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SJ van Vuuren
Department of Civil and Biosystem Engineering, University of Pretoria, Pretoria 0001, South Africa

Abstract

The past decade has marked the development of computational capacity that far exceeds the capacity of the “instructor” to define
options to be evaluated when optimisation has to be achieved. In the context of water supply, there are numerous variables that can
influence the selection and, hence, the final cost of system implementation, improvement and operation. This article reflects some
of the findings of a research project, funded by the Water Research Commission of South Africa to establish the potential use of
GAs in the water industry in South Africa. A utility program (GAPOP) was developed to demonstrate the application of GAs in
the determination of the optimal pipe diameter.

Introduction

The past decade has marked the development of computational
capacity that far exceeds the capacity of the “instructor” to define
options to be evaluated when optimisation has to be achieved.

The Government’s objective to provide “water for all” made it
essential for the limited capital to be employed to provide the
maximum benefit. The optimal investment decision for water
infrastructure implementation, expansion, addition or rehabilitation
has to be reviewed against the background of the conflicting
demand for capital and the backlog of water service provision. This
complicates the decision to select the cost-effective and efficient
solution.

The determination of the optimal selection of system
components requires techniques that can be employed to assist the
decision-maker in finding the appropriate solution within the
environment of all the possible solutions (solution space).

Genetic algorithms (GAs) have been developed (Holland,
1992) to assist in searching through complex solution spaces for the
optimum solution. GAs have been applied as search techniques for
various engineering problems such as structural design optimisation,
water distribution network evaluation, pump scheduling, hydro-
logical runoff predictions and resource utilisation. This technique
has not been generally used in South Africa.

Within the context of water supply, there are numerous variables
that can influence the selection and the final cost of system
improvements. The high variance in rainfall and runoff, availability
of alternative water supply with different reliabilities, demand
pattern variability, operational complexity of the system,
maintenance requirements, running cost (especially power cost),
affordability and willingness to pay for services, will influence the
decision on whether the water supply scheme should be
implemented, refurbished, replaced, discarded or expanded.

Identification and analyses of the system components, which
are required to optimise the solution, will have to employ techniques
that can assist in finding the optimal solution. GAs have been
developed as an optimisation search technique.

Based on the functioning of DNA in nature to produce a gene
population with specified characteristics, a mathematical cloning
of this process has been defined to produce outcomes with specific
characteristics.  If the objective outcome can be defined, be it the
minimum cost solution or any other objective, the genetic algorithm
process will “calculate” which gene pool will best approach the
objective function (Goldberg, 1989).

The technique of GAs has been applied on a number of
different real problems and has resulted in exciting, but not always
straightforward solutions.

In complex water distribution systems, for instance, the
alternative options when evaluating the extensions to water supply
systems become numerous.  GAs provide procedures for the
evaluation of the optimal solutions in the solution space.

The need for optimisation in the water sector

It has been indicated that the challenges in the water industry in
South Africa and the world at large, together with the capital
constraints and operational cost escalation, necessitate the evaluation
of technical, economical and environmental parameters to reach an
optimal solution.

In the water sector it has been indicated that large savings can
be accomplished if optimal solutions are implemented (Walters et
al., 1999), when new systems are designed or when existing
systems are refurbished or extended.

The need for the application of optimisation techniques stems
from the fact that:

• the selection of system components to be evaluated in a water
system is dependent on a number of inter-dependent variables.
For example, if an optimal diameter has to be determined it is
known that by reducing the diameter the capital cost is reduced
but the operating cost (pumping) will escalate and the possibility
of pipe burst due to surge pressures associated with high-flow
velocities will increase.

• a number of uncertainties exist when the optimisation of water
infrastructure is considered, such as:
• what would the influence of escalation be on operational
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• how would natural phenomena like floods and droughts
influence the choice of the system components;

• how would the affordability of services to the consumer
influence the design standards; and

• how would demand variance and increase influence the
selection of the capacity of system components.

Planners, designers and operators are involved in the assessment of
the following issues where GAs can be employed with great
advantage:

• The identification of pipe segments in a distribution network
that should be rehabilitated to improve the performance of the
system.

• Determining the application of a phased development of
infrastructure for different development horizons.

• Cost-effective development of infrastructure for alternative
service levels ensuring an affordable service.

• Optimisation of reservoir sizes and determination of the required
pump capacities.

• Optimisation of operational scheduling.

Genetic algorithms (GAs) – An overview

An algorithm is any procedure that uses data and modifies it
according to a set of instructions.  Every structured calculation
procedure is an example of an algorithm.  GAs are programs that
simulate the logic of Darwinian selection. If one appreciates that
populations accumulate differences over time, due to the
environmental conditions acting as a selective breeding mechanism,
then you understand GAs.  Putting it another way: Understanding
a GA means understanding the simple, iterative process that
underpins evolutionary change. The issue, of course, is how best to
get that “selection process” translated into a program procedure
and applied to your problem.

Holland (1992) the pioneer of GAs defines the evolutionary
nature of the algorithm as follows:

• Start with an initial population that is randomly generated, but
contains the parameter characteristic variability of the popu-
lation.

• The fitness of each individual in the population is assessed
according to a fitness function.

• The probability of each individual to survive is proportional to
its fitness.

• The individuals of the next generation are selected on probability
and through a genetic transformation process of cross-over and
mutation, ensuring that the solution is not localised within the
solution environment.

GAs are suited to solve problems that are not vulnerable to attack
by enumerative methods because the sheer number of potential
solutions defies the possibility of testing them all.  Such problems
are typically multi-constrained, that is the solution must be a
balance of conflicting or synergistic properties.  When considering
a problem with multiple dependencies you are normally forced to
admit the possibility of isomeric solutions, i.e. solutions that give
the same result using different processing routes.  So for some
problems there is no such thing as the “best solution”, but instead
one looks for members of a fuzzy set of solutions that can be defined
as “good enough”.

Some problems have a “best” solution, but can be lost in a vast
result space of complex problems. If the solution space is limited

then enumerative techniques can work. This is why machines can
now beat chess masters. The problem with enumerative techniques
is their almost complete lack of scalability.  If you manage to build
a computer large enough to solve a reasonably constrained problem,
then adding just one more constraint will probably require another
10 similar computers to deal with additional calculations.  Add
another row of squares to a chessboard and the number of possible
moves expands dramatically.  One of the great strengths of GAs is
that they do not have to evaluate all the possible solutions.  This
means that increasing the number of possible solutions has little
impact on the running time of a GA.

Goldberg (1989) indicated that a GA differs from the traditional
search methods in the following ways:

• GAs work with coding of the parameter set, not the parameters
themselves.

• GAs evaluate a population of points, not a single point.
• GAs use objective function (payoff) information, not deri-

vatives or other auxiliary knowledge, to determine the fitness
of the solution.

• GAs use probabilistic transition rules, not deterministic rules in
the generation of the new populations.

GAs use bit-strings to represent the state and characteristics of an
object model.  Changing the values of the bits in these bit-strings,
can be translated back into changes to the associated objects’ data.
Once the object has been converted (coded) into bit-strings, the
GA-program (coder) can apply biologically analogous processes
such as replication (or reproduction), cross-over and mutation to
the bit-strings, which can then be translated back to the objects
themselves.  In this way the GA-coder can evolve the instance-state
of the components within an object model to obtain a bit-string
(solution) with a high fitness. Changes to the bit-string values can
be accomplished through the process of reproduction, cross-over
and mutation that will be discussed in more detail later.

Now that it is known that a GA is a search procedure, based on
the mechanics of natural selection and natural genetics which is
geared to handle complex multi-objective problems with a large
solution space, a brief overview of the functioning of a GA will be
provided through the discussion of an example.

Example of a genetic algorithm

Goldberg (1989) provides the following examples, which have
been adapted in this paper, to illustrate the working of a genetic
algorithm. The objective is to maximise function f(x) = x2 , where
x is permitted to vary between 0 and 31.

To use a genetic algorithm for the optimisation of this problem,
the decision variables of the problem must first be coded in some
finite-length string. In this case, the variable x will simply be coded
as a binary unsigned integer of length 5. Before proceeding with the
simulation, briefly review the notion of a binary integer. In Base 2
arithmetic, there are only two digits to work with, 0 and 1, and as
an example for the number 10 the decoding will result in a string
01010.

0.24 + 1.23 + 0.22 + 1.21 + 0.20 = 0 + 8 + 0 + 2 + 0 = 10.

Another example is given below for the coding of the value of 19
in Base 2 arithmetic (10011).

       1.24 + 0.23 + 0.22 + 1.21 + 1.20 = 16 + 0 + 0 + 2 + 1 = 19.

With a five-bit (binary digit) unsigned integer it is possible to obtain
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numbers between 0 (00000) and 31 (11111).
With a well-defined objective function and
coding, a simulation of a single generation of
a genetic algorithm with reproduction, cross-
over, and mutation is conducted.

To start off, select an initial population at
random with a population size 4 (4 strings or
members in the population) by tossing a fair
coin 20 times to obtain the bit value of the 4
times 5 = 20 digits in the four chromosome
(bit) strings. Looking at this population, shown
in Column 2 of Table 1, it can be observed that
the decoded x values are presented along with
the fitness or objective function values f(x).
To make sure that it is known how the fitness
values f(x) are calculated from the string
representation, take a look at the third string
of the initial population, string 01000 (Column
2 of Table 1). Decoding this string as an
unsigned binary integer, note that there is a
single one in the 23’s position. Hence for
string 01000 the value of x = 0.24 + 1.23 + 0.22

+ 0 21 + 0.20 = 8 (Column 2 of Table 1). To
calculate the fitness or objective function,
simply square the x value and obtain the
resulting fitness value f(x) = 64 (Column 6 of
Table 1). Other x and f(x) values may be
obtained similarly.

A new generation (population) (Column
10 of Table 1) of the genetic algorithm begins
with reproduction of new chromosomes from
the mating pool. The strings that will be
available in the next generation are selected
on the basis of their fitness (Column 6 and 7
of Table 1). In this example one of string 1, two
of string 2 and one of string 4 will be transferred
to the mating pool, as shown in Column 7 of
Table 1. This reflects that the “best” string gets
more copies, the average string stays even
(survives), and the worst dies off.

With an active pool of strings looking for
mates, simple cross-over proceeds in two steps:

• strings are mated randomly, using a
random process to pair off the happy
couples; and

• mated string couples’ cross-over position
is also determined randomly.

Referring again to Table 1, random choice of
mates has selected the second string in the
mating pool to be mated with the first (Column
9 of Table 1). With a crossing site of 4, the two
strings 01101 and 11000 cross and yield two
new strings 01100 and 11001 (Column 11 of
Table 1). The remaining two strings in the
mating pool are crossed at Site 3; the resulting
strings are shown in Column 11 of Table 1.

The last operator, mutation, is performed
on a bit-by-bit basis. Assume that the pro-
bability of mutation in this example is 0.001.
With 20 transferred bit positions it is expected
that 20 x 0.001 = 0.02 bits will undergo

 f i Σf
 f i f
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mutation during a given generation. Simulation of this process
indicates that no bits undergo mutation for this low mutation
probability. As a result, no bit positions are changed from 0 to 1 or
vice versa during this generation.

Following reproduction, cross-over, and mutation, the new
population is ready to be tested. To do this, simply decode the new
strings created by the simple genetic algorithm and calculate the
fitness function values from the x values thus decoded. The results
of a single generation of the simulation are shown in Column 12 of
Table 1.  While drawing concrete conclusions from a single trial of
a stochastic process is, at best, a risky business, it is clear to see how
GAs combine high-performance solution to achieve even better
performance. In Table 1, note how both the maximal and average
performance has improved in the new population. The population
average fitness has improved from 293 to 439 in one generation,
while the maximum fitness has increased from 576 to 729 during
that same period. Although random processes help cause these
circumstances, it is evident that this improvement is no fluke. The
best string of the first generation (11000) receives two copies
because of its high, above-average performance. When this combines
at random with the next highest string (10011) and is crossed at
Location 3 (again at random), one of the resulting strings (11011)
proves to be a very good solution indeed.

In any genetic algorithm the following functional procedures
are used:

• Reproduction
- copy according to objective function, maintaining the

optimal strings for the next generation
• Cross-over

- parent pairs exchange their gene bits creating new gene
strings that contain the characteristics of  the parent strings

• Mutation
- protects against loss of useful genetic material and forces

the search for the optimal solution to a different place in the
solution space (secondary mechanisms)

Repetitive application of these functions of the genetic algorithm,
has been used in the optimisation of a variety of complex problems.

Application of genetic algorithms (GAs) in water
engineering

Researchers, covering a wide range of water engineering-related
topics have discussed various applications of GAs. A number of
fields in the water industry, have been reviewed and the contributions
of GAs can be summarised according to the following groupings:

• Runoff estimation
• Yield assessment of surface reservoirs
• Optimisation of the system components during the planning

and design stage
• Operational optimisation
• Network rehabilitation
• Optimisation of operations of water purification plants and

pump stations

Within the limited space available in this paper, reference is made
only to some of the references on pipeline optimisation, operational
optimisation and network optimisation.

Montesinos et al. (1999) investigated the New York water
supply problem and found that by modifying the genetic algorithm
used by previous researchers, the cheapest published solution for

this problem was obtained. The paper also highlighted the fact that
there was no defined methodology for the evaluation of the penalty.
A variable was defined to indicate the number of constrained
failures. The variables were related directly to the cost of the
selected solution. The authors also modified the mutation operation
so that the mutation of a string occurs at a random position along
the bits (individual elements of the gene) of the string.

Reis and Chaudhry (1997) used GAs to determine the location
and setting of pressure control valves in a distribution system, the
objective being to minimise leakage for certain reservoir levels.

Yeo and Agyei (1998) indicated the application of GAs on a
number of engineering problems such as the finite element analyses
of a structure, extraction of pollutants from an aquifer, positioning
of wells for optimum abstraction and minimizing pumping rates
and overall costs. The authors indicated the flexibility of GAs as an
optimisation technique and its applicability in practical engineering
problems.

Yagi and Shiba (1999) found that the utilization of GAs
provided an effective way of establishing a reasonable fuzzy rule
base for a pumping station handling combined sewage and natural
flow.

Wardlaw and Sharif (1999) indicated that a four-reservoir
problem could be handled effectively by utilizing GAs with real
value coding with tournament selection, uniform cross-over and
modified uniform mutation. The authors were the first to use
uniform cross-over for this problem, which allowed each gene to
cross-over. They also indicated that real value coding was
significantly faster than binary coding and gave better results.

Morshed and Kaluarachchi (1998) indicated the complexities
of flow and contaminant modeling of groundwater resources and
reflected the usefulness of artificial neural networks in solving
groundwater problems. Reference to the use of GAs as a robust
mechanism in solving non-linear, optimisation problems was made.

Barros and Rutledge (1998) indicated the difficulty to establish
which of the variables should be included in a multivariate regression
model. The problem that arose here was the assessment of a large
number of measurements taken from a set of samples with the
independent variable not being mutually independent (linear
dependent vectors or co-linearity). The authors showed that GAs
provided a global optimal selection of variables in a reasonable
time, but warned that the initial selection of strings was important
to ensure convergence.

Olivera and Loucks (1997) proved in a very useful and
descriptive way that GAs could be employed to optimise the
operating rules of multi reservoir systems.

Huang and Mayer (1997) indicated that GAs could be used in
the search for optimum pumping rates and discrete spacing of wells
in an aquifer with homogeneous or non-homogeneous
characteristics.

Gupta et al (1999) developed a methodology based on the use
of GAs for the development of lower cost designs and augmentation
of existing water distribution systems.

Halhal et al. (1997) indicated that in network rehabilitation,
expansion and replacement it was difficult to determine the correct
improvements to be achieved with a limited capital budget if
conventional optimisation techniques (e.g. linear programming)
were applied. A multi-objective function approach was applied by
using capital cost and benefit as the objective function to determine
the required changes to the system through the use of GAs as the
search technique. The two examples that were discussed showed
the value of this technique.

Walters et al. (1999) presented a procedure to assist with the
decision in the rehabilitation and expansion of existing networks.



ISSN 0378-4738 = Water SA Vol. 28 No. 2 April 2002 221Available on website http://www.wrc.org.za

This procedure was tested against the benchmark problem
(“Anytown”). In the evaluation of the benchmark problem, tank
levels were defined as independent variables and all the nodes were
specified as potential sites for new storage tanks. Allowance was
also made for the pump sizes to vary. The solutions that were
obtained by evaluating a 24 h extended period, resulted in a cheaper
solution than determined before. It was found that the required
storage was more than that, determined by other researchers, using
other techniques.

The benefit of the optimisation has been proven and further
application of GAs now remains the challenge. In the planning and
design stages of any project, alternative solutions have to be
compared and optimised. The optimisation problems frequently
encountered are:

• The selection of pipelines in a distribution network to be
incorporated for rehabilitation.

• Decision-support for abandoning or replacing pipelines.
• Determining the stages of a phased development of infrastructure

for different development horizons.
• Cost-effective development of infrastructure, taking cognisance

of alternative service levels and affordability of service.
• Optimisation of reservoir sizing and pump capacity.

The optimisation decision is always taken against the background
of a number of uncertainties, such as :

• what will the influence of escalation be on operational and
capital replacement cost;

• how will natural phenomena like floods and droughts influence
the choice of the system components;

• how will affordability of services for the consumers influence
the design standards; and

• how will demand variance and increase influence the selection
of the capacity of system components.

In the next section the utility program that was developed to
determine the optimal pipe diameter for a gravity or a pumping
main will be described.

Utility program for the determination of the
optimum pipe diameter

Introduction to the program features

The utility program can analyse two simple problems. One being
a gravity system with off-takes between the supply and the end
reservoir and the second is a pumping line with demands between
the pump station and the end reservoir. In both these problems the
objective function is to minimise the costs while the required
residual pressure at all the nodes and the velocity is maintained
below the maximum permissible flow velocity in the pipes.  The
constraints against which the solution is valued are:

• the residual pressure should be in excess of the minimum
required residual pressure at all the demand nodes; and

• the flow velocity should be less or equal to the maximum
allowable velocity in the system.

The designer can set these constraints.

Short description of the program, “Genetic Algorithm
Pipeline Optimisation Program” ( GAPOP)

The objectives of GAPOP are to:

• provide access for the novice to the background, value and
understanding of the use of GA techniques;

• determine an optimal solution for pipe diameters based on the
life-cycle cost for a simple gravity or pumping system.

In the search for the optimal solution, the “fitness function” seeks
the lowest cost solution.  Cost comparison in the case of the
pumping system is done, based on the net present value (NPV),
(capital, maintenance and energy costs) calculated over the analysis
period.  In the case of the gravity system only the capital cost is
optimised.  Provision has been made for a weighting factor to
penalise the solution by increasing the cost of the solution on the
following two grounds:

• the residual pressure being less than the requirement; and
• the flow velocity being more than the acceptable maximum

design flow velocity.

In the case of a pumping system the weighting factor, which is
applied to increase the NPV of the cost of the solution (real cost),
resulted in a new cost referred to as “comparative cost”.  The
“comparative cost” will always be higher than or equal to the real
cost of the solution and is used to rank the alternatives according to
the comparative cost. In the case of the gravity system, the weighting
factor is applied to the capital cost of the pipeline section(s) where
the specified residual pressure or the specified maximum flow
velocity has been violated, to obtain the “comparative cost”.

The program can analyse up to 20 pipe sections and 8 different
pipe sizes and types (1,15E18 possible solutions).  Although the
program requires the minimum input, it provides the user with an
optimised set of solutions to be investigated in more detail.  In the
following paragraph the input data are discussed.

Data input required

In the following section a brief summary of the input data is given.
The input screens that reflect the required format for the data are
attached as Annexure 1. The program has two options, a gravity
system or a pumping system.

The system selection is made on the first screen:

• Gravity system or
• Pumping system

The data requirements for the gravity system and the pumping
system differ and are reflected in Table 2, which reflects the details
of the data that are required to optimise the pipeline diameters for
the gravity and pumping pipelines. Table 3 reflects the output from
the program. The data input screens and output screens are included
in Annexure 1.

Copies of the GAPOP utility program can be obtained from the
Water Research Commission’s website  http://www.wrc.org.za  or
from the author.

The program uses the information to evaluate different pipe
diameters, solving the objective function (lowest capital cost for a
gravity system and the lowest total NPV of all the cost over the
design period for the pumping system) that adheres to the constraints
defined for the system.  Once the system is analysed the 20 most
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TABLE 2
Data input required for the pipeline optimisation program, GAPOP

Data description and output details                           Program screens
                        containing the

                          data for the following
                   systems

Gravity Pumping

Project data : Project description, designer’s name and date
General data : Upstream reservoir level, upstream reservoir ground level and downstream reservoir
level.
Unit definition for the pipe length, elevation and demand.
Profile data : Pipe length, end-point elevation and the demand at the end-point are required. G1 P1

Pipe material selection
The designer selects the pipe material, specifies the pipe diameter, pipe roughness parameter, cost of
pipe per meter and selects whether the pipe should be included in the analysis.
Units for the pipe diameter and roughness are selected. G2 P2

Design limitations
The minimum required residual pressure, maximum flow velocity and the mutation rate are defined
on this screen. G3 P3

Energy  details
Unit power consumption costs for the summer and winter season are defined as well as the daily
pumping hours that should be considered in the analysis. The pump efficiency is also defined (%). P4

Rates
The cost functions for mechanical and electrical works associated with the pump station need to be
defined as well as the % yearly allowance for maintenance on the pipeline (civil), mechanical and
electrical works. Escalation rate for future expenses, energy escalation rate, the discount rate and the
design life are defined. P5

Design limitations
The minimum required residual pressure, maximum flow velocity and the mutation rate are defined
on this screen. G4 P6

TABLE 3
Output for the pipeline optimisation program, GAPOP

 Output G5   P7
Favourable solutions
The 20 best solutions are summarised –
reflecting the real and total cost as well as the
pipe diameters used in each of the solutions and
the penalty that was imposed on the solution
either as a result of too low residual pressures or
too high flow velocities.
Graphical presentation
The 20 best solutions are ranked in order of the
comparative costs.
Computed results
Details of the initial selection of the pipe
diameters (chromosomes) are given as well as all
the detail regarding subsequent generations.

favourable results (if there are more than 20 possibilities) will be
shown.   Screen G5 and P7 reflects the graphical presentation of the
best solutions respectively for the gravity and pumping system.

In the GAPOP program all the steps that are required for the
application of GAs have been included with the objective to
demonstrate the use and value of GAs in the water field.

The initial selection of the chromosome strings, defining the
diameters for the first analysis, is done randomly on a bit-by-bit
basis. Reproduction is done by transferring the best solutions to the
mating pool for the next generation. Mating selection is done at
random and the cross-over point is also selected randomly. Mutation
is done on a uniform basis for all the bits.

Conclusion

Based on the literature that has been reviewed, it can be stated that:
• GAs are not used to their full potential for optimisation in the

water industry in South Africa.
• Potential applications of the technique are:

• hydrology and water resource assessment;
• network optimisation;
• optimisation of rehabilitation, extension and upgrading of

distribution networks; and
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• operation and maintenance scheduling of pumps and
purification plants.

• Little formal teaching on GAs is included in the curriculum of
civil engineering courses in South Africa.

• The need for the development of software utility programs that
can be used in practice and to stimulate further exploitation of
this technique has been identified.

Hopefully this paper provides some insight into the use of GAs and
stimulates further implementation of this useful optimisation
procedure.
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Annexure 1

Screen G1 or P1 - Project data, general data and profile data

Opening screen
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Screen G2 or P2 - Pipe material selection

Screen G3 or P3 - Design limitations
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Screen G4 or P6 - Graphical presentation of the 20 best solutions

Screen P4 - Energy details
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Screen P5 - Rates


