
and organic matter (Wehr et al., 2015).

Riverine transport represents the primary pathway of nitrogen and 
phosphorus exports into the nearshore marine environment from 
anthropogenic land-based sources (Kaiser et al., 2013; Fredston-
Hermann et al., 2016). Individual estuarine health is important 
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as it contributes to the overall resilience (e.g., recruitment, flood 
recovery, and genetic exchange) of the network of estuaries along 
a section of coast (Van Niekerk et al., 2019a). The poor health state 
of many of the small estuaries within the three municipal districts 
has led to a 300 km functional gap in the network of estuaries in 
the subtropical bioregion (Van Niekerk et al., 2019a, 2019b). For 
example, a study by Moodley (2021) revealed anthropic levels of 
heavy metals in fish species found along the Durban coastline, 
linked to the intensification of industrial development and 
urbanisation within the catchment. As the frequency of extreme 
rainfall events is expected to increase along the KZN coast, it can 
be anticipated that diffuse agricultural runoff and contaminated 
stormwater runoff will only intensify in the future (Van Niekerk 
et al., 2019c). The threat that runoff poses to the coastal ocean 
is a growing concern among governments and conservation 
organisations globally (Fredston-Hermann et al., 2016). Three of 
the five KZN marine protected areas (i.e., Trafalgar MPA, Protea 
Banks MPA and Aliwal Shoal MPA) are situated along the 300 km 
impacted coastline (SAAMBR, 2022). Excessive nutrient loading 
can hinder the conservation success of marine areas selected 
for fish and habitat protection by facilitating the growth of algal 
blooms, hypoxic events, or reduced coral recovery (Mitchell et 
al., 2015; Fredston-Hermann et al., 2016; He and Silliman, 2019). 
Urgent management intervention is required to improve the 
degraded health status of the KZN micro-systems as the long-
term cumulative impact of exporting anthropogenic-induced 
nutrients via the micro-systems and estuaries to the coast could 
be devastating, as shown by the closure of central beaches due to 
poor water quality following flood damage to existing WWTW 
infrastructure within the eThekwini area (Makhanya, 2022;  
Singh, 2022)

CONCLUSION

There is evidence that micro-estuaries have some characteristics 
that differ to those of micro-outlets. A review by Magoro et 
al. (2020b) on the southern warm-temperate micro-systems 
highlighted several biotic and abiotic differences, with micro-
estuaries exhibiting higher diversity. The subtropical micro-
estuaries presented with a deeper water column and lower 
concentrations of TP. The reduced availability of TP can be 
attributed to the low contribution (~1%) of agricultural activities 
to the land-use type partitioning of the peri-catchments. The 
diatom abundance was 9-fold higher in the micro-estuaries 
compared to the micro-outlets, while freshwater groups like 
Chlorophyceae and Euglenophyceae were either present at low 
abundances or absent. As micro-outlets are elevated above mean 
sea level, mixing of sea and freshwater is limited (Van Niekerk 
et al., 2020). Diatoms are typically the main primary producers 
in estuaries owing to their euryhaline capacity, which allows this 
phytoplankton class to adapt to significant variations in salinity 
(Haraguchi et al. 2015; Glibert 2020; Conceição et al. 2021). The 
spatial and temporal distribution, abundance, and functional 
characteristics of estuarine biological communities are shaped 
by fluctuations in the ambient chemical and physical gradients  
(Da Costa Santana, 2018).

The broad classification of the land-use type partitioning of the 
peri-catchments limited any fine-scale identification of possible 
sources of pollution (e.g., seepage from septic tanks), and thus the 
hypothesis that residential development would be the primary 
source of nutrient enrichment could not be validated. The need 
for updated and/or detailed systematic topographic surveys 
of the South African coastline remains a key data requirement. 
These surveys are urgently needed to support estuarine planning 
processes and ecological assessments of change (Van Niekerk et 
al., 2019c). The question of where the highly polluted water is 
coming from is an important one. If the source of most of the 

pollution is from septic systems, then control will fall under 
numerous autonomous local municipalities. If, on the other 
hand, the source is from wastewater treatment plants there is 
the possibility of central government control. This is because 
the South African legal framework is largely sectoral, covering 
several government departments. Source identification needs 
to be prioritised for future investigations as this is necessary to 
engage with the correct government department for the effective 
mitigation, management, and control of anthropic pressures 
in these systems (Van Niekerk et al., 2019c). This study offers a 
baseline understanding of the water quality and phytoplankton 
dynamics of the subtropical micro-systems along the KZN  
coast.
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Table A1. A list of the 42 micro-system types with coordinates. Micro-systems marked by an asterisk (*) had no water at the time of sampling; 
shading indicates micro-estuaries.

Micro-system Micro-system type S E

Subtropical 36 Coastal outlet/seep 30°13’10” 31°3’52”

Subtropical 37* Coastal outlet/seep 30°13’30.259” 31°3’34.718”

Subtropical 38 Coastal outlet/seep 30°14’16.684” 31°1’52.257”

Subtropical 39 Coastal outlet/seep 30°14’48” 31°1’17”

Subtropical 40* Coastal outlet/seep 30°16’31.976” 30°59’20.309”

Subtropical 41 Coastal outlet/seep 30°16’35.101” 30°59’17.513”

Subtropical 42 Coastal outlet/seep 30°16’37.979” 30°59’10.318”

Subtropical 44 Micro-estuary 30°19’9” 30°55’26”

Subtropical 45 Coastal outlet/seep 30°20’13” 30°54’19”

Subtropical 46 Micro-estuary 30°20’44” 30°53’47”

Subtropical 47* Coastal outlet/seep 30°22’45.842” 30°51’18.67”

Subtropical 49 Coastal outlet/seep 30°24’47” 30°48’16”

Subtropical 50 Coastal outlet/seep 30°24’57” 30°48’4”

Subtropical 51 Coastal outlet/seep 30°25’3” 30°47’54”

Subtropical 53 Coastal outlet/seep 30°26’38.346” 30°45’50.7276”

Subtropical 54 Coastal outlet/seep 30°28’38.0639” 30°43’1.596”

Subtropical 55* Coastal outlet/seep 30°30’11.2679” 30°40’59.34”

Subtropical 56 Coastal outlet/seep 30°30’27.612” 30°40’44.2919”

Subtropical 57 Coastal outlet/seep 30°30’49.7159” 30°39’56.16”

Subtropical 58 Coastal outlet/seep 30°30’53.568” 30°39’51.084”

Subtropical 59 Coastal outlet/seep 30°31’38.3519” 30°38’56.112”

Subtropical 60 Coastal outlet/seep 30°31’44.616” 30°38’48.4799”

Subtropical 64 Coastal outlet/seep 30°34’25.7232” 30°34’47.4888”

Subtropical 65 Coastal outlet/seep 30°34’37” 30°34’25”

Subtropical 69 Micro-estuary 30°38’30.7716” 30°28’28.2216”

Subtropical 71 Coastal outlet/seep 30°40’2” 30°26’7”

Subtropical 72 Coastal outlet/seep 30°41’42.1079” 30°23’18.9455”

Subtropical 74 Coastal outlet/seep 30°44’19.2552” 30°19’27.0804”

Subtropical 75 Coastal outlet/seep 30°44’36.1248” 30°18’44.8703”

Subtropical 76 Coastal outlet/seep 30°44’58.6248” 30°17’59.8919”

Subtropical 77 Coastal outlet/seep 30°46’54” 30°14’36”

Subtropical 78 Coastal outlet/seep 30°47’6.3996” 30°14’21.1559”

Subtropical 79 Coastal outlet/seep 30°47’53” 30°12’50”

Subtropical 81 Micro-estuary 30°51’43.308” 30°5’40.553”

Subtropical 82 Coastal outlet/seep 31°8’49.3476” 29°37’33.4272”

Subtropical 84 Coastal outlet/seep 31°10’11.6651” 29°35’39.4403”

Subtropical 85 Micro-estuary 31°12’27.8963” 29°33’1.9079”

Subtropical 86 Coastal outlet/seep 31°14’8.3832” 29°30’24.3431”

Subtropical 87 Coastal outlet/seep 31°14’25.3248” 29°30’4.7052”

Subtropical 88 Coastal outlet/seep 31°14’36.402” 29°29’50.064”

Subtropical 89 Coastal outlet/seep 31°16’4.1772” 29°28’21.1908”

Subtropical 90 Coastal outlet/seep 31°16’15.8555” 29°28’7.1507”

Subtropical 91 Coastal outlet/seep 31°16’28.8372” 29°27’52.6968”
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Table A2. The mean water quality data of the 38 micro-system per municipal district 

Municipal 
district

Micro-system TN
(mg·L−1)

TP
(mg·L−1)

Salinity Temperature 
(˚C)

pH DO
(mg·L−1)

Depth (m) Redfield 
ratio

Ugu District 
Municipality

Subtropical 36 0.674 0.037 0.15 15.72 7 9.79 0.1 18.1

Subtropical 38 0.528 0.027 9.25 15.99 8.27 10.84 0.2 19.9

Subtropical 39 0.152 0.020 0.13 15.09 7.76 10.54 0.15 7.7

Subtropical 41 0.206 0.014 4.24 13.84 8.05 11.99 0.1 14.4

Subtropical 42 0.454 0.045 0.33 21.2 8.55 10.8 0.15 10.1

Subtropical 44 0.645 0.053 2.48 19.71 7.62 7.74 0.4 12.1

Subtropical 45 1.504 0.152 0.8 16.33 7.71 6.1 0.6 9.9

Subtropical 46 0.605 0.097 0.26 21 9.03 11.4 0.15 6.2

Subtropical 49 0.677 0.024 0.22 14.63 7.2 10.01 0.75 27.9

Subtropical 50 3.971 0.318 0.3 16.5 7.5 5.61 0.1 12.5

Subtropical 51 3.707 0.715 0.19 16.2 7.29 3.32 0.2 5.2

Subtropical 53 3.334 0.044 0.18 18.4 7.61 8.44 0.2 75.4

Subtropical 54 0.584 0.075 0.26 14.66 7.7 11.63 0.3 7.8

Subtropical 56 3.595 0.274 0.3 16.47 7.54 8.74 0.5 13.1

Subtropical 57 3.806 0.704 0.3 16.67 7.32 2.45 0.5 5.4

Subtropical 58 0.544 0.029 0.19 18.02 8.02 11.47 0.4 18.8

Subtropical 59 0.759 0.025 0.32 16.15 7.4 8.92 0.15 30.3

Subtropical 60 1.123 0.076 0.32 14.23 7.26 9.15 0.15 14.9

Subtropical 64 1.025 0.062 0.16 16.78 7.62 7.37 0.15 16.6

Subtropical 65 0.488 0.041 0.26 15.03 7.62 9.99 0.25 11.9

Subtropical 69 0.605 0.092 0.34 14.97 7.76 9.01 0.3 6.5

Subtropical 71 0.563 0.055 0.32 16.94 7.7 9.41 0.2 10.3

Subtropical 72 1.530 0.120 0.26 20.76 7.99 8.98 0.15 12.8

Subtropical 74 3.986 0.333 0.27 18.65 7.48 5.09 0.2 12.0

Subtropical 75 2.438 0.320 0.21 16.44 7.61 8.58 0.25 7.6

Subtropical 76 0.735 0.08 0.15 17.01 7.67 9.72 0.25 8.5

eThekwini 
Metro

Subtropical 77 1.423 0.150 0.29 16.67 7.63 9.16 0.3 9.5

Subtropical 78 0.600 0.104 0.29 17.96 7.86 7.86 0.1 5.8

Subtropical 79 3.240 0.217 0.54 18.52 7.68 8.69 0.1 14.9

Subtropical 81 2.589 0.197 3.01 19.15 8.04 10.14 0.3 13.1

Subtropical 82 3.570 0.704 0.19 20.8 7.65 7.85 0.1 5.1

Subtropical 84 5.413 0.902 0.25 18.95 7.17 1.18 0.2 6.0

iLembe District 
Municipality

Subtropical 85 1.458 0.049 0.36 19.97 7.78 9.77 0.5 29.9

Subtropical 86 1.111 0.072 0.19 17.61 8.25 9.28 0.6 15.5

Subtropical 87 2.049 0.089 0.58 21.36 8.02 9.34 0.3 23.1

Subtropical 88 1.042 0.066 0.45 19.76 8.48 11.28 0.3 15.9

Subtropical 89 4.692 0.038 0.21 20.45 8.25 8.3 0.1 123.2

Subtropical 91 6.295 0.068 0.16 18.56 6.61 9.48 0.1 92.7
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Table A3. The microalgal data (chlorophyll-a, phytoplankton density, benthic algae presence/absence) of the 38 micro-system per  
municipal district 

Municipal district Micro-system

Chlorophyll-a 
(µg·L

−1)

Bacillariophyceae 
(cells·m

L
−1)

Cryptophyceae 
(cells·m

L
−1)

Chlorophyceae 
(cells·m

L
−1)

Cyanophyceae 
(cells·m

L
−1)

D
inophyceae 

(cells·m
L

−1)

Euglenophyceae 
(cells·m

L
−1)

Benthic algae

Ugu District Municipality Subtropical 36 7.1 48 24 3 0 0 0 -

Subtropical 38 1.18 38 117 0 0 0 0 p

Subtropical 39 0 0 31 0 0 14 0 -

Subtropical 41 0 48 83 0 0 0 0 -

Subtropical 42 3.55 373 0 0 0 0 0 p

Subtropical 44 5.92 172 0 0 0 75 0 -

Subtropical 45 1.78 250 117 0 0 8 0 -

Subtropical 46 2.96 304 13 0 7 0 0 p

Subtropical 49 5.92 10 14 0 3 3 0 p

Subtropical 50 14.21 879 38 0 76 0 0 p

Subtropical 51 1.18 258 0 1 462 0 0 0 -

Subtropical 53 0 413 34 9 0 0 0 -

Subtropical 54 10.06 1 376 49 0 0 0 0 -

Subtropical 56 2.37 161 122 0 0 0 0 p

Subtropical 57 0 54 29 0 108 0 88 p

Subtropical 58 0 502 43 43 172 0 0 p

Subtropical 59 3.55 310 0 1 342 1 617 0 206 -

Subtropical 60 0 17 14 0 10 0 10 -

Subtropical 64 0 34 21 0 10 0 10 -

Subtropical 65 0 147 71 10 25 0 0 -

Subtropical 69 0 10 0 31 0 0 -

Subtropical 71 0 3 0 10 0 0 0 -

Subtropical 72 0.84 14 0 14 17 0 0 -

Subtropical 74 0 77 32 41 45 0 23 -

Subtropical 75 0 212 46 0 53 0 33 -

Subtropical 76 0 110 3 34 0 0 3 -

eThekwini Metro Subtropical 77 0 0 0 0 0 0 14 p

Subtropical 78 0 21 10 28 0 0 24 -

Subtropical 79 2.96 24 0 131 0 0 7 -

Subtropical 81 43.81 10 925 129 0 0 0 0 p

Subtropical 82 3.95 585 0 0 0 0 0 -

Subtropical 84 0.592 53 0 53 371 0 0 -

iLembe District Municipality Subtropical 85 8.29 197 0 25 1303 0 0 p

Subtropical 86 6.512 96 76 19 38 0 765 p

Subtropical 87 2.37 574 76 76 0 0 325 -

Subtropical 88 4.74 903 43 43 108 22 0 p

Subtropical 89 2.96 258 22 32 237 0 0 -

Subtropical 91 1.78 65 0 0 38 0 7 -


