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A time-dependent Green’s function-based model for
stream-unconfined aquifer flows
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Abstract

A numerical formulation that is based on the Green element method (GEM), which incorporates a time-dependent Green’s
function, is used to solve transient two-dimensional flows of stream-unconfined aquifer interaction.   The Green’s function comes
from the fundamental solution to the linear diffusion differential operator in two spatial dimensions.  In classical boundary element
applications, this Green’s function has found use primarily in linear heat transfer and flow problems; its use here for the nonlinear
stream-unconfined aquifer flow problem represents the computational flexibility that is achieved with a Green element sense of
implementing the singular integral theory.  The nonlinear discretised element equations obtained from numerical calculations are
linearised by the Picard and Newton-Raphson methods, while the global coefficient matrix, which is banded and sparse, is readily
amenable to matrix solution routines.  Using four numerical examples, the accuracy of the current formulation is assessed as against
an earlier one that  incorporates the Logarithmic fundamental solution.  It is observed that comparable accuracy is achieved between
both formulations, indicating that the current formulation is a viable numerical solution strategy for the stream-aquifer flow
problem.
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Introduction

Stream-aquifer interaction flows have gained considerable interest
among hydrologists for quite a while because of their applications
in hydrograph analysis.  Of interest is estimating the baseflow from
the recession hydrograph of a stream or river that could be the only
water source on which surrounding communities depend for agri-
cultural and domestic uses (Butterworth et al. 1999).  This is
particularly important in arid and semi-arid environments where
rainfall is low and erratic, and droughts are common.   Modelling
of flow when there is interaction between an unconfined aquifer
and a stream has generally followed two approaches.  The first is
based on the mathematical description of the flow with the nonlinear
free-surface (water table) boundary condition being explicitly
applied (Dillon and Liggett, 1983; Cabrera and Marino, 1976a;
Ibrahim and Brutsaert, 1965).  In this approach a vertical slice of the
aquifer is considered, and the seepage face that exist at the aquifer-
stream interface is captured.  The drawback to this approach is that
the regional distribution of flow in the aquifer and the variability of
baseflow along the reach of the stream are not accounted for.  This
approach is suitable in instances when it can be justified that flow
variability along the streamwise direction is negligibly small.  The
second approach is based on depth-averaging of the governing flow
differential equation so that the free-surface condition is implicitly
imbedded in the resulting differential equation, and the seepage
face is assumed to be non-existent (Hornberger et al., 1970).   By
this approach, the flow is now essentially horizontal, the vertical
velocity component of flow is assumed to be negligible, and the
hydraulic head is assumed to be depth-invariant.  These assump-
tions are widely known in the groundwater literature as the Dupuit-

Forchheimmer assumptions and the approach is the hydraulic one.
Because the ratio of the depth to lateral dimensions of most aquifers
is extremely small, this assumption is valid for most parts of the
aquifer but breaks down within the vicinity where flow occurs in
and out of the aquifer.  One advantage of this approach is that the
regional distribution of base flow can be accounted for.  The
alternative to either of these approaches would be to adopt the
hydrodynamic viewpoint whereby the governing differential equa-
tion is solved in three dimensions with the non-linear free-surface
explicitly imposed. Apart from the huge computational require-
ments of this approach, data on hydrogeological parameters of
most aquifers are not gathered to such details as to make them
available for use in this model. In the best of circumstances,
hydrogeological parameters from field investigations are obtained
in a depth-averaged manner. It is for these reasons that the hydrau-
lic approach is followed in this paper.

Solution strategies  to stream-unconfined aquifer flows have
also taken a number of directions.  Experimental investigations that
are designed on the Hele-Shaw apparatus have commonly been
used (Ibrahim and Brutsaert, 1965; Rochester and Kriz, 1968).
Though quite limited in terms of versatility of application, experi-
mental models have provided useful insight into the phenomenon
of stream-aquifer interaction flows and have served to validate
other solution strategies.

The other solution strategies are analytical and numerical.  To
date, there is no analytic solution to the vertical slice approach
where the non-linear free-surface condition is explicitly prescribed.
The only widely reported exact solution to the hydraulic approxi-
mation of flow is that proposed by Boussinesq (1904) who used
similarity considerations to derive the solution of flow from an
aquifer into a ditch.  The other analytical solutions reported in the
literature were achieved after some form of simplification or
linearisation was applied to the non-linear differential equation
(Desai, 1973; Lockington, 1997).  All these solutions apply to one
spatial flow direction, with rather idealised boundary and/or initial
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conditions being applied. It is these restrictions that limit the use of
analytical techniques, except to validate numerical techniques.

Numerical techniques have been widely applied to stream-
unconfined flow problems. Among them are finite difference, finite
element, boundary element, and Green element methods.  Using
the vertical slice with the free-surface boundary conditions explic-
itly applied, Cabrera and Marino (1976) applied the finite element
method (FEM), while Dillon and Liggett (1983) applied the
boundary element method (BEM).  Adopting the hydraulic ap-
proach, FDM was utilised by Hornberger et al. (1970), while
Taigbenu and Liggett (1986) applied BEM, Onyejekwe et al.
(1999) used GEM in one spatial dimension, and Taigbenu and
Onyejekwe (1999) in two spatial dimensions.  The Green element
formulation proposed herein offers a viable alternative approach to
solving the stream-unconfined flow problem. It utilises a time-
dependent Green’s function of the diffusion differential operator
which traditionally has been used for linear heat conduction
problems.  Here, it is applied to the non-linear unconfined flow
problem in a novel way that accommodates medium heterogeneity,

varying bedrock profile, and point and distributed sources and
sinks with varying strengths in space and time.  The theoretical
basis of GEM is founded on a singular integral theory while its
implementation is based on an element-by-element approach
(Taigbenu, 1995; 1999).  The current formulation is tested on four
numerical examples to demonstrate its capabilities, while its accu-
racy is validated with results from other techniques.  It is found to
exhibit a unique numerical feature that at first glance is unconven-
tional.  For a given spatial discretisation, the formulation does give
more accurate solutions with larger time step.  We provide, in this
paper, a heuristic explanation for this feature.  The fourth example
is one which demonstrates the ability of this formulation to evaluate
discharge in and out of an aquifer under practically realistic
conditions.

Mathematical statement and Green element
formulation

Figs. 1a and 1b  provide  sketches of the plan and section of the
problem being addressed. Hydrogeological parameters of the aqui-
fer are allowed to have spatial variation (heterogeneity), and
bedrock elevation varies in space. Applying the mass balance
equation at the differential scale coupled with the Darcy law, and
integrating the result over the flow thickness of the aquifer, give the
equation that describes flow of an incompressible fluid in an
unconfined aquifer (Bear, 1979) :

  (1)
where:

h = h(x,y,t) is the hydraulic head or water table elevation above
a datum,
∇ = i∂/∂x + j∂/∂y is the two-dimensional gradient operator,
K = K(x,y) is the hydraulic conductivity,
φ = φ(x,y)  is the bedrock elevation,
n  is the specific yield or effective porosity of the aquifer,
f  accounts for distributed recharge from natural and artificial
sources, while
p  takes into account pumping stresses.

The contribution from these point sources/sinks is expressed
mathematically as:

  (2)

where:
Qw(t)  is the strength or discharge rate of a well located at
(xw , yw ),
δ is the Dirac delta function, and
Nw is the number of such wells.

Denoting the flow depth as b(x,y,t) = h(x,y,t) - φ(x,y), and defining
a psuedo-transmissivity T as T = T(x,y,t) = Kb, Eq. (1) becomes:

  
(3)

To solve Eq. (3), known conditions for the water table elevation or
the flux across the boundary have to be specified, in addition to the
distribution of the water table everywhere in the aquifer at the initial
time.  We admit the 1st-type boundary condition of known water
level of the stream along the reach where it is in contact with the
aquifer.  In that case, the condition is expressed as:

(4a)

Figure 1
Representation of stream-unconfined flow problem

(a) plan, (b) section

(a)

(b)
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When the flux in or out of the aquifer is known, the 2nd type
condition is given by:

(4b)

in which
q is the normal flux,
 Γ =  Γ1 + Γ2 is the boundary of the aquifer, and
n is the outward pointing unit normal vector on the boundary.

The time dependency of the problem requires that  the distribution
of the water table be specified  throughout the aquifer at the initial
time t0.

There is now a fair amount of appreciation of the Green element
formulation to allow for a succinct presentation.  It proceeds along
the steps that have been outlined in such references as Taigbenu
(1995; 1999).  These steps are summarised below:

(i) Obtain the singular fundamental solution to an appropriate
auxiliary equation to the flow Eq (3);

(ii) Transform the flow equation into an integral one using
Green’s second identity;

(iii) Discretise the flow region into suitable polygonal elements
over which the distribution of the dependent variables is
prescribed;

(iv) Derive the discretised form of the integral representation for
each element (element equation);

(v) Effect the boundary and initial conditions in the system of
element equations;

(vi) Aggregate the element equations for all the elements, impos-
ing the compatibility relations across element boundaries;

(vii) Linearise the resultant non-linear global element equations by
a suitable linearisation algorithm.

The resultant global coefficient matrix from this formulation is
sparse and banded and, therefore, amenable to efficient  commer-
cially available matrix solvers.

In this work, rectangular elements have been employed for
regular computational domains, and triangular elements, because
of their boundary-matching characteristics, for irregular ones.
Within each element, denoted as Ω(e), the medium is considered
homogeneous so that, in essence, the entire domain is piece-wise
homogeneous.  In other words, flow depth and medium parameters
are allowed to vary from element to element in a piece-wise
homogeneous fashion.  With this, Eq. (3) takes the following form
for each element

   (5)

in which
D = T/n,
F  = f/n and
P = p/n, where the bar on each of the quantities indicates that
those quantities are evaluated  at the centroid of the element.

The fundamental solution of the auxiliary equation
1  ∂G

∇2G =           = δ(r - ri; t - τ), given by
D  ∂t

(6)

is used in conjunction with Green’s second identity to transform the
differential equation into an integral one (Taigbenu, 2003):

in which:
λ equals twice the nodal angle at the source node, and
the superscripts 1 and 2, respectively, denote the previous time
level t1 and the current time level t2.

Though Eq. (7)  applies to a typical element, it is nonetheless
similar to the integral equation in boundary element formulations.

Numerical implementation

The implementation of Eq. (7) is fairly straightforward; the distri-
bution of functional quantities is specified over the spatial element
and in time by interpolation functions. Linear interpolation func-
tions in space and  time are employed.  Those functions approxi-
mate any of the functional quantities, for instance h, by the
expression:

  (8)

where:
g  represents the number of nodes in the element,
m  is indicative of the time, with m = 1 denoting  the previous
time and m = 2  denoting the current time, and
Nj(r) and N(m)(τ) are linear interpolation functions in space and
time, respectively.

It should be noted that the summation convention for a repeated
index applies similarly to the superscripted index.  Simplifying the
normal derivative of the Green’s function by:

  (9)

where:
η is the normal distance from the source node ri = (xi, yi) to the
boundary (see Fig. 2), and introducing Eqs. (8) and (9) into
Eq. (7) yields:

  (10)

When Eq. (10) is expressed slightly differently in terms of the
normal boundary flux q = -T ∂h/∂n rather than in terms of  ∂h/∂n,
it offers a more accurate and stable numerical scheme.  The reasons
for this are not far-fetched: continuity of the flux across elements
is assured by this approach, thereby enhancing accuracy and
stability of the formulation, and a higher level of accuracy of the
fluxes on the external boundaries, that are directly computed, is
achieved (Taigbenu, 2001a; 2001b).  With the  normal  boundary
flux introduced into Eq. (10), the element equation in matrix form
becomes:

(11)in which:

      (12a)

      (12b)

(7)
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(12c)

(12d)

(12e)

where:
E is the exponential integral.

Unlike in classical boundary element methodology where domain
integrations present some computational challenges, the feature of
the source and field nodes being always located in the same element
provides significant simplification of domain integrations in Green
element calculations (Fig. 2). The domain integrals are either
implemented analytically so that their outcomes reflect the geo-
metrical properties of the element or are done numerically by
standard Gauss quadrature techniques.  One must not fail to point
out the ease with which the contribution of sources and sinks is
handled in Green element calculations. That contribution, Ui, is
effected nodally only within an element in which the source/sink
node is located. It is this feature that makes the method most
attractive for well hydraulics problems.  The computer code that
has been developed on the basis of Eq. (11), incorporating the time-
dependent fundamental solution of Eq. (6), is referred to as model
2.  An earlier code that uses the Logarithm fundamental solution is
referred to as model 1 (Taigbenu and Onyejekwe, 1999).  Compari-
son of both models is carried out in a subsequent section of this
paper.

The outcomes of the boundary and domain integrals are essen-
tially the Exponential Integral, E(ψ), Exponential, e-ψ, and Error
function, erf(ψ),  where the argument has the expression

(13)

In Eq. (13), l is indicative of the element size.  Of these three
functions, it is only the Exponential Integral that exhibits a logarith-
mic singularity for small values of its argument.  In addition, it
decays more rapidly to zero than the Exponential function for
moderate values of ψ.  Since GEM is essentially a singular integral-
based numerical formulation,  it means that the Exponential Inte-

gral plays the most dominant role in determining the essential
nature of the numerical solution.  It is for this reason that the
argument of the Exponential Integral should not be too large to
preclude its contribution, thereby compromising the quality of the
numerical solution.  To have small values of ψ, it is either that the
element size is small or the time step is large or both.  Though ψ
varies as the square of the element size, which means that a
reduction in element size has significant influence on the value of
ψ, it is nonetheless computationally imprudent  to significantly
reduce the element size because of the additional computing
resources required to handle increased number of elements.  It is
rather advantageous to increase the time step, thereby reducing the
value of ψ so that fewer simulation intervals are implemented.   The
expected improvement in the quality of the numerical solution from
adopting a larger time step is consistent with our earlier results
when the one spatial dimension version of this same Green’s
function was applied to some one-dimensional problems (Taigbenu,
1999; Taigbenu and Onyejekwe, 1999). It is quite reasonable to
expect that the time step can not be increased ad infinitum.  The
upper limit to the increase of the time step depends on how well the
interpolation function approximates the variation of the primary
variable in time. This point is revisited in the discussion of the
simulations of one of the numerical examples.

The global contribution of Eq. (11) for all the elements is
achieved by aggregating the element equations in such a way that
the nodal unknowns on the external boundaries are either h or q
(whichever is not specified by the boundary conditions), and h at
the internal nodes.  This is done in such a way that the compatibility
requirements for the flux and hydraulic heads at inter-element
boundaries are met.   The global matrix equation is

  (14)

where:
Aij is a banded coefficient matrix whose elements depend on the
hydraulic heads,
uj

(2) = {hj
(2), qj

(2)}T is a mixed vector of unknowns, and
Ri is a known vector that accounts for the boundary, initial data,
and contribution from point and distributed recharge.

Linearisation of matrix equation

The global matrix equation is non-linear since the elements of the
coefficient matrix depend on D which, in turn, is dependent on the
water table elevation.  Two commonly used algorithms for linearising
such discrete non-linear equations are the  Picard and Newton-
Raphson (N-R) algorithms.

The Picard algorithm linearises Eq. (14) at any iteration level
k by providing estimates of the solution, uj

(2,k), with which D is
evaluated.  The refined estimate of the solution uj

(2,k+1) can then be
obtained by solving the global matrix Eq. (14).  The iteration
process continues till the mean of  uj

(2,k+1) - uj
(2,k)at all nodal points

falls below a prescribed tolerance value ε.
The N-R algorithm calculates refined estimates of the solution

by adding an increment, ∆uj
(2,k+1), to the known solution estimate,

that is:
  (15)

The increment is obtained from the Jacobian matrix
  (16)

where the Jacobian Jij
(k)is evaluated by a chord slope of the

coefficient matrix.  That is:

Figure 2
Typical element over which integration is performed
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(17)

where:
gi = Aij(D)uj - Ri.

Convergence is achieved when the mean ∆uj
(2,k+1) at all the nodal

points falls below ε.  Both linearisation algorithms can be incorpo-
rated in the Green element formulation.  However, only the Picard
algorithm has been used in the computer code used in solving the
examples in the next section.

Numerical examples

Four  numerical examples of transient stream-unconfined flows are
used to demonstrate the capabilities of the current Green element
model (model 2).   They include cases of the Boussinesq example
which has an exact solution, an aquifer response to a rising and
falling river flood stage, transient example of the Dupuit problem,
and a regional groundwater flow example where the aquifer re-
ceives varying point and distributed pumping stresses and interacts
with an adjoining river.

Example 1
This is one of the very rare examples of non-linear unconfined flow
with an exact solution. It is one-dimensional flow from an uncon-
fined aquifer into a stream with a dry bed.  The other end of the
aquifer is a no-flux boundary, and initially there is a water table
distribution H0(x) that is implicitly defined  by the integral expres-
sion:

  
(18)

where:
B(2/3,

 1/2) and BH0

3

 

(x)(
2/3,

 1/2) are the complete and incomplete Beta
functions, respectively.  The exact solution to the problem is given
by Boussinesq (1904) using similarity considerations:

(19a)

and the discharge into the stream is

(19b)

The current model is applied, discretising the region into 10
uniform rectangular elements of 0.1 × 0.1 and a uniform time step
of 0.05.  The numerical and exact solutions for the water table
distribution and discharge to the stream are presented in Figs. 3a
and 3b. It is observed that the numerical solution correctly repro-
duces the exact solution for both the hydraulic head and outflow
discharge from the aquifer.

Example 2
This example represents the transient scenario of the Dupuit
problem in which interaction occurs between an unconfined aqui-
fer that is sandwiched by two rivers or reservoirs maintained at
33 m and 21 m elevations above the bedrock of the aquifer. The
flow is considered to be along the 300 m length of the aquifer
between the rivers, and a uniform recharge of 8 mm/h from
precipitation is received by the aquifer.  Initially the water table
distribution is linear, that is, h = 33 - 0.04x. With hydraulic
conductivity value of 0.6 m/h and specific yield of 0.2, the current

Green element model is applied by discretising the flow region into
10 square elements of 30 m length, and adopting a time step of
30 h for the first 600 h and 60 h thereafter till 1200 h.  At each time
step, a tolerance value ε of 10-5 is achieved at the end of six
iterations.  This is an indication that the current formulation has
excellent convergence characteristics.  The steady-state solution,
widely referred to as the Dupuit solution in the groundwater
literature, is given as

  (20)

where in our case, H0 = 33 m, HL = 21 m, N = 0.008 m/h, L = 300
m, and K= 0.6 m/h.  We observe that the solution from the current
model at 1200 h approaches the steady state solution given by Eq.
(20) (Fig. 4a).  Similarly the predicted discharge from the aquifer
into the two rivers for large times closely approximates the steady
state discharge values of 0.552 m3/h·m to the river at 33 m water
level and 1.848 m3/h·m to the river at 21 m water level (Fig. 4b).
The significance of correctly predicting the discharge hydrograph
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at the outlet of the aquifer is realised in  surface flow modelling
which takes the predicted discharge hydrograph as one of its input
data.

Example 3
This third example represents one of the aquifer’s response to a
flood wave on an adjoining river.  The water table and river stage
were at the same elevation of 16 m above the bedrock before the
flood wave on the river.  The flood stage variation with time is
shown in Fig. 5, and it is approximated by a sinusoidal variation for
the first 6 h, and maintains a crest value of 2 m for the next 4 h after
which it decays exponentially with a depletion rate of 0.1 h-1.  The
flow in the aquifer, which is considered to be essentially along its
length of 200 m, takes place under conditions of the river stage at
one end of the aquifer and zero flux at its other end.  The hydraulic
conductivity and specific yield of the aquifer are respectively 3.6 m/
h and 0.35.  Two cases of infiltration fluxes from natural recharge
are considered: the first without recharge and the second with a
uniform recharge of 10 mm/h.  The flow region is discretised into
50 square elements  each 2 m in length, and a uniform time step of
0.5 h is incorporated in the current model (model 2).  The same
spatial discretisation is employed in model 1 with a time step of

0.25 h.  The numerical results from both models for the water table
distribution at different times are presented in Fig. 6a with no
recharge and Fig. 6b with recharge.  The iterative process exhibits
a convergence feature in which at each time step a tolerance value
ε = 8×10-6 is attained at the end of eight iterations.   The predicted
hydrographs from both models with and without recharge are
shown in Fig. 7.  There is close agreement between the results from
the two Green element models.  The example is also used to
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demonstrate how the current model is affected by the time step as
alluded to previously.  In the case of recharge of 10 mm/h, the water
table distribution and hydrograph are obtained with model 2 using
time steps of 0.005. 0.01 and 0.5 hr.  These time steps correspond
to ψ values of approximately 2.4, 1.2, and 0.024, respectively.  We
observe in Figs. 8a and 8b how the numerical solution from the
present model progressively deteriorates with increasing ψ or
decreasing time step.  It is a trend that is commonly associated with
the formulation based on this time-dependent Green’s function.  It
has also been observed in one-spatial dimension.  It is a healthy
trend, though, in the sense that accuracy enhancement is achieved
with fewer computing resources.  In programming the current
formulation, we have incorporated a condition on ψ with an upper
limiting value of 2.0.

Example 4
This fourth example represents a physically realistic stream-
unconfined flow interaction in which regional flow occurs in an
aquifer of 8.1 km2 located west of a river with adjoining length of
about 4 km (see Fig. 9).  Eight wells are  in operation within the
aquifer, and their characteristics in terms of location and abstrac-
tions rates are found in Table 1.  The aquifer is recharged uniformly
by precipitation at a rate of 2.2 mm/d.  The northern and western
boundaries of the aquifer, denoted in Fig. 9 as AB and BC, are no-
flux boundaries, while the south-western boundary CD allows in a
discharge of 1.7 m3/d per metre length of boundary.  The southern
boundary DE is also a no-flux boundary.  Initially the level of water
in the aquifer and river is at 40 m above the aquifer bedrock.
Thereafter, the water level in the stream falls exponentially with a
depletion rate of 0.04 d-1, that is h = 38 + 2e-0.04t.  The hydraulic
conductivity and specific yield of the aquifer are 21.2 m/d and 0.2,
respectively.  In carrying out the numerical simulations, the aquifer
is discretised into 1023 triangular elements with a total of 560
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Green element solutions of example 3  for discharge

Figure 9
Flow domain of Example 4

Figure 8
Influence of time step or value of parameter ψ

 on current Green element solution for example 3
(a) Water table, (b) Discharge.
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nodes.  The lengths of the sides of the elements range between 100
m and 140 m, while numbering of the nodes was done in an optimal
fashion such that the bandwidth of the coefficient matrix is 69.
Adopting a time step of 5d in the current model, the contours of
water table levels are presented in Figs. 10a, 10b and 10c at times
of 90 d, 180 d and 360 d, along with the results of model 1 which
used a uniform time step of 2 d.  The hydrographs at sections P1,  P2,
P3, and P4 along the river, as indicated in Fig. 9, are presented in
Fig. 11.  While there is generally good agreement between the
solutions from the two Green element models, we observe, as
expected, the expanding zone of influence of the wells with time,
with no noticeable influence zone for the well at Q5 which has the
least strength.  In addition, the influence of the influx from the
boundary CD is felt by the wells  Q6 and Q7 which are recharged
largely by the influx from this boundary, as indicated by the higher
water table gradients on the south-western side of these wells.  The
decrease in discharge hydrographs from section P1 to P4 is largely
due to the effects of the wells Q1, Q2, Q3, and Q4.

TABLE 1
Data on wells

Well Well Abstraction
identi- location (m)  rate (m3/d)
fication (x, y)

Q1 2553, 3648 1.80×103

Q2 2631, 2719 2.10×103

Q3 2649, 2042 2.30×103

Q4 2711, 1375 2.20×103

Q5 2357, 779 1.47×103

Q6 1075, 618.2 2.84×103

Q7 560, 1044 2.40×103

Q8 1930, 2304 3.60×103

Figure 10
Contours of water table elevations for example 4

(a) time = 90 d, (b) time=180 d, and (c) time=360 d
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Conclusion

This paper has presented another robust Green element formula-
tion for the stream-unconfined flow problem.  It is based on the
transient Green’s function of the diffusion differential operator,
and it is capable of simulating regional groundwater flows in
heterogeneous, unconfined aquifers of variable bedrock elevation,
with point and distributed stresses of arbitrary variation.  Its
computational complexities, which involve handling such func-
tions as the Exponential Integral and Error function, in contrast to
the simplicity of the Green element model with Logarithmic
fundamental solution, seem to be compensated for by the larger
time step that can be adopted to achieve comparable accuracy.  The
appeal of this numerical feature, notwithstanding, this current
model provides another viable formulation for solving stream-
unconfined aquifer flows along the lines of the Green element
methodology.

Acknowledgements

The financial support received from the Swedish International
Development Cooperation Agency (SIDA) for this water-related
research project, that assisted the author in carrying out this work
at the National University of Science & Technology (NUST) is
acknowledged.

0 60 120 180 240 300 360
Time(days)

-1

0

1

2

3

4

D
is

ch
ar

ge
(m

3 /
d/

m
)

Model 1
Model 2

At river section P1
At river section P2

At river section P4

At river section P3

References

BEAR J (1979)  Hydraulics of Groundwater. McGraw-Hill, New York.
120-123.

BOUSSINESQ J (1904) Recherches Theoretiques sur l’ecolement des
Nappes d’eau infiltrees dans sol et sur le debit des sources. J. de
Mathematiques Pures et Appliquees 10 5-78 363-394.

BUTTERWORTH JA, MACDONALD DMJ, BROMLEY J, SIMMONDS
LP, LOVELL CJ and MUGABE F (1999) Hydrological processes and
water resources management in a dryland environment III: Groundwater
recharge and recession in a shallow weathered aquifer. Hydrol. &
Earth Syst. Sci. 3 (3) 345-352.

CABRERA G and MARINO MA (1976) Dynamic response of aquifer
systems to localized Recharge. Water Resour. Bull. 12 (1) 49-63.

DESAI CS (1973) Approximate solution for unconfined seepage. J. Irrig.
Drain. Div., ASCE 99 71-87.

DILLON PJ and LIGGETT JA (1983) An ephemeral stream-aquifer
interaction model. Water Resour. Res. 19 (3) 621-626.

HORNBERGER GM, EBERT J and REMSON I (1970) Numerical
solution of the Boussinesq equation for aquifer-stream interaction.
Water Resour. Res. 6 (2) 601-608.

IBRAHIM HA and BRUTSAERT W (1965) Inflow hydrographs from
large unconfined aquifers.  J. Irrig. Drain. Div., ASCE 94 21-38.

LOCKINGTON (1997) Response of unconfined aquifer to sudden change
in boundary head. J. Irrig. Drain. ASCE 123 24-27.

ONYEJEKWE OO, KARAMA AB and KUWORNOO DK (1999) A
modified boundary integral solution of recharging and dewatering of
an unconfined homogeneous aquifer.  Water SA 25 (1) 9-14.

ROCHESTER EW and KRIZ GJ (1968) Model study of the boundary
effects on ditch drainage. J. Irrig. Drain. Div., ASCE 94 403-504.

TAIGBENU AE (1995) The Green element method. Int. J. Num. Meth.
Eng. 38  2241-2263.

TAIGBENU AE (1999) The Green Element Method. Kluwer Acad.
Publishers, Boston, 376 pp.

TAIGBENU AE (2001a) Unsaturated-flow simulation with Green Ele-
ment Models.  J. of Hydraul. Eng. ASCE 127 307-312.

TAIGBENU AE (2001b) Simulations of unsaturated flow in multiply
zoned media by Green element models. Transport in Porous Media
45 387-406.

TAIGBENU AE (2003) Features of a time-dependent fundamental solu-
tion in the Green Element Method. Applied Math. Modelling 27 (2)
125-143.

TAIGBENU AE (1999) Three Green element models for the diffusion-
advection equation and their stability characteristics. Eng. Anal. with
Bound. Elem. 23 577-589.

TAIGBENU AE and LIGGETT JA (1986) An integral formulation applied
to the diffusion and Boussinesq equations. Int. J. Numer. Meth. Eng.
23 1057-1079.

TAIGBENU AE and ONYEJEKWE OO (1999) Green’s function-based
integral approaches to nonlinear transient boundary-value problems
(II). Appl. Math. Modell. 23 241-253.

Figure 11
Green element solution of example 4 for discharge hydrograph

at different sections of the river



ISSN 0378-4738 = Water SA Vol. 29 No. 3 July 2003266 Available on website http://www.wrc.org.za


