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Maximising water supply system yield subject to multiple 
reliability constraints via simulation-optimisation

John G Ndiritu
School of Civil and Environmental Engineering, University of the Witwatersrand, Private Bag 3, WITS 2050, South Africa

Abstract

The realistic incorporation of reliability into the optimisation of reservoir system design and operation remains a particu-
larly difficult task after decades of research. While most of this research has worked with methods based on linear or dynamic  
programming, little has been done to find out how well the problem could be handled by a simulation model linked to an  
optimisation model (SO model). Water supply systems have to satisfy different demands that each require various levels of 
reliability and these need to be incorporated in analyses for efficient system design and operation. This study presents an 
approach for determining the reservoir sizes and monthly operating rules that maximise the yield of a water supply system sub-
ject to multiple reliability constraints of supply and reservoir storage. A behaviour analysis model linked to a genetic algorithm 
is applied and the constraints are implemented using multiplicative penalties. This approach is found to deal with multiple 
reliability constraints realistically and effectively with multiple runs clearly identifying the active and the redundant con-
straints. The long computation times are, however, a drawback for the approach and suggestions to reduce these are suggested.  
Powell’s conjugate direction method is also used to optimise one of the cases analysed and obtains a slightly lower yield than the 
genetic algorithm but with a lower number of simulations. The method obtains yields comparable to the South African Water 
Resources Yield Model (WRYM) and has the advantage of automating the derivation of inter-reservoir operating rules. 

Keywords:  multiple reliability constraints, reservoirs, yield, simulation, optimisation

Notation

ai,j,k surface area of reservoir k in month j of year i
ASi,j vector of the direct diversions to supply
asi,j,k direct diversion from reservoir k in month j of year i
ck capacity of reservoir k
dj,k demand for reservoir k in month j
dk annual demand for reservoir k 
evj,k average Symon’s pan evaporation for reservoir k in 

month j 
mpresl specified maximum probability that restrictions of 

level l should occur
mprstn specified maximum probability that a reservoir state 

lower than n should occur
N  total number of years of simulation 
NEVi,j vector of net evaporation losses in month j of year i
nevi,j,k net evaporation loss from reservoir k in month j of 

year i
nresl number of times that restrictions of the lth level are 

imposed in the simulation period 
nrstn number of times the reservoir is in a state lower than 

the nth state 
prl,k lth percentage supply of the demand dj,k 
Qi,j vector of the inflows in month j of year i
qi,j,k inflow to reservoir k in month j of year i
rai,j,k point rainfall at reservoir k in month j of year i
RFi,j vector of regulated flows from the upper to the lower 

reservoir in month j of year i

rfi,j,k regulated flow from reservoir k in month j of year i
rlj,l,k lth operating rule curve value for reservoir k for 

month j
rsn,k nth storage state for reservoir k
rsmj,k parameter for optimising reservoir state variability 

for reservoir k in month j
Si,j vector of the initial storage volumes at the begin-

ning of month j of year i
si,j,k storage volume of reservoir k in month j of year i
SO Simulation-optimisation
SPi,j vector of spill in month j of year i
spi,j,k spill from reservoir k in month j of year i
tc total system capacity 
TR total runoff in the simulation period.
trlj,l lth operating rule curve value for the total storage 

state for month l
tsi,j total storage in month j of year i 
we weighting parameter for obtaining the rule curves 

of total storage
WRYM Water Resources Yield Model
Y ratio of total actual supply (yield) to total runoff in 

simulation

Introduction

The construction of large-scale reservoir systems has declined 
significantly in many parts of the world for various reasons. In 
South Africa, most of the suitable sites for large reservoirs have 
already been exploited. Cui and Kuczera (2003) mention con-
straints on further development and the limited availability of 
funds in Australia. Labadie (2004) states that the construction of 
large-scale water storage projects is at a virtual standstill in the 
US and other developed countries and points out the increasing 
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mobilisation of opposition to large storage projects in develop-
ing countries. As water demand is continuously on the increase 
in most parts of the world, it is essential that the efficiency in 
operating and managing existing systems be maximised. Effi-
cient operation and management needs to be based on realistic 
assessment in which simplifications and assumptions are mini-
mised and as much detail as required is included. According to 
Cui and Kuczera (2003), simulation models applying multiple 
sets of synthetic data (in addition to the historical set) are widely 
accepted as the most realistic approaches. Reservoir system 
optimisation research in the last 4 decades has, however, been 
dominated by methods based on linear programming (LP) and 
dynamic programming (DP). The application of LP and DP usu-
ally involves various assumptions and encounters difficulties. 
 In a recent state-of-the-art review of optimal reservoir system 
operation, Labadie (2004) mentions in particular the difficulty 
to realistically incorporate hydrological uncertainties. He fur-
ther indicates that the assumptions that these approaches make 
and their complexity are some of the factors that have hindered 
the practical implementation of reservoir system optimisation. 
In South Africa, the Water Resources Yield Model (WRYM), 
which is based on LP (network flow programming) is used 
extensively although there are indications that the complexity 
of WRYM poses difficulties to users and potential users. Sto-
chastic LP models tend to large problems that call for the appli-
cation of Benders decomposition (e.g. Jacobs et al. (1995)) or 
interior point approaches (e.g. Seifi and Hipel (2001)). Many LP 
approaches, including a recently developed approach for dealing 
with reservoir reliability (Re Velle, 1999), do not incorporate 
the real-life practice of applying curtailment rules. The conver-
sion of probability constraints into deterministically equivalent 
constraints in chance-constrained LP models (Re Velle et al., 
1969) and also in reliability programming models (Simonovic 
and Marino, 1980) disregards the shape of the inflow probability 
distributions in the sense that two distinctly different distribu-
tions could provide the same deterministically equivalent inflow 
at the chosen reliability level. Loucks and Dorfman (1975) dem-
onstrated that chance-constrained models can result in conserv-
ative operating rules. For the stochastic analysis of multiple res-
ervoir systems using DP, it is often assumed that inflows into the 
system are uncorrelated to maintain computational tractability 
(Yeh (1985), Fletcher and Ponnambalam (1998)). Kelman et al. 
(1990) proposed Sampling Stochastic Dynamic Programming 
(SSDP) - a method that applies multiple streamflow sequences 
thereby maintaining correlations. As with many other DP mod-
els, the SSDP suffers from the ’curse of dimensionality’. 
 Water supply systems often serve demands that require dif-
ferent levels of supply reliabilities and efficient system operation 
needs to incorporate these. Reservoir storage state reliabilities 
can also be incorporated if the reliability levels of utilisations 
that require water storage in reservoirs are specified. This study 
investigates the application of a simulation-optimisation (SO) 
approach to determine the reservoir sizes and monthly operat-
ing rules of a water supply reservoir system that maximise yield 
incorporating:
• Multiple reliability constraints of water supply and reservoir 

storage state
• Realistic supply curtailment rules.
 
In addition to the operation rules, yield also depends on how the 
available water is distributed throughout the year. An analysis 
of the effect of optimising the distribution of demand on yield 
is therefore included. Hydrological and reservoir characteristics 
data are obtained from a system of two reservoirs located in a 

semi-arid area of South Africa.
 The genetic algorithm (GA), a search method that is easier to 
link to simulation models than LP and DP approaches is selected 
for optimisation. Powell’s conjugate direction method, a non-lin-
ear optimisation method also conducive to the simulation-opti-
misation  approach is also used to optimise one of the 8 cases 
analysed. This serves to compare the GA with Powell’s method. 
This study does not consider economic aspects and the objective 
is akin to the reservoir design and operating models reported 
by Loucks et al. (1981) and the analysis by Dandy et al. (1997). 
The use of these models is not uncommon, especially where reli-
able economic data are not available and not easily obtainable. A 
simple objective function that maximises the total system yield 
as applied by Dandy et al. (1997) is used here. The optimisation 
of system design (sizing) is included in addition to the operating 
rule problem as the adequacy of system components is dependent 
on how the system will be operated. This implies that the system 
sizing and the operating problem should be handled together and 
not separately as is the case traditionally. For an existing system, 
the system sizes are set to the existing values and the design and 
operating problem reduces to the operating problem. 

System simulation

Simulation was carried out using historical data at a monthly 
time interval and not using synthetically generated sequences. 
The system consists of two reservoirs in series and Fig. 1 is a 
schematic of the main problem components. The upper dam, 
Rust de Winter has a catchment area of 1 145 km2 and a mean 
annual runoff of 19.8 mm. The incremental area for the down-
stream reservoir Mkombo is 2 578 km2 and the mean annual 
runoff from the incremental area is 3.9 mm. The historical mean 
point rainfalls at Rust de Winter and Mkombo are 605 and 243 
mm respectively. Second-order polynomials were found to fit 
better than the classical power-law model and were therefore 
used to model the area–capacity relationships for the two reser-
voir sites. The maximum possible capacities were taken as 27.1 
Mm3 for Rust de Winter and 205 Mm3 for Mkombo - the live 
storages of the existing reservoirs. The South African Depart-
ment of Water Affairs and Forestry (DWAF) provided 77 years 
of monthly runoff and point rainfall data at the two sites. DWAF 
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Figure 1
Schematic of reservoir system



Available on website http://www.wrc.org.za
ISSN 0378-4738 = Water SA Vol. 31 No. 4 October 2005
ISSN 1816-7950 = Water SA (on-line)

425

also provided the monthly average Symon’s pan evaporation 
data which were factored by 0.85 to obtain reservoir evaporation 
rates. Rust de Winter is denoted as Reservoir 1 and Mkombo as 
Reservoir 2.
 After some trial runs, it was found reasonable to assume 
the two reservoirs to be half-full at the start of simulation. Mass  
balance was then carried out at each time step as described by 
Eq. (1); all symbols are defined and listed in the notation. 

                  (1)

where:
  Si,j is the vector of the initial storage volumes at the  

beginning of month j of year i 
 Qi,j is the vector of the incremental inflows in month j of  

year i
 NEVi,j is the vector of net evaporation losses in month j of 

year i
 RFi,j is the vector of regulated flows from the upper to the 

lower reservoir assuming no transmission losses nor abstrac-
tions

 ASi,j is the vector of the direct diversions to supply
 SPi,j the vector of spill volumes. 

Equation (1) applies to month 1 to 11 of the hydrological year 
( j=1 to 11). For j = 12, (i,j+1) is replaced with (i+1,1).
 The net evaporation losses were obtained as:
                 (2)

where:
  ai,j,k is the surface area of reservoir k at the beginning of 

month j of year i
 evj,k is the average Symon’s pan evaporation rate for reser-

voir k  in month j 
 rai,j,k is the point rainfall at reservoir k in month j of year i. 

The direct diversion to supply asi,j,k and the regulated flow from 
Reservoir 1 to 2, rfi,j,1 depend on the storage state of the individ-
ual reservoirs, the total storage state of the system, the monthly 
demand and the month of the year. Three sets of shortage (oper-
ating) rule curves were specified: One for the total system stor-
age and one each for the individual reservoirs. Each set consisted 
of three curves giving four supply zones which is not uncommon 
of the practice in South Africa.
 Equations (3) to (5) describe the determination of the direct 
diversions to supply from the two reservoirs and the controlled 
release from Reservoir 1 to 2. 
• When the overall storage and individual reservoirs are in the 

same supply zone, that level of direct diversion is provided 
with no controlled release from Reservoir 1 to 2

• If the upper reservoir is in a lower zone than that of total 
storage, the diversion to supply from Reservoir 1 is based on 
its zone 

• If the lower reservoir is in a lower zone than that of the total 
storage and the upper reservoir is in the zone of the total 
storage or a higher one, then a controlled release is made 
from Reservoir 1 to Reservoir 2. This release equals the 
extra demand that Reservoir 2 would fail to supply for being 
in a lower zone than the total storage. Once the controlled 
release is made, Reservoir 2 provides a direct diversion cor-
responding to the zone of total storage. 

• If no controlled release is made and Reservoir 2 is in a lower 
zone than the total storage, Reservoir 2 provides a direct 

diversion based on its supply zone 
• If a reservoir is in a zone higher than that of the total stor-

age, the direct diversion is based on the supply zone of total  
storage. 

                  (3)

                  (4)

                  (5)
where:
  trlj,l is the lth operating rule curve value for the total storage 

state for month j 
 tsi,j is the total storage at the beginning of month j of year i, 

(tsi,j=si,j,1+si,j,2) 
 si,j,k is the storage volume in reservoir k at the beginning of 

month j of year i
 tc is the total system capacity (tc=c1+c2)
 c1 and c2 are the capacities of Reservoir 1 and 2 respectively
 rlj,l,k is the lth operating rule curve value for reservoir k for 

month j
 prl,k is the lth percentage supply of the demand dj,k for reser-

voir k in month j.

For the cases where the distribution of demand was specified 
and not optimised, dj,k was obtained as a constant percentage of 
the annual demand dk.
 The width of all supply zones for all months was restricted to 
a minimum of 0.1 of storage capacity as shown in Eq.( 6):

                  (6)

The reservoir spilled a quantity spi,j,k if the computed si,j+1,k  
exceeded ck: 

                  
(7)

If the computed si,j+1,k < 0, the direct diversion to supply was 
reduced according to Eq. (8):

                  (8)

If asi,j,k turned out to be less than 0 after applying Eq. (8), the net 
evaporation loss was reduced as follows:

                 (9)

The net evaporation loss (Eq. (2)) in a time interval depends 
on the surface area at the beginning and at the end of the time 
interval. Since the surface area at the end of the time interval 
itself depends on this evaporation loss, an iterative approach was 
applied to obtain the two quantities and achieve mass balance at 
each time step. Convergence was assumed when the change in 
net evaporation loss was less than 1% from the previous itera-
tion. Two iterations were found adequate in most time steps to 
achieve this. 
 Eight scenarios, Cases 1 to 8 were analysed. The distribu-
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tion of the demand throughout the year was assumed constant in 
Cases 1, 2, 7 and 8 whereas in Cases 3, 4, 5 and 6, it was allowed 
to vary and was optimised. A more or less constant distribution 
was used for Cases 2 and 8 to reflect municipal/domestic/indus-
trial supply. For Cases 1 and 7, a more variable distribution that 
reflects irrigation supply was used. Higher reliabilities of supply 
were imposed for Cases 2, 4, 6 and 8 than for Cases 1, 3, 5 and 
7 again reflecting the higher reliabilities applied for municipal/
domestic/industrial supply than for irrigation supply. The oper-
ating rule curve values for the total storage trlj,l were obtained 
as simple linear functions of the corresponding values for the 
individual reservoirs for Cases 1 to 4 as described in Eq. (10) 
with the weighting parameter we in Eq. (10) being optimised. 
For Cases 5, 6, 7 and 8, the rule curves for total storage were 
taken to be independent of the individual reservoir rule curves 
and were optimised. 

                  (10)

Constant reservoir storage states were applied to determine the 
storage state reliabilities for Cases 1, 2, 7 and 8 and are given as 
rsnk in Table 1. For Cases 3, 4, 5 and 6, the storage states were 
allowed to vary on a monthly basis but to average the corre-
sponding values of rsn,k. Twelve parameters for each reservoir 
denoted by rsmj,k in Table 3 were used to model and optimise this 
variability. Table 2 summarises the details of the eight cases.

Optimisation methods

The genetic algorithm

The genetic algorithm (GA) is a population-based optimisa-
tion method that works on the principle of survival of the fit-
test as hypothesised in Darwin’s theory of evolution. Since its 
original development as attributed to Holland (1975), the GA 
has been applied extensively in optimisation. In water distribu-
tion network design, the GA has obtained lower cost solutions 
than other approaches (Dandy et al., 1996). Halhal et al. (1997), 
Dandy and Engelhardt (2001) and Wu and Simpson (2001) report 
effective GA applications to water distribution system rehabili-
tation. Srivastava et al. (2002) applied a GA to optimise the best 
management practice of a watershed under agricultural use to 
minimise water quality degradation. Karpouzos et al. (2001) 
used a multi-population GA to solve the inverse problem in 
hydrogeology and Hilton and Culver (2000) optimised ground-
water remediation design using a GA. The GA has also been 
applied to automatic calibration of catchment models with vary-
ing levels of success (Wang (1991), Kuczera (1997), Ndiritu and 
Daniell (1999)). 
 Several reservoir optimisation analyses using the GA have 
been undertaken recently. Oliviera and Loucks (1997) used the 
GA to estimate the effective operating policies for multi-reser-
voir systems. They used simple example systems of two reser-
voirs in series or in parallel and for single purposes: Water sup-
ply or hydropower generation. Their findings suggest that the 
GA may be a practical way of estimating the operating policy 
of complex reservoir systems where general rules of thumb are 
unlikely to be efficient. Wardlaw and Sharif (1999) evaluated the 
GA for optimal reservoir system operation using the 4-reservoir 
and the 10-reservoir problem. The GA obtained solutions very 
close to the known global optima (between 99.5 and 100%) for 
the two problems. Sharif and Wardlaw (2000) applied the GA to a 
real world multi-reservoir multi-purpose problem and concluded 
that the GA provides solutions that are close to the global opti-
mum. Their study compared the GA with Discrete Differential 
Dynamic Programming (DDDP) and the two methods gave close 
results. Cui and Kuczera (2003) compared a GA and the Shuf-
fled Complex Evolution (SCE-UA) Method in a simulation-opti-
misation of a simplified reservoir sizing and operating problem 
and found the two to give comparable results though the SCE-
UA used fewer function evaluations. Cui and Kuczera (2003), 
however, still preferred the GA for computationally demanding 
optimisations involving multiple synthetic data sets as it can be 
easily adapted to parallel computing unlike the SCE-UA. Otero 
et al. (1995) applied the GA to optimise the managed runoff to 
an estuary and Huang et al. (2002) linked the GA with stochastic 
dynamic programming to deal with the curse of dimensionality 

of DP. Cai et al. (2001) used the GA to deal with 
the non-linearities of a complex water resource 
management model whilst optimising the linear 
components by LP. Ndiritu (2003) used a multi-
population GA to obtain the reservoir sizes and 
operation rules that minimise the penalty due to 
non-supply of water and non-utilisation of reser-
voirs due to low storage levels. 
 The GA possesses a number of favourable 
features. A GA code once developed is easily 
transferable to any problem. The GA can work 
with complicated forms of objective functions 
and does not require discretisation of the search 
domain, unlike most DP approaches. Further-

� � 2,,1,,, 1 ljljlj rlwerlwetrl �����

TABLE 1
Maximum probabilities of supply restrictions and 

reservoir states
Level l Cases 1, 3,5  and 7 Cases 2, 4, 6 and 8

prl,1  , prl,2 (%) mpresl (%) prl,1  , prl,2 (%) mpresl (%)
1 100 10 100 5
2 80 5 90 2
3 60 1 80 1
4 30 0.5 50 0.5
Level n rsn,1 , rsn,2  1 mprstn rs1n , rs2n 1 mprstn

1 80 50 80 20
2 60 30 60 10
3 40 10 40 5
1: For cases 3, 4, 5 and 6, the reservoir state was allowed to vary 
on a monthly basis but to average these values.
prl,k :  l

th percentage supply of the demand dj,k,  
mpresl : specified maximum probability that restrictions of 
level l should occur,  
rsn,k : n

th storage state for reservoir k,  
mprstn:  specified maximum probability that a reservoir state 
lower than n should occur.

TABLE 2
Details of analysed cases and number of decision variables

Case Demand 
distribution 

Reliability 
levels 

Reservoir 
state

Total storage 
rule curve 

Decision  
variables 

1 Constant Lower Constant Linear function 77
2 Constant Higher Constant Linear function 77
3 Optimised Lower Optimised Linear function 123
4 Optimised Higher Optimised Linear function 123
5 Optimised Lower Optimised Independent 158
6 Optimised Higher Optimised Independent 158
7 Constant Lower Constant Independent 112
8 Constant Higher Constant Independent 112
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more, the GA requires no feasible trial state trajectories and does 
not require linearisation of any problem component. The GA can 
be easily linked to simulation models that reservoir operators 
accept and Labadie (2004) considers this a great advantage as it 
would enhance the practical implementation of reservoir system 
optimisation techniques. 
 The basic GA consists of the process of randomly generat-
ing a coded population of feasible solutions, followed by repeti-
tions of performance evaluation, selection, crossover and muta-
tion until the specified termination criteria are met. Numerous 
approaches of implementing each of the processes are in use and 
are often adapted to suit the problem at hand. The common cod-
ing methods include binary, gray and real number coding. A real 
number coded GA was found more effective than a binary coded 
one and was adopted for analysis.
 In real number coding, a population of the decision vari-
ables of the optimisation problem is initially obtained randomly 
within the specified search space. The performance of each 
member of the population (i.e. set of decisions) is obtained by 
simulating the system under these decisions. The selection of 
the individuals used to generate the new population is based on 
the performance. Two commonly used methods are proportion-
ate and tournament selection. Tournament selection has been 
found to converge faster that proportionate selection (Simpson 
and Goldberg (1994)) and has been used here. Crossover follows 
selection and several approaches have been used including sin-
gle point, multiple point and uniform crossover. Wu and Chow 
(1995) favour multiple-point crossover, while Savic and Walters 
(1997) report better performance with uniform crossover than 
single point and multiple point crossovers. With a large number 
of crossover positions, multiple-point crossover tends to con-
verge to uniform crossover. Multiple-point crossover is adopted 
herein. Mutation is implemented by changing a small propor-
tion (probability of mutation) of randomly selected variables by 
small amounts. These amounts were randomly selected within 
a specified fraction of the search range. Each operation of the 
GA contributes to optimisation. Selection helps to maintain the 
higher performing members and to weed out those of low per-
formance. Crossover provides a means of searching for better 
combinations of the valuable information in the high perform-
ing members. Mutation helps to maintain diversity and to lead 
the search to new regions of the search space. The processes are 
repeated until the specified termination criteria are met. 
 An automatic search range modification procedure imple-
mented on a binary coded GA (Ndiritu and Daniell (2001)) was 
included in the real coded GA used here. This procedure allows 
the GA to use two search ranges: An inner one that can shift (hill 
climb) and reduce in size to fine tune the search and an outer one 
that specifies the search range limits. 

Powell’s conjugate direction method

According to Rao (1998), Powell’s conjugate gradient method 
(Powell, 1964) is the most frequently used direct non-linear opti-
misation method. Angelo et al. (1999) used Powell’s method for 
freeway control and Mohamed and Jang (1991) used the method 
for structural optimisation.  Stephane and Pascal (2000) applied 
Powell’s method for shape optimisation of a wheel motor and 
James et al. (1995) applied Powell’s method to learning neu-
ral control of unknown dynamic systems. Chiang et al. (2003) 
undertook a numerical comparison and found Powell’s method 
to outperform the Nelder-Mead simplex method and a quasi-
Newton method. In spite of its widespread application, Powell’s 
method has only found limited use in water resource optimi-

sation. Simonovic (1987) applied Powell’s method to derive 
quadratic reservoir operating rules and Tanakamaru and Burges 
(1996) used a multi-start Powell’s method for catchment model 
calibration. Connell et al. (1999) applied Powell’s method to 
optimise the management of water movement in irrigation bays. 
Powell’s method has the advantage of not requiring computa-
tion of derivatives and can thus work with non-differentiable 
objective functions. This was particularly advantageous for this 
study because multiplicative penalties that create discontinui-
ties in the response surface were applied to implement reliabil-
ity constraints as explained in the next section. Powell’s method 
is point-based and starts optimising for each decision variable 
individually while holding the others constant - the coordinate 
direction search. A pattern direction is then obtained as the dif-
ference between the original point and the point after completion 
of the coordinate direction searches. The next round of searches 
is similar to the first one with the replacement of the first coordi-
nate direction search with the first pattern direction search. The 
replacement of coordinate searches with pattern searches after 
each round of search continues until all the coordinate direc-
tions have been replaced. A new cycle of search similar to the 
first one then starts from the new location. The cycles of search 
are repeated until convergence is obtained or other termination 
criteria reached.
 Powell’s method was selected on the basis of its simplicity 
and its distinctly different search approach to that of the GA. It 
is, however, recognised that other methods that do not require 
computation of derivatives such as Nelder and Mead’s simplex 
method, the Metropolis algorithm or the SCA-UA could have 
been applied. 
 Powell’s method requires the specification of the step length 
to apply in all search directions. The magnitudes of the deci-
sion variable ranges of the optimisation problem studied here 
were highly varied and specifying the step length as an absolute 
value would have resulted in a highly inefficient search. The step 
length was therefore specified as a proportion of the decision 
variable search range. The initial point to commence Powell’s 
search was obtained as the point, out of randomly selected points 
from the initial search range as used with the GA (Table 3), that 
gave the highest objective function value. The number of ran-
dom points was subjectively selected as the number of decision 
variables to optimise.

Optimising the system

The optimisation aimed at maximising the total yield (actual 
supply) from the reservoirs whilst meeting specified reliability 
levels of supply and reservoir storage states. The objective func-
tion was specified as the ratio of total supply to total inflow dur-
ing the simulation (Eq. (11)). The constraints were implemented 
by reducing the objective function value to a negligible value 
(1.0×10-10) in case of any violation (Eq. (12)). Because the stor-
age state was allowed to vary on a monthly basis for Cases 3,  
4,  5 and 6, an additional set of constraints requiring the stor-
age state in any month not to exceed the capacity of the res-
ervoir was imposed and implemented in a similar way as the 
other constraints. The initial parameter ranges given in Table 3 
were chosen with the aim of starting the search in a constraint 
non-violating region. This was deemed necessary after it was 
found that the GA often failed to recover from initial constraint 
violations. The initial search ranges of the operating rule curves 
were thus selected to ensure supply zone widths of at least 0.1 of 
reservoir capacity and the initial search ranges for the demands 
were also set at low values. The search range limits were selected 
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conservatively to ensure they most likely contained the opti-
mal solutions. The applied reliability constraints are given in  
Table 1 and the total number of decision variables to optimise 
in each case is given in Table 2. Although the constraints were 
selected subjectively, they are considered to serve the purposes 
of the study adequately.

                  (11)

where:
  TR is the total runoff in the simulation period.

 

                  (12)

where:
 nresl is the number of times that restrictions of the lth level 

are imposed in the simulation period (12N months) 
 mpresl is the specified maximum probability that restrictions 

at this level should occur
 nrstn is the number of times the reservoir is in a state lower 

than the nth state specified as rsn,k in Table 1.
 mprstn is the specified maximum probability that a reservoir 

state lower than this should occur. 

To use the GA, one needs to select suitable optimisation param-
eters. General guidelines on GA optimisation parameter selec-
tion may not be useful when dealing with specific optimisation 
problems. Also, many formulations of the GA exist where no 
guidelines may be available. The trial and error approach was 
used whereby multiple randomly initialised optimisations gave 
an indication of the adequacy of the parameters. If highly var-
ied results were obtained, it indicated that GA solutions were 

trapped in local optima far from the global and if multiple runs 
gave reasonably close results, the GA parameters were consid-
ered reasonable. A study on the response surface characteris-
tics in reservoir optimisation (Cui and Kuczera (2003)) implies 
that this test is not sufficient as multiple runs may give similar 
performance whilst being trapped in large flat regions of the 
response surface that may be far from the global optimum. 
However, in the absence of a practical foolproof approach, this 
method was adopted. After some trials, the following optimisa-
tion parameters were adopted: A population size and number 
of crossover positions equal to the number of parameters; 
a tournament size equal to half the number of parameters; a 
crossover probability of 1.0; a mutation probability of 0.05 and 
a magnitude of mutation in the range of 0 to 0.1 of the search 
range. Optimisation was terminated if the improvement in the 
objective function was less than 1% in 300 generations or if 
the number of generations reached 6 000. The former criterion 
was found to be the basis of termination in all runs. Each case 
was run 5 randomly initialised times. This required about 8 h 
for Cases 1 and 2, 24 h for Cases 3 and 4, about 40 h for Cases 
5 and 6 and about 30 h for Cases 7 and 8 on a computer with a 
1GHz processor. 
 Due to the long computation times, it was decided to com-
pare the GA with Powell’s method for Case 1 only. The scaled 
step length of Powell’s method was found to impact on perform-
ance with a smaller step giving better results but using a larger 
number of function evaluations. After some trial runs, a step 
length of 0.05 of the limiting decision variable search ranges 
given in Table 3 was adopted. 

Results and discussion

Optimised yields, demands and capacities

Figure 2 presents the yields, demands and capacities obtained 
for all five runs of each of the 8 cases. Figure 2a indicates that 
it is unlikely that the GA ever obtained the global optimum and 
became trapped in clearly inferior solutions in a few runs. The 
following discussion is based on the best yields obtained for 
each case. These have been highlighted (filled in black) in Fig.2 
and Table 4 provides additional details. For both reliability lev-
els, the cases applying the simple linear dependence operat-
ing rule with optimisation of the monthly distribution of the 
demand (Cases 3 and 4) gave higher yields than the rest. Com-
paring Case 3 with Case 5 and Case 4 with Case 6, it is evident 
that the independent rule gave slightly inferior results than the 
simple linear dependence rule though it required 35 more deci-
sion variables. This is considered a result of the more difficult 
optimisation due to the additional parameters. The observed 
poorer consistency of optimised decision variables for Cases 5 
and 6 compared with Cases 3 and 4 is a further indication of 
this. Cases 7 and 8, which applied the independent rule with 
constant demand distributions obtained yields close to Cases 1 
and 2 that applied the simpler linear dependence rule. Allow-
ing the distribution of monthly demand to vary improved the 
yield as the cases where demand distribution was optimised (3, 
4, 5 and 6) gave higher yields than corresponding cases with 
constant demand distributions (1, 2, 7 and 8). Figures 2b and c 
show the high variability of optimised demands and capacities 
for each reservoir and also illustrate a considerable degree of 
correlation. Figure 3 presents the variation of system yield with 
total system capacity for all the runs of all 8 cases and demon-
strates the expected relationship between yield and capacity for 
the two reliability levels. 
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TABLE 3
Parameter ranges used in optimisation

Parameter Units Initial range Search range 
limits

trlj,2 ,  rlj,2,k  
1 None 0.71 0.81 0.05 0.9

trlj,3 ,  rlj,3,k  None 0.49 0.59 0.05 0.9
trlj,4 ,  rlj,4,k  None 0.28 0.38 0.05 0.9
c1 Mm3 5 10 0.01 27.1
c2 Mm3 20 50 0.01 205
d1 Mm3/yr 0.001 0.01 0.001 8.95
d2 Mm3/yr 0.001 0.01 0.001 15.20
dj,1 Mm3/m 0.0001 0.001 0.0001 8.95
dj,2 Mm3/m 0.0001 0.001 0.0001 15.20
rsmj,k None 0.8 1.20 0.2 1.25
we None 0.2 0.8 0.001 0.999
1 for k=1, trlj,1 ,  rlj,1,k  =1.0 for all months (l)
trlj,l : lth operating rule curve value for the total storage state for month i,  
rlj,l,k: lth operating rule curve value for reservoir k for month j,  
ck:  capacity of reservoir k,  
dk: annual demand for reservoir k,  
dj,k: demand for reservoir k in month j,  
rsmj,k: parameter for optimising reservoir state variability for reservoir 
k in month j,  
we: weighting parameter for obtaining the rule curves of total storage
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Optimised operating rules and demand distribution

Consistent operating rule curves were obtained with multiple 
runs of each case with the curves for Reservoir 1 being more 
consistent than for Reservoir 2. Figure 4 shows the operating 
rule curves for the best run of Case 1 using the GA and Powell’s 
method. The storage states (specified as the ratio of volume of 
water to reservoir capacity) define the operating (shortage) rule. 
The curves for 30 and 60% restriction levels optimised to the 
lowest values set in the optimisation (0.05 and 0.15) for many 
of the months indicating higher yields were likely if these limits 
were lowered. 
  The optimisation of demand distribution was effected by 
having the 12 monthly demands (dj,k in Table 3) as decision vari-
ables. The distributions from the different runs were fairly con-
sistent for Cases 3 and 4 and less so for Cases 5 and 6 which used 
the independent operating rule curve method.  Figure 5 shows the 
demand distribution for Case 3. This case consistently obtained 
highly variable monthly demands which would not be realistic 
for domestic, municipal or industrial water supplies but could be 
for irrigation supply. For real-life situations, constraints on the 
demand distribution can be easily incorporated to prevent unre-
alistic results.  Using the maximum yields obtained for Cases 1 

to 4, (which used the linear dependence 
rule curve approach) optimising demand 
distribution increased yields by 13.7% 
and 17.0% for the lower and the higher 
reliability cases respectively. Optimis-
ing the distribution of demand may 
therefore be a worthwhile component 
of water resource system optimisation. 
Demand distribution optimisation could 
for example be incorporated into a crop 
scheduling problem for maximising eco-
nomic benefits and/or food production.

Reliability constraints

A graphical comparison of the con-
straint probabilities and the probabilities 
obtained in the optimisations for Case 
3 is presented in Fig. 6. Each slanting 
line connects the optimised probability 

TABLE 4
Optimised yields, demands, capacities and volumetric reliabilities

Case nog1 Yield (Y)2 ad1 (Mm3/y) ad2 (Mm3/y) vol. rel.3 c1 (Mm3) c2 (Mm3)
1 2912 0.3212 5.5348 5.2374 0.9779 12.1018 21.2695
1 P 1701e 0.3205 6.0478 4.6991 0.9741 19.6473 14.6313
2 2534 0.2108 2.5898 4.3717 0.9930 2.8530 10.2607
3 4118 0.3653 6.4046 5.9865 0.9668 27.1000 8.8664
4 2955 0.2466 4.2223 3.9374 0.9911 8.6776 11.0929
5 3121 0.3484 4.4817 7.3467 0.9660 12.0261 13.6312
6 3287 0.2392 2.2377 5.6652 0.9926 2.5450 19.0140
7 1722 0.3199 4.8349 5.9020 0.9771 11.6183 14.3616
8 1161 0.2239 4.3019 3.0659 0.9966 14.7684 8.1140
1: nog: number of generations
2: optimised objective function values 
3: vol. rel.: volumetric reliability = average annual direct diversion/(ad1+ad2) 
P: Powell’s method
e :equivalent nog based on number of evaluations

Figure 2 
Optimised yields, demands and capacities for 5 runs each of 

cases 1 to 8
Note: The results of the 5 runs in each case are random and the 

lines only serve to highlight the correlations
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(lower value) to the corresponding constraint (maximum allowed) 
probability given in Table 1. Figure 6 clearly shows the active 
constraints where there is a close match between the optimised 
probability and the constraint probability. These are: the 100% 
(unrestricted) supply and the 60% supply (restriction level 2) con-
straints for Reservoir 1 and all the reservoir storage state con-
straints for Reservoir 2 giving a total of 5 active constraints. The 
number of active probability constraints for Cases 1, 2, 4, 5, 6, 7 
and 8 obtained similarly were 3, 1, 4, 5, 3, 3 and 3 respectively.  
Although the multiple runs obtained different yields, it seems they 
were consistent in locating the active probability constraints. It is, 
however, possible that more active constraints would have been 
identified had a more thorough optimisation been carried out.

Comparison of genetic algorithm and Powell’s 
method

The 3rd row of Table 4 presents the results of the best run 
of Powell’s method. Powell’s method obtained a yield closely 
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Figure 4
Operation rule curves from GA and Powell’s method

matching that of the GA. For Case 1, the population size 
used was 77 and each generation thus included 77 simula-
tions. The equivalent number of generations for Powell’s as 
given in Table 4, was thus obtained by dividing the number 
of simulations by 77. The average yield obtained from the 5 
runs of Powell’s method and the GA was 0.3000 and 0.3124 
respectively while the average number of simulations for the 
5 runs of Powell’s method and the GA was 125 893 and 158 
902 respectively. The GA obtained slightly superior results 
but required a larger number of simulations. It is expected 
that Powell’s method would have obtained improved results 
with a smaller scaled step than the 0.05 of the search range 
applied in the analysis but this would have required a larger 
number of simulations. The operating rule curves for the 
highest yielding runs of Case 1 applying the GA and Powell’s 
method are presented in Fig. 4. The relatively straighter rule 
curves for the 2nd and 3rd levels obtained by Powell’s method 
in comparison to those of the GA are considered as evidence 
of its superior fine-tuning ability. Decision variables from the  
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5 runs of Powell’s method were also found to be more con-
sistent than those obtained from the GA indicating they 
had a higher tendency to lead to the same location of the 
search space. The GA, however, obtained slightly bet-
ter results suggesting it generally searched more widely 
than Powell’s method. These observations can be attrib-
uted to the fundamentally different search approaches. 
Powell’s method searches in specific directions until no 

improvement is obtained before searching in another direc-
tion whereas the GA is not confined to any directions at 
any stage of the search. Other direct search optimisation  
methods that are easily agreeable with a simulation-opti-
misation approach such as the Shuffled Complex Evolution 
(Duan et al. (1992)) or simulated annealing (Kirkpatrick et 
al. (1983), Teegavarapu and Simonovic (2002)) would be 
expected to optimise the problem studied here effectively.
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Comparison of probability constraints with optimised probabilities for Case 3

Figure 5
Monthly demand distributions for case 3 (each curve represents a run)
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Comparison of simulation-optimisation (SO) with the 
water resources yield model (WRYM)

The water resources yield model (WRYM) has been used exten-
sively for reservoir system yield analysis and optimisation in 
South Africa since 1985. A comparison of the simulation-opti-
misation (SO) approach applied here and the WRYM is therefore 
imperative. A qualitative comparison based on the description of 
the WRYM by Basson et al. (1994) is first made and is then fol-
lowed by a numerical comparison. For large reservoir systems, 
the usual approach used by the WRYM is to subdivide the system 
into subsystems whose characteristics are easier to understand. 
This same approach could be applied to the SO method and the 
two-reservoir system applied here does not therefore suggest an 
upper limit of the capabilities of the approach. 
 The SO method incorporates multiple reliability constraints 
of reservoir storage state which the WRYM does not. With the 
SO method it is possible to specify reliabilities of storage state 
or water level related utilisations (e.g. some forms of recreation) 
as part of the analysis of the system.
 The WRYM uses the concept of a ‘balanced system’ that 
enables the system of several reservoirs to be treated as a single 
reservoir subjected to a target draft. Using the long-term yield 
characteristics, a target draft that will satisfy multiple reliabil-
ity constraints can be obtained. The WRYM however does not 
provide a method to check that the reliability constraints for a 
specific demand obtaining water from a specific reservoir will 
be met.  The SO approach applied here does this readily. After 
optimising system releases via network flow programming 
using WRYM, the inter-reservoir operating rules still need to be 
obtained by simulation. This is a manual and iterative approach 
that matches the reservoir trajectories and supplies from the 
simulation as closely as possible to those obtained from the opti-
misation. In contrast, the SO method applied here undertakes 
the optimisation and the derivation of the inter-reservoir oper-
ating rules simultaneously and this process is automated. It is 
however recognised that the inter-reservoir operating rules from 
the SO method would need to be checked and may need refine-
ment before adoption. 
 The reservoir system studied here had been previously ana-
lysed by the WRYM (DWAF 2000) thereby enabling a quan-
titative comparison. The historical firm yields obtained by the 
WRYM (excluding instream flow requirements) were 4.5 Mm3/
yr and 4.2 Mm3/yr for Reservoir 1 and Reservoir 2 respectively 
giving a total yield of 8.7 Mm3/yr. This total yield of 8.7 Mm3/
yr is well within the yields obtained from the various scenarios 
by the SO model as Fig. 3 and Table 4 show. With the absence 
of reliability constraints of reservoir storage state, the yields of 
the SO analysis should be higher than the firm historical yield 
obtained by the WRYM as firm yield represents a reliability of 
100% while the SO analyses used lower reliability levels. The 
SO approach obtained higher total yields for all cases of the 
lower reliability level but lower ones for all cases of the higher 
reliability level. The reason for the lower total yields for these 
cases was found to be the need to satisfy the level 1 storage state 
reliability constraint for Reservoir 2. 
 The simulation-optimisation (SO) approach took much 
longer computation times than the WRYM model typically 
takes for a problem of similar size and would need to improve its 
efficiency tremendously before consideration for routine practi-
cal application. The SO approach however obtains directly the 
inter-reservoir operation rules in an automated manner unlike 
with the WRYM where the operating rules have to be obtained 

by a manual iterative process. The extra time needed to perform 
this task should be considered in making a fair comparison of 
time requirements. It is noteworthy that the manual derivation of 
the inter-reservoir operating rules engages the analyst through-
out while the automated approach frees the analyst while the 
optimisation is happening. 
 The long computation times of the SO approach were partly 
the result of the refined computation of net evaporation losses 
which resulted in at least one repetition of the mass balance 
computation at each time step. Time could be saved by invok-
ing this refinement after the optimisation has almost achieved 
convergence and not from the start. Computation time could also 
be reduced by lowering the number of variables to optimise. This 
could be done by defining the operating rule curves using parsi-
monious functions that use fewer variables than the 12 used to 
define each operating rule curve. The convergence criteria used 
in the optimisations was also strict with termination happening 
after an increase  in yield of less than 1% in 300 generations. A 
less strict convergence criterion could be used especially with a 
reduction in the number of variables to optimise. It is also likely 
that other optimisation methods such as the SCE-UA could be 
more efficient than the GA and may therefore reduce computa-
tion times. 

Conclusions and recommendations

This study has demonstrated the determination of the reservoir 
capacities and operating rules that maximise the yield of a water 
supply reservoir system subject to multiple reliability constraints 
of supply and reservoir storage by linking a simulation to an 
optimisation model. Applying simulation and multiplicative 
penalties has enabled easy and realistic incorporation of multiple 
reliability constraints. Unlike many stochastic reservoir system 
optimisation methods, the approach applied here obviates the 
need to fit inflows into probability distributions. This approach 
has also enabled the incorporation of realistic operating rules 
reflecting the practice of supply restrictions during drought peri-
ods. The rules specify the percentage of the monthly demand to 
release from each reservoir depending on the total system stor-
age, the storage in the individual reservoir and the month of the 
year. The rules also allow for controlled release from upstream 
to downstream reservoirs. 
 Although most of the optimisation has been carried out using 
a GA, it has been demonstrated that Powell’s conjugate direction 
method could be as effective as and more efficient than the GA. 
It is expected that other direct search optimisation methods that 
are easily amenable to simulation-optimisation could effectively 
optimise the problem studied here without additional assump-
tions.
 The simulation-optimisation approach gave yields com-
parable to the South African Water Resources Yield Model 
(WRYM) and has the advantage of obtaining inter-reservoir 
operation rules automatically. A significant drawback of the 
simulation-optimisation approach is the long computation 
times. In this study, the computation times ranged from 8 to 40 
h for 5 runs of various scenarios and considerably longer peri-
ods would be required if a more rigorous analysis of hydrologi-
cal uncertainty using stochastically generated data was car-
ried out. Suggestions to reduce the computation times were: i) 
defining operating rule curves using parsimonious functions of 
few variables, ii) applying  refined computation of net evapora-
tion losses only when optimisation is close to convergence, iii) 
using a more relaxed convergence-based termination criterion 
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and iv) trying out other optimisation methods. Cui and Kuczera 
(2003) highlight the problem of long computation times and 
propose that such analyses be handled by super computers or 
by parallel computation. Methods that are easily adaptable to 
parallel computing such as the GA may then hold an advantage 
over others. 
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