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Abstract

The past decade has marked the development of computational capacity that far exceeds the capacity of the “instructor” to define
optionsto be evaluated when optimisation hasto be achieved. |n the context of water supply, there are numerous variablesthat can
influence the selection and, hence, thefinal cost of system implementation, improvement and operation. This article reflects some
of thefindings of aresearch project, funded by the Water Research Commission of South Africato establish the potential use of
GAsin the water industry in South Africa. A utility program (GAPOP) was developed to demonstrate the application of GAsin

the determination of the optimal pipe diameter.

Introduction

The past decade has marked the development of computational
capacity that far exceeds the capacity of the “instructor” to define
options to be evaluated when optimisation has to be achieved.

The Government’ s objectiveto provide“water for all” madeit
essential for the limited capital to be employed to provide the
maximum benefit. The optimal investment decision for water
infrastructureimplementation, expansion, additionor rehabilitation
has to be reviewed against the background of the conflicting
demand for capital and thebacklog of water serviceprovision. This
complicates the decision to select the cost-effective and efficient
solution.

The determination of the optimal selection of system
components requires techniquesthat can be employed to assist the
decision-maker in finding the appropriate solution within the
environment of all the possible solutions (solution space).

Genetic agorithms (GAs) have been developed (Holland,
1992) toassi stin searching through compl ex sol ution spacesfor the
optimum solution. GAshave been applied as search techniquesfor
variousengineering problemssuchasstructural designoptimisation,
water distribution network evaluation, pump scheduling, hydro-
logical runoff predictions and resource utilisation. Thistechnique
has not been generally used in South Africa.

Withinthecontext of water supply, therearenumerousvariables
that can influence the selection and the final cost of system
improvements. Thehighvarianceinrainfall andrunoff, availability
of alternative water supply with different reliabilities, demand
pattern variability, operational complexity of the system,
maintenance requirements, running cost (especially power cost),
affordability and willingnessto pay for services, will influencethe
decision on whether the water supply scheme should be
implemented, refurbished, replaced, discarded or expanded.

Identification and analyses of the system components, which
arerequiredtooptimisethesol ution, will havetoempl oy techniques
that can assist in finding the optimal solution. GAs have been
developed as an optimisation search technique.

@ 012 420 2438; fax: 012 362 5218; e-mail: fvuuren@eng.up.ac.za
Received 24 May 2001; accepted in revised form 14 January 2002.

Available on website http://www.wr c.org.za

Based on the functioning of DNA in nature to produce a gene
population with specified characteristics, a mathematical cloning
of thisprocess has been defined to produce outcomeswith specific
characteristics. If the objective outcome can be defined, be it the
minimum cost solution or any other objective, thegeneticalgorithm
process will “calculate” which gene pool will best approach the
objective function (Goldberg, 1989).

The technique of GAs has been applied on a number of
different real problemsand hasresulted in exciting, but not always
straightforward solutions.

In complex water distribution systems, for instance, the
alternative optionswhen eval uating the extensionsto water supply
systems become numerous. GAs provide procedures for the
evaluation of the optimal solutions in the solution space.

The need for optimisation in the water sector

It has been indicated that the challenges in the water industry in
South Africa and the world at large, together with the capita
constraintsand operational cost escal ation, necessitatetheeval uation
of technical, economical and environmental parameterstoreachan
optimal solution.

In the water sector it has been indicated that large savings can
be accomplished if optimal solutions areimplemented (Walters et
a., 1999), when new systems are designed or when existing
systems are refurbished or extended.

The need for the application of optimisation techniques stems
from the fact that:

« the selection of system componentsto be evaluated in awater
systemisdependent on anumber of inter-dependent variables.
For example, if an optimal diameter hasto be determined it is
known that by reducing the diameter the capital costisreduced
but theoperating cost (pumping) will escalateandthepossibility
of pipeburst dueto surge pressures associated with high-flow
velocities will increase.

« anumber of uncertainties exist when the optimisation of water
infrastructure is considered, such as:
what would the influence of escalation be on operational
and capital replacement cost;
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how would natural phenomena like floods and droughts
influence the choice of the system components;

how would the affordability of services to the consumer
influence the design standards; and

how would demand variance and increase influence the
selection of the capacity of system components.

Planners, designersand operatorsareinvolved inthe assessment of
the following issues where GAs can be employed with great
advantage:

* Theidentification of pipe segmentsin a distribution network
that should be rehabilitated to improve the performance of the
system.

« Determining the application of a phased development of
infrastructure for different development horizons.

» Cogt-effective development of infrastructure for aternative
service levels ensuring an affordable service.

»  Optimisationof reservoir sizesand determination of therequired
pump capacities.

»  Optimisation of operational scheduling.

Genetic algorithms (GAs) — An overview

An agorithm is any procedure that uses data and modifies it
according to a set of instructions. Every structured calculation
procedure is an example of an algorithm. GAs are programs that
simulate the logic of Darwinian selection. If one appreciates that
populations accumulate differences over time, due to the
environmental conditionsacting asasel ectivebreeding mechanism,
then you understand GAs. Putting it another way: Understanding
a GA means understanding the simple, iterative process that
underpinsevolutionary change. Theissue, of course, ishow best to
get that “selection process’ translated into a program procedure
and applied to your problem.

Holland (1992) the pioneer of GAsdefines the evolutionary
nature of the algorithm as follows:

« Startwithaninitia population that israndomly generated, but
contains the parameter characteristic variability of the popu-
lation.

* The fitness of each individual in the population is assessed
according to afitness function.

» Theprobability of eachindividual to surviveisproportional to
itsfitness.

» Theindividua sof thenext generationaresel ected on probability
and through agenetictransformation processof cross-over and
mutation, ensuring that the solution is not localised within the
solution environment.

GAs are suited to solve problems that are not vulnerable to attack
by enumerative methods because the sheer number of potential
solutions defies the possibility of testing them all. Such problems
are typically multi-constrained, that is the solution must be a
balanceof conflicting or synergistic properties. When considering
aproblem with multiple dependencies you are normally forced to
admit the possibility of isomeric solutions, i.e. solutionsthat give
the same result using different processing routes. So for some
problemsthere is no such thing as the “best solution”, but instead
onelooksfor membersof afuzzy set of solutionsthat canbedefined
as “good enough”.

Some problemshave a“best” solution, but can belost in avast
result space of complex problems. If the solution spaceis limited
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then enumerative techniques can work. Thisiswhy machines can
now beat chessmasters. The problem with enumerativetechniques
istheir almost completelack of scalability. If you manageto build
acomputer largeenoughto solveareasonably constrained problem,
then adding just one more constraint will probably require another
10 similar computers to deal with additional calculations. Add
another row of squaresto achesshoard and the number of possible
moves expandsdramatically. One of the great strengths of GAsis
that they do not have to evaluate all the possible solutions. This
means that increasing the number of possible solutions has little
impact on the running time of a GA.

Goldberg (1989) indicatedthat aGA differsfromthetraditional
search methods in the following ways:

«  GAswork with coding of the parameter set, not the parameters
themselves.

« GAsevauate a population of points, not asingle point.

¢ GAs use objective function (payoff) information, not deri-
vatives or other auxiliary knowledge, to determine the fitness
of the solution.

¢ GAsuseprobahilistictransitionrules, notdeterministicrulesin
the generation of the new populations.

GAs use bit-strings to represent the state and characteristics of an
object model. Changing the values of the bitsin these bit-strings,
can betrandlated back into changesto the associated objects’ data.
Once the object has been converted (coded) into bit-strings, the
GA-program (coder) can apply biologically analogous processes
such as replication (or reproduction), cross-over and mutation to
the hit-strings, which can then be translated back to the objects
themselves. Inthisway the GA-coder canevolvetheinstance-state
of the components within an object model to obtain a bit-string
(solution) with ahigh fitness. Changesto the bit-string values can
be accomplished through the process of reproduction, cross-over
and mutation that will be discussed in more detail |ater.

Now that it isknown that a GA isasearch procedure, based on
the mechanics of natural selection and natural genetics which is
geared to handle complex multi-objective problems with a large
solution space, abrief overview of the functioning of aGA will be
provided through the discussion of an example.

Example of a genetic algorithm

Goldberg (1989) provides the following examples, which have
been adapted in this paper, to illustrate the working of a genetic
algorithm. The objective isto maximisefunction f(x) = X2, where
X is permitted to vary between 0 and 31.

Touseageneticalgorithmfor theoptimisation of thisproblem,
the decision variables of the problem must first be coded in some
finite-length string. Inthiscase, thevariablexwill simply becoded
asabinary unsignedinteger of length 5. Before proceedingwiththe
simulation, briefly review the notion of abinary integer. In Base 2
arithmetic, there are only two digitsto work with, 0 and 1, and as
an example for the number 10 the decoding will result in a string
01010.

02¢+12°+022+12*+02°=0+8+0+2+0=10.

Another exampleis given below for the coding of the value of 19
in Base 2 arithmetic (10011).

124+022+022+122+12°=16+0+0+2+1=19.

Withafive-bit (binary digit) unsignedinteger itispossibletoobtain
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numbers between 0 (00000) and 31 (11111).
With a well-defined objective function and o ) 0oY | B o~ .
coding, asimul ation of asingle generation of & - §' ©~d o S .%
agenetic algorithm with reproduction, cross- =
over, and mutation is conducted. § g .g
Tostart off, select aninitial population at g d 38K S < o
random with apopulation size4 (4 strings or < = 2
members in the population) by tossing afair = c
coin 20 times to obtain the bit value of the 4 s g ; : g 8 %
times 5 = 20 digits in the four chromosome 2 I 4 | yooo ‘uj o)
(bit) strings. L ooking at thispopul ation, shown z3 - =) g §,
inColumn2of Tablel, it canbeobservedthat S oo oo = Q@
thedecoded x valuesare presented along with _ = e
the fitness or objective function values f(x). 2 g =) 5 2
Tomakesurethat it isknown how thefitness a2s 2 9 |vvxmm BS 2
values f(x) are calculated from the string 82 c3 S 5
representation, take alook at the third string S = £ %
of theinitial population, string 02000 (Column © = pt I
2 of Table 1). Decoding this string as an BEZ N c % = g
unsigned binary integer, note that there is a Es 9 o % % 3T ?Eé = @
single one in the 2¥'s position. Hence for § 8O —“ o Z T 5
string 01000 the value of x = 024+ 1:23 + 022 g ~ ? g
+0 2"+ 02°=8 (Column 2 of Table 1). To s s oo u o =
calculate the fitness or objective function, | ,2282% oo o = S
simply square the x value and obtain the 2122559 ooo p s
resulting fitness value f(X) = 64 (Column 6 of o | 5238 g N B )
Table 1). Other x and f(x) values may be 8| 72585 |2 e 2 =
obtained similarly. - 2 = £ e e n
A new generation (population) (Column '-_',J R c S S
10of Table1) of thegenetic algorithm begins @E|S <855 | & g X
with reproduction of new chromosomesfrom F2 | 85258 |8 |~ | o« 222 5 )
the mating pool. The strings that will be S EZgs % g’ "
available in the next generation are selected T | 25 So g 5
on the basis of their fitness (Column 6 and 7 2 & ks
of Tablel). Inthisexampleoneof string 1, two e E = O 2 g
of string 2and oneof string 4will betransferred g é 3 | e 12383813589 - g 3
to the mating pool, as shown in Column 7 of < | x5° = 4 ‘g
Tablel. Thisreflectsthat the" best” string gets = Qc 5
more copies, the average string stays even 9 < o © o n o 5‘ 8 5
(survives), and the worst dies off. 2 5 wIg3E33 IS8 FN28
With an active pool of strings looking for o 2SS
mates, simplecross-over proceedsintwosteps: B ._g f &£
I 20 gd | Qmo BRI
e strings are mated randomly, using a zx Y1 EB6 R & 5 Q5 Eg 5 8_
random process to pair off the happy 2 %“8 %
couples; and ® ? 89
e matedstring couples cross-over position € ®m 9509 8 5 _g §
is also determined randomly. < § 5 % IS

<

Referring againto Table 1, random choice of - “o o u g B2 §
mates has selected the second string in the §2- 600 u SEg=
mating pool tobematedwiththefirst (Column 5558 S£L848
; — £E5T T N | HOoO0O BT 22
90f Table1). Withacrossingsiteof 4, thetwo €3¢S5 s22g
strings 01101 and 11000 cross and yield two 82X & e =
new strings 01100 and 11001 (Column 11 of 2 e—e- =305
Table 1). The remaining two strings in the — O 2005
mating pool arecrossed at Site3; theresulting = "R x d=0c0=
i A = — AN M < e o) [© R
strings are shown in Column 11 of Table 1. 5 g2 |Z2986F

Thelast operator, mutation, isperformed

on a bit-by-bit basis. Assume that the pro-
bability of mutation in thisexampleis0.001.
With 20transferred bit positionsitisexpected
that 20 x 0.001 = 0.02 bits will undergo
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mutation during a given generation. Simulation of this process
indicates that no bits undergo mutation for this low mutation
probability. Asaresult, no bit positions are changed from Oto 1 or
vice versa during this generation.

Following reproduction, cross-over, and mutation, the new
populationisready to betested. To do this, simply decodethe new
strings created by the simple genetic algorithm and calculate the
fitnessfunction valuesfrom the x values thus decoded. Theresults
of asingle generation of the simulation are shown in Column 12 of
Table 1. Whiledrawing concrete conclusionsfromasingletrial of
astochastic processis, at best, arisky business, itisclear to seehow
GAs combine high-performance solution to achieve even better
performance. In Table 1, note how both the maximal and average
performance has improved in the new population. The population
average fitness has improved from 293 to 439 in one generation,
while the maximum fitness has increased from 576 to 729 during
that same period. Although random processes help cause these
circumstances, it is evident that thisimprovement isno fluke. The
best string of the first generation (11000) receives two copies
becauseof itshigh, above-averageperformance. Whenthiscombines
at random with the next highest string (10011) and is crossed at
Location 3 (again at random), one of the resulting strings (11011)
proves to be avery good solution indeed.

In any genetic algorithm the following functional procedures
are used:

* Reproduction
- copy according to objective function, maintaining the
optimal strings for the next generation
» Cross-over
- parent pairs exchange their gene bits creating new gene
stringsthat contain the characteristicsof the parent strings
e Mutation
- protects against loss of useful genetic material and forces
thesearchfor theoptimal solutionto adifferent placeinthe
solution space (secondary mechanisms)

Repetitive application of these functions of the genetic algorithm,
hasbeen used in theoptimisation of avariety of complex problems.

Application of genetic algorithms (GASs) in water
engineering

Researchers, covering a wide range of water engineering-related
topics have discussed various applications of GAs. A number of
fieldsinthewater industry, havebeenreviewedandthecontributions
of GAs can be summarised according to the following groupings:

*  Runoff estimation

* Yield assessment of surface reservoirs

* Optimisation of the system components during the planning
and design stage

e Operational optimisation

* Network rehabilitation

* Optimisation of operations of water purification plants and
pump stations

Within the limited space available in this paper, referenceis made
only to someof thereferenceson pipelineoptimisation, operational
optimisation and network optimisation.

Montesinos et a. (1999) investigated the New York water
supply problem and found that by modifying the genetic algorithm
used by previous researchers, the cheapest published solution for
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this problem was obtained. The paper also highlighted the fact that
therewasno defined methodol ogy for theeval uation of thepenalty.
A variable was defined to indicate the number of constrained
failures. The variables were related directly to the cost of the
sel ected sol ution. Theauthorsal so modified themutation operation
so that the mutation of a string occurs at a random position along
the bits (individual elements of the gene) of the string.

Reisand Chaudhry (1997) used GAsto determinethelocation
and setting of pressure control valvesin adistribution system, the
objective being to minimise |eakage for certain reservair levels.

Yeo and Agyel (1998) indicated the application of GAson a
number of engineering problemssuch asthefiniteel ement analyses
of astructure, extraction of pollutantsfrom an aquifer, positioning
of wells for optimum abstraction and minimizing pumping rates
and overall costs. Theauthorsindicated theflexibility of GAsasan
optimisationtechniqueanditsapplicability inpractical engineering
problems.

Yagi and Shiba (1999) found that the utilization of GAs
provided an effective way of establishing areasonable fuzzy rule
base for apumping station handling combined sewage and natural
flow.

Wardlaw and Sharif (1999) indicated that a four-reservoir
problem could be handled effectively by utilizing GAs with real
value coding with tournament selection, uniform cross-over and
modified uniform mutation. The authors were the first to use
uniform cross-over for this problem, which allowed each geneto
cross-over. They also indicated that real value coding was
significantly faster than binary coding and gave better results.

Morshed and Kaluarachchi (1998) indicated the complexities
of flow and contaminant modeling of groundwater resources and
reflected the usefulness of artificial neural networks in solving
groundwater problems. Reference to the use of GAs as a robust
mechanismin solving non-linear, optimisation problemswasmade.

Barrosand Rutledge (1998) indicated thedifficulty to establish
whichof thevariablesshouldbeincludedinamultivariateregression
model. The problem that arose here was the assessment of alarge
number of measurements taken from a set of samples with the
independent variable not being mutually independent (linear
dependent vectors or co-linearity). The authors showed that GAs
provided a global optimal selection of variables in a reasonable
time, but warned that the initial selection of strings wasimportant
to ensure convergence.

Olivera and Loucks (1997) proved in a very useful and
descriptive way that GAs could be employed to optimise the
operating rules of multi reservoir systems.

Huang and Mayer (1997) indicated that GAs could be used in
thesearch for optimum pumping ratesand discrete spacing of wells
in an aquifer with homogeneous or non-homogeneous
characteristics.

Guptaet al (1999) devel oped a methodol ogy based on the use
of GAsfor thedevel opment of lower cost designsand augmentation
of existing water distribution systems.

Halhal et al. (1997) indicated that in network rehabilitation,
expansion and replacement it was difficult to determinethe correct
improvements to be achieved with a limited capital budget if
conventional optimisation techniques (e.g. linear programming)
wereapplied. A multi-objective function approach was applied by
using capital cost and benefit asthe objectivefunctionto determine
the required changes to the system through the use of GAs asthe
search technique. The two examples that were discussed showed
the value of this technique.

Walters et a. (1999) presented a procedure to assist with the
decision in the rehabilitation and expansion of existing networks.
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This procedure was tested against the benchmark problem
(“Anytown”). In the evaluation of the benchmark problem, tank
level sweredefined asindependent variablesand all thenodeswere
specified as potential sites for new storage tanks. Allowance was
also made for the pump sizes to vary. The solutions that were
obtained by eval uating a24 h extended period, resultedinacheaper
solution than determined before. It was found that the required
storagewas morethan that, determined by other researchers, using
other techniques.

The benefit of the optimisation has been proven and further
application of GAsnow remainsthe challenge. Inthe planning and
design stages of any project, aternative solutions have to be
compared and optimised. The optimisation problems frequently
encountered are:

* The selection of pipelines in a distribution network to be
incorporated for rehabilitation.

» Decision-support for abandoning or replacing pipelines.

«  Determiningthestagesof aphased development of infrastructure
for different development horizons.

« Cogt-effectivedevel opment of infrastructure, taking cognisance
of alternative service levels and affordability of service.

*  Optimisation of reservoir sizing and pump capacity.

The optimisation decision is aways taken against the background
of anumber of uncertainties, such as:

« what will the influence of escalation be on operational and
capital replacement cost;

* howwill natural phenomenalikefloodsand droughtsinfluence
the choice of the system components;

» how will affordability of servicesfor the consumersinfluence
the design standards; and

* how will demand variance and increaseinfluencethe selection
of the capacity of system components.

In the next section the utility program that was developed to
determine the optimal pipe diameter for a gravity or a pumping
main will be described.

Utility program for the determination of the
optimum pipe diameter

Introduction to the program features

The utility program can analyse two simple problems. One being
a gravity system with off-takes between the supply and the end
reservoir and the second is a pumping line with demands between
the pump station and the end reservair. In both these problemsthe
objective function is to minimise the costs while the required
residual pressure at al the nodes and the velocity is maintained
below the maximum permissible flow velocity in the pipes. The
constraints against which the solution is valued are:

» the residual pressure should be in excess of the minimum
required residual pressure at all the demand nodes; and

« the flow velocity should be less or equal to the maximum
allowable velocity in the system.

The designer can set these constraints.
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Short description of the program, “Genetic Algorithm
Pipeline Optimisation Program” ( GAPOP)

The objectives of GAPOP are to:

« provide access for the novice to the background, value and
understanding of the use of GA techniques;

¢ determine an optimal solution for pipe diameters based on the
life-cycle cost for a simple gravity or pumping system.

In the search for the optimal solution, the “fitness function” seeks
the lowest cost solution. Cost comparison in the case of the
pumping system is done, based on the net present value (NPV),
(capital, maintenanceand energy costs) cal culated over theanalysis
period. In the case of the gravity system only the capital cost is
optimised. Provision has been made for a weighting factor to
penalise the solution by increasing the cost of the solution on the
following two grounds:

¢ theresidua pressure being less than the requirement; and
« the flow velocity being more than the acceptable maximum
design flow velocity.

In the case of a pumping system the weighting factor, which is
applied to increase the NPV of the cost of the solution (real cost),
resulted in a new cost referred to as “comparative cost”. The
“comparative cost” will always be higher than or equal to the real
cost of thesolution and isused to rank the alternativesaccording to
thecomparativecost. Inthecaseof thegravity system, theweighting
factor isapplied to the capital cost of the pipeline section(s) where
the specified residual pressure or the specified maximum flow
velocity has been violated, to obtain the “ comparative cost”.

The program can analyse up to 20 pipe sectionsand 8 different
pipe sizes and types (1,15E18 possible solutions). Although the
program requires the minimum input, it provides the user with an
optimised set of solutionsto beinvestigated in more detail. Inthe
following paragraph the input data are discussed.

Data input required

Inthefollowing section abrief summary of theinput dataisgiven.
The input screens that reflect the required format for the data are
attached as Annexure 1. The program has two options, a gravity
system or a pumping system.

The system selection is made on the first screen:

¢ Gravity system or
¢ Pumping system

The data requirements for the gravity system and the pumping
systemdiffer and arereflectedin Table 2, whichreflectsthedetails
of the datathat are required to optimise the pipeline diameters for
thegravity and pumping pipelines. Table 3reflectsthe output from
theprogram. Thedatainput screensand output screensareincluded
in Annexure 1.

Copiesof the GAPOP utility program can be obtained fromthe
Water Research Commission’ swebsite http://www.wrc.org.za or
from the author.

The program uses the information to evaluate different pipe
diameters, solving the objective function (lowest capital cost for a
gravity system and the lowest total NPV of al the cost over the
design periodfor thepumping system) that adherestotheconstraints
defined for the system. Once the system is analysed the 20 most
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TABLE 2
Data input required for the pipeline optimisation program, GAPOP
Data description and output details Program screens
containing the
data for the following
systems
Gravity Pumping
Project data : Project description, designer’s name and date
General data: Upstream reservoir level, upstream reservoir ground level and downstream reservoir
level.
Unit definition for the pipe length, elevation and demand.
Profile data : Pipe length, end-point elevation and the demand at the end-point are required. Gl P1
Pipe material selection
The designer selects the pipe material, specifies the pipe diameter, pipe roughness parameter, cost of
pipe per meter and selects whether the pipe should beincluded in the analysis.
Units for the pipe diameter and roughness are selected. G2 P2
Design limitations
The minimum reguired residual pressure, maximum flow velocity and the mutation rate are defined
on this screen. G3 P3
Energy details
Unit power consumption costs for the summer and winter season are defined as well as the daily
pumping hours that should be considered in the analysis. The pump efficiency is also defined (%). P4
Rates
The cost functions for mechanical and electrical works associated with the pump station need to be
defined as well as the % yearly allowance for maintenance on the pipeline (civil), mechanical and
electrical works. Escalation rate for future expenses, energy escalation rate, the discount rate and the
design life are defined. P5
Design limitations
The minimum required residual pressure, maximum flow velocity and the mutation rate are defined
on this screen. G4 P6

TABLE 3
Output for the pipeline optimisation program, GAPOP

Output G5| P7
Favour able solutions
The 20 best solutions are summarised —
reflecting the real and total cost as well asthe
pipe diameters used in each of the solutions and
the penalty that was imposed on the solution
either as aresult of too low residual pressures or
too high flow velocities.

Graphical presentation
The 20 best solutions are ranked in order of the
comparative costs.

Computed results

Details of theinitial selection of the pipe
diameters (chromosomes) are given aswell as all
the detail regarding subsequent generations.
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favourable results (if there are more than 20 possibilities) will be
shown. Screen G5 and P7 reflectsthegraphical presentation of the
best solutions respectively for the gravity and pumping system.

In the GAPOP program all the steps that are required for the
application of GAs have been included with the objective to
demonstrate the use and value of GAs in the water field.

The initial selection of the chromosome strings, defining the
diameters for the first analysis, is done randomly on a bit-by-bit
basis. Reproductionisdoneby transferring the best solutionstothe
mating pool for the next generation. Mating selection is done at
randomandthecross-over pointisal soselected randomly. Mutation
is done on auniform basis for all the bits.

Conclusion

Based on theliteraturethat hasbeen reviewed, it can be stated that:
e GAsarenot used to their full potential for optimisation in the
water industry in South Africa.
« Potential applications of the technique are:
hydrology and water resource assessment;
network optimisation;
optimisation of rehabilitation, extension and upgrading of
distribution networks; and
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operation and maintenance scheduling of pumps and
purification plants.
» Littleformal teaching on GAsisincluded in the curriculum of
civil engineering courses in South Africa
* Theneedfor the development of software utility programsthat
can be used in practice and to stimulate further exploitation of
this technique has been identified.

Hopefully thispaper providessomeinsightintotheuse of GAsand
stimulates further implementation of this useful optimisation
procedure.
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Screen G1 or P1 - Project data, general data and profile data
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