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Abstract

This paper compares the use of simple regression equations of three commonly used pollutant build-up and wash-off  
functions, namely linear, power and exponential functions, to estimate event pollutant loads. The comparative study indicated 
that, event loads are better estimated as power functions of storm-related independent variables. On the notion that rainfall 
data are more readily available, easy and less expensive to collect than runoff data, the calibrated model was verified using 
rainfall volume as independent variable. The verified model was then used to develop load-duration-intensity curves to serve 
as predictive tools. Planners and engineers can use these predictive tools to obtain an approximate estimate of event pollut-
ant loads in storm runoff from Alexandra (and also other townships with similar physical, land-use, climatic and hydraulic  
characteristics and water quality issues) for the purpose of managing or improving drainage conditions in the township.
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Introduction

Inadequate sanitation and drainage is one of the major environ-
mental and health problems facing high-density low-income 
settlements in South Africa today. The backlog in sanitation 
and drainage includes solid waste, sewage, grey-water and 
severely contaminated stormwater runoff. In these areas (as 
noted in Alexandra) the paths are often merged; sewage, grey-
water, solid waste and contaminated runoff enter surface drains, 
eventually discharging  into streams, rivers and impoundments 
that are used for drinking water supply and recreation. These 
cause water quality problems, pose potentially serious human 
and environmental health risks through contact recreation and 
through the use of untreated water, result in high drinking water 
purification costs and cause a loss of amenity value and dimin-
ished recreation potential (Ashton and Bhagwan, 2001).
 The unprecedented population growths in these settlements 
have severely strained the ability of municipalities to meet the 
need for drainage and treatment. As local governments have 
tried to cope with insufficient services, priority has been given 
generally to high-income areas where full or partial cost-recov-
ery is considered feasible. Low-income areas are often left un-
served or served by woefully inadequate drainage and treatment 
facilities. The principal reason for this situation is the high cost 
of conventional drainage and treatment practices. It is for this 
same reason that the Water Research Commission of South 
Africa initiated a project to look into appropriate technology 
options that are feasible for rural and peri-urban drainage. The 
project, among other things, seeks to identify potential manage-
ment interventions (e.g. ponds, vegetated biofilters and wetlands) 
and appropriate technology for treating runoff and grey-water. 
To achieve this objective, a technique needs to be developed to 
estimate storm runoff loads in view of limited data available. 
 Previous studies conducted in South Africa have concen-
trated on the use of linear regression techniques/models to  

estimate storm loads. This paper compares three different 
regression models commonly used in pollutant load estimation. 
The best regression model (involving rainfall-related variables) 
is further used to develop load-duration-intensity (LDI) curves 
for prediction of storm runoff loads. Vase and Chiew (2003) also 
used rainfall-related variables to develop similar characteristic 
curves based on laboratory experimental runs using rainfall 
simulators. The data and information used in this paper were 
compiled by Wimberley (1992), which to date, stands out as one 
of the most comprehensive studies in South Africa that contrib-
ute meaningful data on the subject concerning water quality and 
flow measurements in urban settlements.

Catchment description

The Alexandra township is located 12 km north-east of central 
Johannesburg and 4 km east of Sandton central business dis-
trict. The township is split into the west and east bank by the 
Jukskei River; the west bank is completely developed whereas 
the east bank is undeveloped. The west bank, which is princi-
pally the focus of this study covers a total surface area of about 
350 ha. The official population of Alexandra is estimated as   
166 971 according to the 2001 population census of South 
Africa. This translates to a population density of 477 persons/
ha and 80 dwelling units/ha (assuming 6 persons/dwelling unit). 
This suggests that every person in Alexandra has, on average, 
about 16 m2 of living space, accepting that roads, businesses, 
schools, and other open spaces take up 20% of the area. If the 
relatively small number of storeyed buildings in Alexandra is 
further taken into consideration, this figure becomes even more 
alarming.  
 Land-use characteristics are being dominated by a high-
density residential development. Stormwater drains service the 
township. Most of the drainage network consists of underground 
pipe network with an outfall into the Jukskei River. A water-
borne sewage system services the formal settlements whereas 
in the informal settlements, sewage is removed in buckets, and 
taken to the Alexandra Sewage Works. The area slopes steeply 
in a west-east direction towards the Jukskei River, with slopes 
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varying from 12.5% in the western sections to 3.3% in the  
sections closer to the Jukskei River. The average annual rainfall 
in the area is about 750 mm.

Data collection and analysis

Data for this paper were collected in 1991 as part of a research 
project (Wimberley, 1992). Data from 16 storm events between 
August 1991 and November 1991 were monitored, where 
sequential discrete samples were collected over the hydrograph 
and the rainfall and runoff flow rates were concurrently meas-
ured. Rainfall intensity was calculated as total precipitation 
divided by rainfall duration. Runoff depth was calculated 
as runoff volume divided by the township area under study.  
The storm runoff mean concentration was determined by  
calculating the area under the load graph curve (concentra-
tion multiplied by discharge rate over time) and dividing it by 
the area under the hydrograph curve (runoff rate over time).  
The event load was calculated by multiplying event mean 
concentration by total event storm volume. Pollutants of  
concern analysed in the study included: chemical oxygen 
demand (COD); suspended solids (SS); total Kjeldahl nitro-
gen (TKN); ortho-phosphates (PO4); total dissolved solids 
(TDS); chloride (Cl); sulphate (SO4); iron (Fe); and lead (Pb). 
Marais and Armitage (2003) have also indicated that pollution  
resulting from litter is of much concern in South Africa, and 
Alexandra is no exception.

TABLE 1
Summary of monitored storm rainfall and runoff

Rainfall 
depth
(mm)

Rainfall 
dura-
tion

(min)

Rainfall 
max 
rate

(mm/h)

Runoff 
volume

(m3)

Run-
off 

peak
(m3/s)

Minimum 0.40 20 2.40 264.00 0.10
Maximum 21.03 120 64.80 12 601.00 5.15
Median 3.81 64.17 12.00 2 409.00 1.63
Mean 7.12 71.03 23.60 4 543.15 1.77
St. dev. 6.84 27.37 23.87 4 013.65 1.48

TABLE 2
Summary of monitored event mean concentration data

COD
(mg/ℓ)

SS
(mg/ℓ)

TKN
(mg/ℓ)

PO4
(mg/ℓ)

TDS
(mg/ℓ)

Cl
(mg/ℓ)

SO4
(mg/ℓ)

Fe
(mg/ℓ)

Pb
(mg/ℓ)

No. of events 16 16 16 16 16 16 16 16 16
Minimum 67.70 818.00 7.10 0.60 153.00 29.00 23.40 0.90 0.20
Maximum 11 440.00 7 803.00 103.10 8.30 1 273.00 301.00 213.00 102.00 31.00
Median 578.20 2 219.00 43.20 2.50 325.00 51.00 73.70 30.10 0.80
Mean 1 595.11 2 855.23 50.88 3.10 480.38 78.53 81.21 34.01 3.53
St. dev. 3 073.82 2 248.59 26.45 2.30 330.26 74.75 59.85 26.88 8.70

TABLE 3
Summary of monitored event mean concentration data

COD
(kg)

SS
(kg)

TKN
(kg)

PO4
(kg)

TDS
(kg)

Cl
(kg)

SO4
(kg)

Fe
(kg)

Pb
(kg)

No. of events 16 16 16 16 16 16 16 16 16
Minimum 243.94 585.82 11.96 1.19 119.06 16.10 35.07 0.58 0.24
Maximum 15 672.80 44 317.72 535.54 25.20 4 095.33 725.11 660.06 415.83 19.84
Median 2 263.14 5 604.12 171.28 7.62 1 466.21 257.24 174.82 154.64 3.01
Mean 3 243.82 10 317.89 180.39 8.71 1 550.85 256.12 271.22 141.65 5.53
St. dev. 4 187.93 11 349.83 144.79 6.02 1 107.35 201.40 213.47 125.25 6.34

Results and discussion of data

Tables 1, 2, and 3 present statistical summaries of storm rain-
fall, runoff, event mean concentration and event load data. The 
pollutant concentrations are comparable to those of raw sewage 
– detailed analysis of pollution extent is provided in Wimberley 
and Coleman (1993), Wimberley (1992) and Campbell (2001). 
Event mean concentrations and loads ranged over one or more 
orders of magnitude for all constituents. The high variation is 
indicated by large standard deviation, which in turn indicates 
that the mean is substantially larger than the median. Com-
paratively, large variation occurs in COD, suspended solids and 
TDS, moderate variation in the nutrients and minerals and lesser 
variation in the metals, especially lead. This variability may be 
real or result from sampling and analytical technique. 

Empirical modelling

Commonly used pollutant build-up and wash-off functions are:
 Linear      P = at
 Power      P = atb

 Exponential    P = Po (1 – e-at)
 Michaelis- Menton  P = Po*t/(a+t)
where: 
 a, b, and Po are model parameters 
 P is load
 t is time
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Previous studies conducted in South Africa have concentrated 
on the use of linear regression technique/model to estimate 
storm loads. The use of linear, power and exponential regres-
sion models is investigated to determine which function better 
fits the data distribution. A comparative study of the results of 
the simple regression models indicates that the event loads are 
better estimated as power functions (Eqs. (1) to (5), where a, 
and b are model parameters) of rainfall volume, runoff volume, 
rainfall peak intensity, runoff peak rate and runoff mean rate. 
Figures 1 to 5 compare the correlation coefficients for the three 
functions, with power functions displaying higher correlation 
coefficient.
 Load = a (rainfall volume)b        (1)
 Load = a (runoff volume)b        (2)
 Load = a (rainfall peak rate)b       (3)
 Load = a (runoff peak rate)b       (4)
 Load = a (runoff mean rate)b       (5)

The reason for the power function to better fit the rainfall-
related variables may be due to the fact that the power func-
tion applies to a system when large is rare and small is com-
mon. Like rainfall, most frequent recurrent rainfall events 
are small whereas large storms have infrequent recurrence. 
Perhaps correlation may favour linear and exponential 
functions where the independent variables are non-related 
rainfall variables, e.g. number of antecedent dry days,  
land-use variables, physical variables, and other catchment 
variables.

Discussion of model estimates (calibration)

Correlation coefficients (R2) were calculated between event 
loads and rainfall-related variables to determine whether these 
parameters could be used to create predictive models using 
readily obtainable storm-related information. R2 indicates the 

Figure 1: Comparison of models using 
rainfall max. rate as independent variable
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Figure 2: Comparison of models using runoff 
peak rate as independent variable
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Figure 3: Comparison of models using 
rainfall volume as independent variable
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Figure 4: Comparison of models using runoff 
volume as independent variable
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Figure 5: Comparison of models using runoff 
mean rate as independent variable
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TABLE 4
Summary of statistical parameters of per cent error of estimation for each 

independent variable
Independ-
ent vari-
able

Pollutant 
type

Per cent error of estimation
Minimum Maximum Median Mean Standard 

deviation

Rainfall 
volume

COD -76.2 377.0 55.2 65.2 126.2
SS -68.6 173.5 -2.0 20.2 76.7
TKN -52.0 376.2 -5.1 27.0 114.8
PO4 -61.5 90.9 -14.2 10.2 49.0
TDS -69.4 95.3 11.5 14.8 56.0
Cl -80.1 108.3 2.2 19.1 62.3
SO4 -70.7 172.4 -5.0 20.4 75.8
Fe -78.4 24 433.4 -20.7 189.4 678.9
Pb -92.7 293.5 2.4 66.1 145.9

Rainfall 
max. rate

COD -77.9 363.6 64.4 78.8 142.0
SS -71.1 312.8 3.0 34.0 111.3
TKN -60.7 302.6 -21.9 35.9 119.7
PO4 -60.8 180.0 0.5 17.3 70.7
TDS -57.8 255.8 -18.0 24.6 97.4
Cl -65.1 287.1 -22.3 30.1 112.0
SO4 -61.4 133.3 -3.0 16.9 65.3
Fe -83.2 1989.3 -29.4 188.9 581.4
Pb -91.9 575.5 17.5 85.0 201.0

Runoff 
volume

COD -75.6 284.2 29.7 60.2 115.0
SS -69.0 142.8 8.7 16.9 62.4
TKN -52.9 344.2 -10.7 22.2 103.5
PO4 -58.9 132.3 4.3 12.9 56.4
TDS -67.4 84.0 15.8 12.9 51.7
Cl -78.8 70.2 7.3 12.9 45.4
SO4 -68.5 218.4 -5.9 21.2 80.4
Fe -80.1 1474.2 -12.2 108.3 414.8
Pb -92.8 339.6 5.1 70.5 153.2

Runoff 
mean rate

COD -69.0 310.9 36.0 59.3 113.9
SS -58.2 118.1 5.4 15.0 60.6
TKN -52.2 264.9 -4.4 17.2 84.6
PO4 -54.7 93.8 0.1 10.6 48.9
TDS -46.8 178.7 -12.3 11.0 60.7
Cl -56.6 133.9 5.4 8.7 48.8
SO4 -65.4 231.9 -9.3 23.4 87.6
Fe -65.0 1129.4 1.3 91.2 332.2

Runoff 
peak rate

Pb -93.2 372.0 27.5 68.9 150.8
COD -68.4 290.5 23.2 58.9 113.1
SS -53.5 150.0 -1.8 18.4 72.3
TKN -44.2 222.5 -9.3 14.0 73.5
PO4 -56.1 88.9 4.6 9.4 45.7
TDS -52.4 116.3 0.3 8.5 47.8
Cl -61.2 77.6 1.3 7.3 39.8
SO4 -59.3 191.2 -10.2 16.7 73.7
Fe -62.3 311.1 -6.9 29.1 108.1
Pb -93.2 465.0 9.7 81.4 183.2
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proportion of the total variation of the event load (depend-
ent variable) that is explained by the rainfall-related variables  
(independent variables). Therefore, the value of R2 is used as 
a summary measure to judge the fit of the regression model to 
the data. Generally, runoff peak rate seems to provide larger R2 
compared to the other independent rainfall-related variables, 
while COD and Pb are least correlated in all the models.
 The relative accuracy of the power function model is only 
determined in this paper due to its relative superiority over  
linear and exponential functions. The accuracy is represented by 
per cent error of estimation, which is a measure of how well the 
regression models estimate pollutant loads of calibrated events. 
The per cent error of estimation for each pollutant in each storm 
event is defined as:

 

where:
  Est and Obs are the estimated and observed loads 
 respectively. 

Table 4 presents a summary of statistical parameters of per cent 
error of estimation for each independent variable. Apart from 
Fe, which showed a very high range, the mean of the estimated 
error ranged from 7.3 to 85 per cent for the rest of the pollutant 
types.

Discussion of model testing (prediction)

The model was tested to determine its soundness by cross-veri-
fication method where four events were left out in turn, and the 
model was calibrated separately against the other events data. 
Regression analysis done separately in this way yielded new 
regression (calibration) models very similar to the original mod-
els wherein all the storm events were used. The load for the event 
that had been left out was then predicted and compared with 
the observed load. The relative accuracy of the power function 
model was again tested by per cent error of prediction, which 
in contrast, is a measure of how well the regression models esti-
mate each pollutant load of non-calibrated events. The range of 
per cent error of prediction (PEP), calculated in the same way as 
per cent error of estimation, is also very similar to the range of 
PEE shown above. Figure 6 presents a comparison of correlation 
coefficients for the pollutants in the cross-verification testing for 
the model involving rainfall volume as independent variable. The 
four events: 15/11/91, 16/10/91, 27/11/91 and 9/11/91 correspond-
ing to minimum, maximum, median and mean rainfall volume 
respectively were used in turn in the cross-verification testing.

Figure 6: Comparison of correlation coefficient in cross-verification 
(rainfall volume as independent variable)
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TABLE 7
Calculation of SS pollutant loads for 10 mm/h storm 

intensity
Rain-
fall 
dura-
tion 
(min)

Rain-
fall in-
tensity 
(mm/h)

Rainfall 
volume 
(x),  (m3)

Pollutant 
load model

Predicted 
pollutant load 
(kg) (mg/m2)

10 10 2 700

y = 7.63x 
0.76

3 093 1 909
20 10 5 400 5 238 3 233
30 10 8 100 7 128 4 400
40 10 10 800 8 870 5 475
50 10 13 500 10 509 6 487
60 10 16 200 12 071 7 451
70 10 18 900 13 572 8 378
80 10 21 600 15 021 9 272
90 10 24 300 16 428 10 141
100 10 27 000 17 798 10 986
110 10 29 700 19 135 11 811
120 10 32 400 20 443 12 619

Load-duration-intensity curves for event pollutant 
load prediction

The pollutant wash-off loads from the data collected and mod-
elled are presented as load-duration-intensity (LDI) curves. The 
relationship between pollutant loads per unit area and rainfall 
duration is plotted on the basis of the catchment-modelled data 
for different rainfall intensities. The y-axis representing the 
predicted pollutant load is expressed in mg/m2. In this way, 
although the data were monitored for the southern catchment 
area of 162 ha, the curves can be applied to the entire Alexandra 
catchment. Loads per m2 predicted from the curves would then 
be multiplied by the total area (350 ha) to obtain the total load in 
mg or kg for Alexandra. This was based on the assumption that 
the characteristics (climatic, hydrological, physical, land-use, 
environmental and social parameters) of the southern catchment 
are similar or representative of the whole Alexandra catchment. 
Nevertheless, since the catchment area of Alexandra is relatively 
small, this assumption seems reasonable. 
 For a specified storm duration and intensity, storm volume 
(mm) was evaluated, and using the tested power function model 
involving rainfall volume as independent variable  (Eq.(1)), the 

�
�
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ObsEstPEE 100
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Figure 10: Load-Duration-Intensity curve for PO4
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Figure 11: Load-Duration-Intensity curve for TDS
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Figure 12: Load-Duration-Intensity curve for Cl
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pollutant loads were predicted and subsequently used to prepare 
the characteristic curves. For example, for a mean storm inten-
sity of 10 mm/h, the suspended solids pollutant loads for dif-
ferent storm durations are evaluated as summarised in Table 5 
where the model parameters in Eq. (1) are determined as a = 7.63 
and b = 0.76.
 Rainfall-related variables were used to create the predictive 
tools (LDI curves) instead of runoff data because the former 
is readily available, or easy and less expensive to collect. The 
curves displayed in Figs. 7 to 15, depict increases in loads with 
increases in both storm duration and intensity as physically 
expected. Generally, the slope of the curves decreases with 
time, tending to flatten out at higher storm duration, suggest-
ing that there is a limiting pollutant load that can be washed off 
by storm events. The monitored event durations and pollutant 
loads are also plotted in Figs. 7 to 15 to fit the corresponding 
event intensities. While most of the monitored data plot in the 
‘appropriate’ positions (at or close to the modelled intensities) 
some of them do not. The disparities may be accounted for by 
the per cent error of estimations shown in Table 4 under rainfall 
volume.

Conclusion

This paper compares the use of simple regression equations of 
three commonly used pollutant build-up and wash-off func-
tions, namely linear, power and exponential functions to esti-
mate event pollutant loads. The comparative study indicated that 

event loads are better estimated as power functions of rainfall 
and runoff volumes and rates (as independent variables). On the 
notion that rainfall data are more readily available, easier and 
less expensive to collect than runoff data, the calibrated model 
was verified using rainfall volume as independent variable. The 
verified model was then used to develop load-duration intensity 
curves to serve as predictive tools. Hence, for a selected design 
storm for a treatment facility (e.g. ponds, vegetated biofilters and 
wetlands) to be designed, the various pollutant loads can be pre-
dicted for the size of catchment area discharging into that treat-
ment facility. With knowledge of the runoff volume (from the 
selected design storm) and the predicted event pollutant loads, 
event-mean concentrations into the treatment facility can also 
be determined. 
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Figure 8: Load-Duration-Intensity curve for SS
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Figure 9: Load-Duration-Intensity curve for TKN
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Figure 7: Load-Duration-Intensity curve for COD
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Figure 13: Load-Duration-Intensity curve for SO4
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Figure 14: Load-Duration-Intensity curve for Fe
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Figure 15: Load-Duration-Intensity curve for Pb
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